Меню

Абсолютная погрешность прямого измерения силы тока

Оценка точности прямых измерений силы тока и напряжения и косвенных измерений сопротивления и удельного сопротивления проводника , страница 4

Примеры расчётов:

Средняя абсолютная погрешность прямых измерений диаметра проводника:

Средняя квадратическая погрешность прямых измерений диаметра проводника:

Средняя абсолютная погрешность косвенных измерений сопротивления проводника:

Средняя квадратическая погрешность косвенных измерений сопротивления проводника:

Величина удельного сопротивления отдельного измерения проводника:

Вычисление погрешности измерения силы тока и напряжения:

Класс точности амперметра и вольтметра:

Систематическая ошибка вольтметра:

Систематическая ошибка амперметра:

Таблица необходимых данных для графика зависимости:

Среднее значение удельного сопротивления, вычисленное по значениям графика:

Средняя абсолютная погрешность косвенных измерений удельного сопротивления проводника:

Средняя квадратическая погрешность косвенных измерений удельного сопротивления проводника:

Конечные результаты:

Удельное сопротивление с учетом средней абсолютной погрешности косвенного измерения удельного сопротивления:

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Читайте также:  Знак самоклеющийся опасность поражения электрическим током

Источник

Виды и методы измерения электрических величин

Измерение – это сравнения фи­зической величины, которая измеряется, с некоторым значением такой же величины, принятым за еди­ницу. Они измеряются специальными устройствами — средствами измерения. Поскольку не все приборы обладают абсолютно одинаковыми характеристиками существуют различные методы измерений, методы оценки измерений, а также погрешности при измерениях.

Измерения проводят прямым и косвенным путем

Прямые –это когда нужное значение измеряемой величины определяется по шкале (дисплею) прибора.

К таким относятся измерение электроэнергии счетчиком, напряжения и тока – амперметром и вольтметром соответственно и пр.

Косвенное — искомое значение нужной величины находят на основании аналитической зависимости (например формулы) между необходимой величи­ной и величинами, полученными при помощи прямых измерений. То есть эти измерения позволяют сократить количество проводимых измерений, а вычислить нужные значения с помощью формул. Например, form1 измеряв U и I вычисляем R —

Измерения могут проводится различными способами и, соответственно, средствами. Соответственно такие измерения нужно оценить, для этого существуют методы непосредственной оценки и методы сравнения.

Методы непосредственной оценки и методы сравнения

Непосредственная оценка. При применении данного метода значение нужной величины вычисляют по шкале прибора (тока — по амперметру, напряжения — по вольтмет­ру и пр.). Он довольно прост, но не отличается сравнительно вы­сокой точностью.

Сравнения. Состоит в том, что величина, которая измеряться, сравнивается с величиной, воспроизводимой мерой. Он обеспечивает точность, большую, чем метод непосредственной оценки, но процесс из­мерения значительно усложняется. У метода сравнения есть несколько разно­видностей: дифференциальной, нулевой и замещения.

При нулевом методе стараются свести влияние на измерительное устройство измеряемых величин до нуля. Пример — с помощью урав­новешенного моста для измерения электрического сопротивления.

При методе замещения величину которая подлежит измерению замещают из­вестной величиной, которая воспроизводится мерой. При этом, изменяя известную величину, добиваются точно такого же показа­ния прибора, как и то, которое действовало при действии измеряемой величины. Таким образом устанавливают погрешность. При использовании дифференциального метода разность между величиной и измеряемой величиной, вос­производимой мерой действуют на измерительный прибор. Пример — с помощью неуравновешенного моста измерение электрического сопротивления.

Известно, что приборов с точностью абсолютной не существует в мире, то каждый прибор характеризуется погрешностью. Они делятся на относительные, абсолютные и приведенные.

Погрешность абсолютная А — это разность между фактическим значением шкалы прибора А и действительным значением измеряемой величины АД:

form1

Погрешность относительная — это отношение погрешности абсолютной ∆ к фактическому значению измеряемой величины А. Выражается она в процентах:

form1

Погрешность приведенная — представляет собой ничто иное как отношение абсолютной погрешности ∆ к нормирующему значению АN измеряемой величины:

form1

Обычно нормирующее значение принято принимать равным верхнему пределу измерения для прибора.

Погрешности бывают: системати­ческие и случайные

Погрешность систематическая. Она остается постоянной, но может и меняться по любому, но определенному закону. Значение ее всегда учитывается путем введения соответствующих поправок, для минимизации влияние погрешностей.

Погрешность случайная.Она появляется непредсказуемо и изменяется по случайному закону. Их нельзя исключить, но можно систематизировать и минимизировать их влияние произведя несколько измерений.

Также на появление погрешностей производит влияние и условия эксплуатации приборов. Поэтому, погрешности могут быть двух видов: основная и дополнительная.

Погрешность основная. Она появляется на измерительных приборах, которые находятся в нормальных условиях эксплуатации (атмосферное давление, влажность, температура внешней среды, напряжение и пр.).

Погрешность дополнительная. Она происходит тогда, когда устройство не эксплуатируется в нормальных условиях.

Уровень точности приборов характеризуется классом точности. Для электроизмерительных приборов уста­новлены такие классы точности как: 0,05; 0,1; 0,2; 0,5; 1,0; 1,5; 2,5 и 4.

Читайте также:  Как определить направление силы тока в соленоиде

Цифры эти указывают указывают основную приведенную погрешность γ, которая показывается в про­центах. Абсолютная ∆ и относительная δ погреш­ности могут быть представлены в таком виде:

form1

form1

Из данной статьи можно сделать вывод, что при измерении электрических величин следует учитывать класс точности прибора и условия окружающей среды. Для более высокой точности измерений необходимо использовати различные методы измерений. Для исключения влияния случайных факторов нужно провести одно и тоже измерение несколько раз.

Источник

Методические погрешности измерений тока и напряжения.

По току.

δ – относительная погрешность.

При включении амперметра, сопротивление цепи возрастает на величину внутреннего сопротивле-ния амперметра, поэтому ток проходящий через амперметр будет меньше тока действительного в це-пи. Таким образом, показания амперметра будут заниженными, т.е. абсолютная и относительная погрешности будут иметь отрицательную величину. Для уменьшения этой погрешности, необходи-

мо выбирать амперметр с меньшим внутренним сопротивлением.

По напряжению.

Относительная погрешность определяется :

Погрешность при взаимодействии с объёмом :

При измерении напряжения, вольтметр подключается параллельно к нагрузке, тем самым уменьшая суммарное сопротивление. Падение напряжения на котором будет меньше действительного, т.е. показания прибора будут занижены, а погрешность δ будет отрицательной. Для уменьшения пог-решности следует выбирать вольтметр с большим внутренним сопротивлением.

ЧЕМ БОЛЬШЕ ВНУТРЕННЕЕ СОПРОТИВЛЕНИЕ ВОЛЬТМЕТРА, ТЕМ МЕНЬШЕ ПОГРЕШНОСТЬ ИЗМЕРЕНИЯ.

Малые сопротивления : а) влияющие факторы ( длина линии связи, переходные сопротивления

контактов, термо ЭДС в контактах.)

б)средства измерения ( одинарные и двойные мосты, компараторы)

Большие сопротивления : а) влияющие факторы (токи утечки из-за того, что измеряемое сопротив-

ления соизмеримы с сопротивлением изоляции)

б) средства измерения ( компараторы, одинарные мосты постоянного

Основные характеристики средств измерения : точность, примеры получения результатов, форма

выражения результатов, метод измерения, способ преобразования величины, характер изменения

величины, количество наблюдений.

Виды измерений : а) прямое измерение – при котором искомое значе-ние фактической величины получают непосред-ственно. б) косвенное измерение – это измерение при кото-ром значение величины получают на основании ре-зультатов прямых измерений других величин свя-занных с измеряемыми формулами.

Средства измерений : а) Мера – это средство измерений, предназначенное для воспроизведения и

хранения физической величины одного или нескольких заданных размеров, значения которых

в установленных единицах и известны с необходимой точности.

б) Измеряемый прибор – это средство измерений, предназначенное для полу-

чения значений измеряемой физической величины в установленном диапазоне (по шкале.).

в) Измеряемый преобразователь – это техническое средство, служащее для

преобразования измеряемой величины в сигнал удобный для обработки преобразований пере-

г) датчик — это совокупность измерений в сигнал с электрическим устрой-

ством преобразующий измеряемую величину в унифицированный эл. сигнал.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник



Погрешности измерения напряжения и тока

Классификация погрешности измерений

Виды измерений

Измерение тока и напряжения в электрической цепи проводят в диапазоне частот от 0 Гц до 1 ГГц. На более высоких частотах эти величины теряют свою однозначность в линии передачи и в её поперечном сечении. По этим причинам на сверхвысоких частотах предпочитают измерять мощность, а не ток и напряжение.

С точки зрения получения значения измеряемой величины по результатам первичных измерений различают прямые и непрямые (косвенные) измерения.

Прямое измерение – это измерение, при котором значение величины Х получают непосредственно по показанию соответствующего прибора Хп без дополнительных расчетов Х= Хп.

Читайте также:  Что делать если стул бьет током

Примеры прямых измерений: измерение силы тока – амперметром, напряжения – вольтметром и т.д. При непрямом (косвенном) методе измерения величину Х определяют по результатам прямых измерений величин у1, у 2, … у п, которые связаны с нею определенной функциональной зависимостью

Качество измерений тем выше, чем ближе результат измеренияХi к истинному значению Х. Абсолютная погрешность:

Количественной характеристикой качества измерения является погрешность измерения. Погрешность измерительных приборов отражает свойства только самого измерительного устройства, обусловленные структурными схемами, конструктивными особенностями приборов, применяемых в них материалов и элементов, технологии их изготовления, регулировки и градуировки. Следует различать погрешность измерительного прибора (инструментальная погрешность) и погрешность измерения прибором некоторого сигнала. Погрешность прибора – это часть погрешности измерения некоторого сигнала измерительным прибором, обусловленная неидеальностью (несовершенством) средств измерительной техники; она в определенной степени влияет на точность измерений. Погрешность прибора, определяемая по формуле (2.1), называется абсолютной. Более наглядное представление о точности измерений дает относительная погрешность прибора, которая рассчитывается по формуле (2.2).

. (2.2)

Для сравнения приборов между собой введено понятие приведенная погрешность прибора , равная отношению его абсолютной погрешности ∆ к значению шкалы Хк, которое принимается равным номинальному значению Хном для приборов с равномерной шкалой:

Если абсолютная погрешность прибора постоянна по всей шкале, то его относительная погрешность существенно увеличивается к началу шкалы. Поэтому целесообразно выбирать прибор (или шкалу прибора) с таким пределом измерения, при котором его указатель при измерении располагается ближе к концу шкалы.

Одной из характеристик прибора является класс точности. Класс точности прибора Кп определяет наибольшую (предельную) допустимую приведенную погрешность прибора в рабочей области шкалы, выраженную абсолютным числом, значение которого равно приведенной погрешности в процентах. По классу точности можно определить наибольшую абсолютную погрешность ∆, которую может иметь прибор в любой точке шкалы (без учета знака).

Например, при использовании вольтметра со шкалой 0 ÷ 100 В (Хном=100В) класса точности 1.5 на любой отметке его шкалы основная абсолютная погрешность не превышает значения

∆ ≤ ± КпХном / 100% = ± 1.5 ∙ 100 / 100% =± 1.5 В

При этом она может на отдельных отметках шкалы быть меньше 1.5 В или даже равна нулю. Приведенная погрешность соответствует максимальной относительной погрешности.

Класс точности электроизмерительного прибора устанавливают на заводе при калибровке по образцовому прибору в нормальных условиях. Нормальными условиями считаются температура окружающей среды (20 ± 5)˚С, относительная влажность (65 ± 15)%, атмосферное давление (100 000 ± 4 00) Па или (760 ± 30) мм рт. ст., напряжение питающей сети 220В ± 2% с частотой 50 Гц.

По зависимости погрешности от измеряемой величины Х различают аддитивные погрешности (независящие от Х), и мультипликативные (линейно зависящие от Х). Для аналоговых измерительных приборов с аддитивной погрешностью установлены такие классы точности:

К (%) = (1; 1,5; 2; 2,5; 4; 5; 6)∙10 n , где n = 1, 0, -1,-2.

В зависимости от места и причины возникновения различают такие основные составляющие погрешности от:

— несоответствия (неадекватности) модели измеряемого объекта его реальным свойствам и величине;

— упрощения математических моделей измерительных преобразований;

— взаимного влияния средств измерений и объекта;

— несовершенство средств измерений;

— влияния внешних факторов на объект и средства измерений;

— несовершенства вычислительного алгоритма и обработки результата наблюдения.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник