Меню

Абсорбционный ток в диэлектрике возникает из за

Лекции по курсу Электротехнические материалы

Общие представления об электропроводности диэлектриков

Сквозной ток — I с к в (ток утечки) протекает по диэлектрику под воздействием постоянного напряжения — обусловлен наличием в диэлектриках свободных носителей заряда различной природы.

Вид диэлектрикаНосители заряда (область слабых полей)Природа носителей заряда (происхождение)
Газообразные Положительные и отрицательные ионы Ионизация молекул газа
В сильных полях также электроны Главным образом ударная ионизация и фотоионизация молекул газа
Жидкие Ионы Диссоциация молекул примеси (реже собственных молекул)
Коллоидные заряженные частицы Характерны для эмульсий (коллоидные частицы жидкость) и суспензий (взвешенная фаза твердое вещество)

Твердые Ионы Диссоциация примесей или собственных молекул
Точечные дефекты кристаллической решетки: вакансии (пустые узлы) межузельные ионы Зависят от структуры кристаллического диэлектрика
Электроны проводимости или дырки в заполненной зоне В диэлектриках с электронным механизмом проводимости

Зависимость тока от времени приложения постоянного напряжения

В момент включения постоянного электрического поля через диэлектрик электрического конденсатора протекает ток смещения — Iсм , обусловленный быстрыми видами поляризаций.

В неполярных однородных диэлектриках затем устанавливается ток сквозной проводимости — Iскв .

В полярных и неоднородных диэлектриках протекает также ток абсорбции — Iабс , вызываемый активными составляющими токов, связанных с установлением замедленных (релаксационных) поляризаций. Во многих диэлектриках, используемых в качестве электрической изоляции, Iабс устанавливается за время меньше 1 мин .

Изменение тока через неполярный диэлектрик в зависимости от времени подключения постоянного напряжения показано на рисунке.

Токи абсорбции

Токи абсорбции могут устанавливаться в диэлектрике в течение длительного времени в зависимости от типа диэлектрика и механизма поляризации. Уменьшение тока Iабс может наблюдаться в течение минут или даже часов. После установления тока абсорбции через диэлектрик будет протекать только ток сквозной проводимости.

При расчете сопротивления изоляции на постоянном напряжении необходимо расчет вести по току сквозной проводимости Iскв , исключая токи абсорбции .

Посмотрите как изменяется ток в зависимости от времени приложения постоянного напряжения к диэлектрику, в котором возникают токи абсорбции.

Механизмы возникновения и уменьшения тока абсорбции Iабс

При ионной проводимости наличие блокирующих контактов (БК) с электродами.

[Действие блокирующих контактов]

Блокирующие контакты препятствуют прохождению носителей заряда через границу электрод-диэлектрик или разряда носителей, подходящих из объема на границе с электродом.

Лекции по курсу Электротехнические материалы

Источник

Токи в диэлектриках

date image2014-02-17
views image10091

facebook icon vkontakte icon twitter icon odnoklasniki icon

Виды электропроводности

Электропроводность диэлектриков – это состояние вещества, имеющего в наличие заряженные частицы, находящиеся в электрическом поле. Существует три основных вида электропроводности.

Электронная или металлическая электропроводность. Характерна для металлов и большинства твёрдых диэлектриков, носители зарядов – электроны.

Ионная или электролитическая электропроводность. Носители зарядов – ионы, характерный процесс – электролиз, в результате которого получаются новые вещества.

Молионная или электрофоретическая электропроводность. Носители зарядов группы молекул – молионы. Характерна для коллоидных растворов и суспензий. Результатом характерного процесса является изменение концентраций относительных слоёв жидкости.

В момент включения и выключения постоянного электрического поля через диэлектрик электрического конденсатора протекает обусловленный быстрыми видами поляризаций ток смещения Iсм за время около 10 — 15 с. В неполярных однородных диэлектриках затем устанавливается ток сквозной проводимости — Iскв. В начальный момент времени и при выключении постоянного поля через полярные и неоднородные диэлектрики протекает также ток абсорбции — Iабс, причиной которого являются замедленные (релаксационные) поляризации. Во многих диэлектриках, используемых в качестве электрической изоляции, Iскв устанавливается за время меньшее 1 мин. В переменном электрическом поле через диэлектрик протекают все, характерные для него виды токов.

Сквозной токIскв (ток утечки) обусловлен наличием в диэлектриках указанных в таблице свободных носителей заряда различной природы.

В постоянном электрическом поле токи абсорбции могут устанавливаться в течение длительного времени в зависимости от типа диэлектрика и механизма поляризации. Уменьшение тока Iабс может наблюдаться в течение минут или даже часов. После исчезновения тока абсорбции через диэлектрик будет протекать только ток Iскв. При расчете сопротивления изоляции на постоянном напряжении необходимо расчет вести по току сквозной проводимости Iскв, исключая токи абсорбции.

Основными характеристиками электроизоляционных материалов являются удельная объёмная проводимость gv и удельная поверхностная проводимость gs. Для их сравнительной оценки пользуются значениями удельного объемного сопротивления rv и удельного поверхностного сопротивления rs.

Удельное объемное сопротивления rv равно объемному сопротивлению куба с ребром в 1 м, мысленно выделенного из исследуемого материала, если ток проходит сквозь куб от одной его грани к противоположной (рис.1.13).

Читайте также:  Режимы работы усилительного каскада по постоянному току

Удельное поверхностное сопротивление rs равно сопротивлению прямоугольника, мысленно выделенного из поверхности материала, если ток проходит через него от одной его стороны к противоположной.

где b – расстояние между электродами, a – ширина электродов.

Rs – поверхностное сопротивление образца материала между параллельно поставленными электродами шириной a, отстоящих друг от друга на расстояние b.

Полное сопротивление диэлектрика составит .

Удельная объёмная проводимость .

Удельная поверхностная проводимость .

Электропроводность зависит от состояния вещества (твёрдое, жидкое, газообразное), а также от влажности и температуры окружающей среды, наличия ионизирующего излучения.

Поверхностный ток – ток, обтекающий поверхность образца is. Он зависит от чистоты поверхности диэлектрика – загрязнения, влажности, коррозии.

Объемный ток – ток, протекающий внутри диэлектрика по всему объёму iv. Он зависит от свойств самого диэлектрика.

Источник

3.1.2. Токи смещения, абсорбции и сквозной проводимости

Вторая характерная особенность электропроводности диэлектри­ков — спадание тока со временем после приложения постоянного напряжения. При включении постоянного напряжения ток в диэлек­трике вначале резко возрастает, а затем постепенно снижается, асим­птотически приближаясь к некоторой установившейся величине (рис. 3.3). Резкое возрастание тока вначале и последующее его сни­жение вызваны током смещения Iсм в диэлектрике. Плотность тока смещения jсм определяется скоростью изменения вектора электриче­ского смещения D (или вектора Е, поскольку D = εεoЕ):

(3.4)

Рис. 3.3. Зависимость величины тока I в диэлектрике от времени τ приложения постоянного напря­жения (схематически):

Iсм — ток смещения, вызванный де­формационными видами поляриза­ции;

Iаб — ток абсорбции;

Iск — ток сквозной проводимости;

1 — электри­ческое старение (электролиз); 2 — электроочистка

Ток смещения Iсм вызван как мгно­венными (деформационными) видами поляризации, так и замедленными (ре­лаксационными), а также перераспре­делением свободных зарядов — их дрейфом (без разряжения на электро­дах).

В первом случае из-за кратковре­менности установления электронной и ионной поляризаций Iсм не удается за­фиксировать с помощью прибора. Ток смещения, обусловленный деформаци­онными видами поляризации, имеет важное значение в работе p-n -перехода полупроводниковых приборов и под­робно рассматривается в гл. 8.6.

Во втором случае ток смещения на­блюдается в технических диэлектриках от нескольких минут до нескольких де­сятков минут после приложения напря­жения и называется током абсорбции Iаб.

Ток абсорбции Iаб вызван релаксационными видами поляризации и перераспределением свободных зарядов в объеме диэлектрика. Он приводит к накоплению носителей заряда в местах наибольшей кон­центрации ловушек (уровней захвата) — дефектов решетки, неоднородностей, границ раздела и т.п. В результате в диэлектрике возни­кают объемные заряды, и электрическое поле в нем становится неоднородным. Поле, создаваемое объемными зарядами, направлено в данном случае обратно приложенному полю. Ток абсорбции при постоянном напряжении наблюдается только в момент включения и выключения, при переменном напряжении — в каждый полупериод изменения электрического поля, т.е. практически в течение всего времени приложения переменного напряжения.

Под действием образовавшихся объемных зарядов, а также поляризации диэлек­трика (особенно при наличии дипольно-релаксационной составляющей), образец за­ряжается. Но если от него отключить внешний источник напряжения и его закоро­тить, то по образцу пойдет обратный так называемый ток деполяризации, который образуется в результате освобождения носителей заряда с различных ловушек и дез­ориентации диполей. Зависимость тока деполяризации от времени несет информацию о закономерностях молекулярной подвижности, дефектах строения, и в ряде случаев с ее помощью возможно прогнозирование срока службы полимерной изоляции (см. гл. 5.4.3). При нагревании (с постоянной скоростью) заряженного образца образуется ток деполяризации, или ток термостимулированной деполяризации (ТСД). Метод ТСД широко используют при изучении релаксационных переходов (Tс, Tт и др.) в по­лимерных диэлектриках, а также закономерностей накопления и переноса носителей заряда.

Составляющая тока, которая не изменяется со временем прило­жения постоянного напряжения, представляет собой стационарный поток электрически заряженных частиц, разряжающихся на электродах, и называется током сквозной проводимости Iск (сквозным током I, или остаточным током). По величине сквозного тока определяют удельную объемную (или поверхностную) электропроводность ди­электрика.

Ток сквозной проводимости обусловлен направленным движением носителей заряда, поставляемых ионогенной примесью, самим ди­электриком и в сильных полях инжектируемых из электродов, и со­провождается обязательным их разряжением на электродах.

Только в результате разряжения носителей заряда на электродах (положительным ион принимает электрон(ы) из катода, а отрицательный ион отдает электрон(ы) ано­ду) во внешней цепи возникает электрический (электронный) ток, измерив величину которого, можно определить удельное объемное (или поверхностное) сопротивление диэлектрика. Если носители заряда не смогут преодолеть потенциальный барьер на границе диэлектрик—металл, то они не разрядятся на электродах и в приэлектродных областях образуют объемные заряды, которые создадут в диэлектрике электрическое поле, направленное противоположно приложенному полю.

Читайте также:  Пути тока в организме самые опасные

Ток сквозной проводимости измеряют тогда, когда после прило­жения к образцу постоянного напряжения ток абсорбции спадет практически до нуля. Это время составляет от нескольких минут до нескольких десятков минут и определяется экспериментально.

Величина тока сквозной проводимости при длительном прило­жении постоянного напряжения может существенно изменяться в результате электрохимических процессов, а также образования объ­емных зарядов. Величина сквозного тока не изменяется только при чисто электронном типе проводимости. Если при длительном прило­жении постоянного напряжения к твердому или жидкому диэлектри­ку ток сквозной проводимости со временем продолжает уменьшаться (см. рис. 3.3, кривая 2), значит электропроводность данного мате­риала обусловлена в основном ионами примеси и уменьшается в ре­зультате электроочистки образца. Ток сквозной проводимости также уменьшается, если носители заряда, подходя к электродам, не разря­жаются (из-за высокого потенциального барьера на границе ме­талл—диэлектрик). Накапливаясь в приэлектродных областях, носи­тели заряда образуют объемные заряды (положительный — у катода и отрицательный — у анода), препятствующие прохождению тока. Объемные заряды в приэлектродных областях могут также образовы­ваться (в сильных полях) в результате инжекции зарядов со стороны электродов, однако в этом случае знак объемных зарядов соответст­вует полярности электродов (см. гл. 7.15.5).

Таким образом, если до приложения электрического поля ди­электрик был электронейтральным, т.е. суммарный заряд всех его микрообъемов был равен нулю, то после приложения поля, в резуль­тате перемещения зарядов (в том числе инжектированных из элек­тродов) на макроскопические расстояния и закрепления части из них на ловушках, электронейтральность нарушается, и в диэлектри­ке возникают объемные заряды. Образец поляризуется. Объемные заряды образуются при прохождении как тока смещения, в частно­сти тока абсорбции, так и тока сквозной проводимости.

Если же ток сквозной проводимости увеличивается (см. рис. 3.3, кривая 7), то это указывает на участие в образовании электрического тока собственных зарядов материала, являющихся его структурными элементами, т.е. имеет место электролиз. В этом случае материал ста­реет — в нем протекают необратимые электрохимические процессы, постепенно приводящие к разрушению (пробою) образца (см. гл. 5). Например, приложив к нагретому неорганическому стеклу постоян­ное напряжение, можно наблюдать благодаря его прозрачности, как в стекле продукты электролиза, в частности выделяющийся на катоде металлический натрий, образуют ветвистые отложения — металличе­ские дендриты (подробнее см. гл. 5.4.3). При достаточном времени прохождения тока дендриты могут прорасти сквозь всю толщину ди­электрика от катода к аноду и образовать проводящий канал.

Источник



ЭЛЕКТРОПРОВОДНОСТЬ ДИЭЛЕКТРИКОВ

Поляризационные процессы смещения упруго связанных зарядов создают токи смещения в диэлектриках. При электронной и ионной поляризациях токи смещения столь кратковременны, что их обычно не удается зафиксировать прибором.

Токи смещения замедленных видов поляризации, называются абсорбционными токами.

При постоянном напряжении токи смещения и абсорбции протекают только в момент коммутации цепи (включение и отключение напряжения), а при переменном напряжении эти токи присутствуют в течение всего времени нахождения материала под действием электрического поля.

Ток смещения имеет чисто реактивный (емкостный) характер и не нагревает диэлектрик. Ток смещения Iсм опережает приложенное напряжение U на 90°.

Ток абсорбции имеет активно-емкостный характер. Появление этого тока приводит к нагреву диэлектрика за счет того, что он имеет активную составляющую. Ток абсорбции Iабс опережает приложенное напряжение U на угол j.

После окончания переходного процесса токи смещения и абсорбции затухают и через диэлектрик протекает сквозной ток утечки. Принято считать, что токи смещения затухают в среднем за время до 15 с, а токи абсорбции за время до 60 с. Сквозной ток утечки через диэлектрик носит чисто активный характер (угол сдвига фаз между сквозным током утечки Iут и приложенным напряжением U равняется 0) и нагревает диэлектрик.

Таким образом, сквозной ток утечки через диэлектрик состоит из суммы токов переходного процесса (смещения и абсорбции) и сквозного тока через диэлектрик, протекающего через диэлектрик после завершения переходного процесса:

Зависимость сквозного тока утечки через диэлектрик в функции времени выглядит следующим образом.

Читайте также:  Технические способы защиты людей от поражения электрического тока

При определении сопротивления изоляции пользуются несколькими методами: прямым и косвенным.

Косвенный метод – метод амперметра и вольтметра. Измеряют ток через 60 секунд с момента коммутации цепи и напряжение, а затем сопротивление изоляции определяют из закона Ома

Прямой метод – измерение сопротивления изоляции сквозному току через диэлектрик омметром (верхнее значение измеряемого сопротивления до 10 6 Ом), мегаомметром (верхнее значение измеряемого сопротивления до 10 10 Ом) или тераомметром (верхнее значение измеряемого сопротивления до 10 14 Ом). Наибольшее распространение при измерении Rиз получили мегаомметры, предел измерения которых до 10 8 -10 10 Ом, а напряжение на разомкнутых зажимах равно 100-2500 В в зависимости от модификации прибора.

Как правило, электрическое сопротивление изоляции Rиз измеряется на выпрямленном токе. Начальное значение емкостного тока смещения Iсм зависит от приложенного напряжения и мощности источника питания. Ток абсорбции Iабс обусловлен перераспределением напряжения между разнородными слоями электрической изоляции в процессе ее заряда и разряда. Начальный ток абсорбции определяется значением приложенного напряжения, размерами и составом электроизоляционной конструкции, а также температурой, при которой производится измерение, и не зависит от загрязнения и степени увлажнения (кривая его затухания близка к гиперболе, см. рис. 13). Сквозной ток утечки через диэлектрик Iут характеризует качество электроизоляционной конструкции и ее состояние (загрязнение, степень увлажнения, наличие механических повреждений и последствий старения, температуру).

Поскольку ток абсорбции не зависит от степени увлажнения электроизоляционной конструкции, а его зависимость от температуры, размеров и конструкции изоляции примерно такая же, как и сквозного тока утечки через диэлектрик, то отношение электрического сопротивления R60, измеренного после затухания Iсм и Iабс, к значению R15, измеренного после затухания Iсм, характеризует степень увлажнения электрической изоляции и называется коэффициентом абсорбции:

где R60 – электрическое сопротивление, измеренное через 60 с после приложения напряжения;

R15 – то же, измеренное через 15 с.

У сухой электрической изоляции значение kабс близко к 1, а для увлажненной изоляции оно существенно возрастает и особенно зависит от повышения температуры окружающей среды. Если по результатам испытаний и проверок окажется, что электрическая изоляция электрооборудования увлажнена, необходимо выполнить ее сушку и последующие испытания во избежание пробоя и выхода ее из строя.

Если электрическое сопротивление изоляции Rиз измерять на переменном напряжении, то активная составляющая тока абсорбции Iабс.а (см. рис. 11) будет незатухающей, что обусловлено не устанавливающимися процессами поляризации на переменном напряжении и приведет к завышению значения сквозного тока утечки через диэлектрик и, как следствие, к занижению измеренного значения Rиз по сравнению с истинным значением.

Для твердых электроизоляционных материалов следует различать объемную и поверхностную проводимости.

Для их сравнительной оценки у разных материалов пользуются значениями удельного объемного сопротивления и удельного поверхностного сопротивления .

В системе СИ удельное объемное сопротивление равно объемному сопротивлению куба с ребром в 1 м, мысленно вырезанного из изоляционного материала и умноженному на один метр. При этом считается, что ток протекает от одной грани куба к противоположной.

Удельное поверхностное сопротивление – сопротивление, равное сопротивлению квадрата любых размеров, выделенного на поверхности материала. В этом случае ток в квадрате протекает от одной стороны квадрата к противоположной.

Если на плоский образец диэлектрика действует однородное поле, то значения и определяются по формулам:

где RV – объемное сопротивление образца;

– толщина диэлектрика или расстояние между электродами;

Rs – поверхностное сопротивление образца;

– расстояние между электродами.

С течением времени ток через твердые или жидкие диэлектрики может увеличиваться или уменьшаться.

1 – сопротивление изоляции уменьшается;

2 – сопротивление изоляции увеличивается.

Увеличение тока со временем говорит о том, что в процессе поляризации диэлектрика участвуют заряды, являющиеся структурными элементами его самого, что приводит к снижению сопротивления изоляции, увеличению разогрева диэлектрика, т.е. к его электрическому старению, что в дальнейшем может привести к пробою.

Уменьшение тока с течением времени связано с электрической очисткой изоляционного материала, т.е. любой диэлектрик содержит примеси, которые под действием напряжения диссоциируются на разноименно заряженные ионы, выносятся на электроды (анод и катод), где разряжаются. Это приводит к увеличению сопротивления изоляции и позволяет получать высококачественные изоляционные материалы.

Дата добавления: 2015-02-19 ; просмотров: 3239 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник