Меню

Аккумуляторные батареи оперативного тока 220 в

Оперативный ток на подстанции: назначение, разновидности, схемы

Оперативный ток на подстанции: назначение, разновидности, схемы

Оперативный ток питает вторичные устройства оборудования, такие как: цепи релейной защиты, устройства автоматики и телемеханики, цепи управления выключателями, аппаратуру дистанционного управления и др.

Источники оперативного тока должны обеспечивать высокую надежность работы, и гарантировать питание устройств во время аварийных режимов. Источники оперативного тока должны обладать стабильным напряжением и мощностью, чтобы их было достаточно для своевременной работы релейной защиты, автоматики и других подстанционных устройств.

1lkhdrfgdsd

Оперативный ток может быть переменным или постоянным.

Постоянный оперативный ток имеет стандартные величины номинального напряжения: 24 В, 48 В, 110 В и 220 В. Аккумуляторные батареи, напряжение которых 110 В или 220 В, являются основными источниками питания оборудования постоянным током. Чтобы повысить надежность источника питания, сеть разделяют на несколько секций — изолированных между собой участков через секционный выключатель с автоматическим вводом резерва. То есть при пропадании напряжения на одной из секции, питание на неё будет подано автоматически с рабочей секции.

Независимо от общего состояния основной сети, аккумуляторные батареи (при постоянном оперативном токе) постоянно обеспечивают ее током, поэтому они, среди источников питания, являются самыми надежными.

Наряду с основным положительным свойством аккумуляторов — надежностью, существуют несколько недостатков этого источника питания. Это: большая стоимость аккумуляторных батарей, сложность сети постоянного тока, и необходимость в их зарядных агрегатах.

Источник

Сравнительный анализ расчетных методик выбора аккумуляторных батарей для шкафов оперативного тока

Система оперативного постоянного тока

Система оперативного постоянного тока (СОПТ) предназначена для ввода, преобразования, аккумулирования и распределения электроэнергии постоянного тока и, в конечном итоге, для обеспечения бесперебойного питания оперативных цепей управления, защиты, автоматики, сигнализации и аварийного освещения. СОПТ применяется на электрических станциях, подстанциях и других энергообъектах напряжением 6-750 кВ.

Одной из самых наиболее часто применяемых конфигураций СОПТ на данный момент являются щиты постоянного тока (ЩПТ), внедряемые на подстанциях 6‑110 кВ. В состав ЩПТ в общем случае, входят:

шкаф оперативного тока (ШОТ);

шкаф аккумуляторных батарей (ШАБ);

шкаф распределения постоянного оперативного тока (ШРОТ).

Одной из наиболее важных составляющих СОПТ являются герметизированные аккумуляторные батареи (АБ), устанавливаемые в специальных шкафах или в шкафах оперативного тока.

АБ предназначены для обеспечения питания электроприемников постоянного тока при потере питания от собственных нужд и компенсации импульсов тока нагрузки, превышающих технические возможности зарядных устройств. При этом должно обеспечиваться питание всех подключенных к СОПТ устройств РЗА и приводов выключателей в течение времени, принятого с учетом нормативных сроков прибытия дежурного персонала и восстановления питания от собственных нужд подстанции.

Проектирование СОПТ является комплексной задачей. Конфигурация СОПТ напрямую зависит от характеристик объекта, количества и типа высоковольтных выключателей, совокупности потребителей постоянного тока.

Благодаря применению современных высоковольтных выключателей, имеющих ток электромагнитов включения и отключения 5 А и ниже, общий толчковый ток нагрузки становится на порядок ниже, чем у находящихся в эксплуатации выключателей. Тем не менее довольно часто встречается ситуация, когда при частичной реконструкции объекта, на вновь устанавливаемую систему СОПТ переводятся существующие выключатели с большим толчковым током нагрузки. На практике также встречаются ситуации, когда при реконструкции релейной защиты автоматики СОПТ выбирается только для питания новых устройств.

Поэтому корректный выбор емкости АБ является одной из основных задач при проектировании СОПТ. Довольно часто на практике расчет выбора емкости АБ выполняются с большими погрешностями, что обусловлено:

  • отсутствием необходимой технической литературы по расчету современных АБ;
  • отсутствием, за редким исключением, у производителей АБ методик или специальных расчетных программ;
  • отсутствием при проектировании необходимых исходных данных как по характеристикам АБ, так и по оборудованию, получающему питание от ЩПТ;
  • неправильный учет времени аварийной работы СОПТ при потере питания от собственных нужд;
  • отсутствие у большинства эксплуатирующих организаций стандартов и требований с подробным и понятным описанием методики выбора емкости АБ;
  • отсутствие необходимого контроля за статусом устаревших нормативных документов, типовых проектов;
  • общим снижением качества проектных работ.

Некорректно выбранная емкость АБ, может привести к следующим последствиям:

  • при выбранной меньшей, чем необходимая емкость АБ – отсутствие возможности работы с выключателями с большим толчковым током, отсутствие обеспечение работы в течении требуемого времени аварийного режима, и как следствие последующая потеря оперативного тока;
  • при выбранной большей, чем необходимая емкость АБ – неоправданные экономические затраты.

В соответствии с этим, некоторые проектные организации идут на увеличение емкости АБ сверх реально требуемой.

Для количественной оценки различных расчетных методик выбора емкости АБ инженерами компании НПП «Микропроцессорные технологии» проведены расчётные исследования рекомендаций и методик по расчету емкости АБ, в том числе устаревшие. Также были проанализированы некоторые подходы, которыми пользуются на практике.

Описания рассматриваемых методов приведены в таблице. Методики 1, 2, 6, 7 приведены в нормативных документах или представлены производителями оборудования. Методики 3-5 являются ориентировочными и применяются на практике при проектировании СОПТ.

Расчетные условия для различных методик расчёта

Кривая на

рис.1-3

Расчет по диаграмме нагрузки [1, 2]

Наиболее обоснованная. Относительно простая методика.

Выбор АБ, которая может питать полную нагрузку (аварийную и толчковую) в течении эквивалентного времени аварийного режима. Отсутствует обоснование данной формулы.

Расчет на полную нагрузку (аварийную и толчковую) в течении аварийного времени без учета интенсивности разряда.

Расчет на аварийную нагрузку без учета толчковой нагрузки в течении аварийного времени без учета интенсивности разряда

Ниже графически представлены зависимости необходимых емкостей АБ, рассчитанные по соответствующим методикам для различных сочетаний постоянной аварийной и толчковой нагрузок (рис. 1-3).

Рис.1 — Необходимая емкость АБ при постоянной нагрузке 10 А и некоторых значениях толчковой нагрузки.

Рис.2 — Необходимая емкость АБ при постоянной толчковой нагрузке 3 А и некоторых значениях постоянной нагрузки.

Рис.3 — Необходимая емкость АБ при постоянной толчковой нагрузке 25 А и некоторых значениях постоянной нагрузки.

Анализ зависимостей (рис.1-3) показывает, что:

  • расчет по приведенному времени разряда АБ (п.2 табл.1) дает емкость, меньшую чем при расчете по диаграмме нагрузки, в связи с чем применение данной методики нежелательно;
  • выбор АБ по разрядным характеристикам (п.3 табл.1) с учетом разрядки в течении аварийного времени полной нагрузкой (аварийной и толчковой) сильно завышен и применение его по экономическим причинам нецелесообразно;
  • расчет на полную нагрузку без учета интенсивности разряда (п. 4 табл.1) дает в большинстве случаев емкость, недостаточную для нормальной работы оборудования.
  • расчет на аварийную нагрузку без учета интенсивности разряда (п. 5 табл.1) дает сильно заниженный результат.

Для других методик расчета, не отображенных на рисунках:

  • методика расчета по разрядным номограммам (п.6 табл.1) не всегда применима в связи со сложностью получения необходимых исходных данных.
  • расчет с помощью специальных программ производителей АБ (п.7 табл.1). Можно использовать как проверочный для выбранной емкости АБ. Использовать его как основную методику не следует, так как принципы расчета емкости, заложенные в программу, как правило, неизвестны и проверка результата выбора АБ не представляется возможным. Также программа всегда ориентирована под конкретного производителя АБ.

При проведении расчетов в качестве базисной методики необходимо применять расчет по диаграмме нагрузки (п.1 табл.1) как наиболее точную, учитывающую различную интенсивность разряда батареи при неравномерных нагрузках.

Выводы

1. Значительное разнообразие существующих методик выбора АБ зачастую приводит к ошибочному выбору ёмкости и необоснованному увеличению инвестиционной нагрузки при строительстве или реконструкции объектов;

2. Применение программного комплекса имеет ряд недостатков:

— в связи с тем, что фирмы-производители АБ в большинстве случаем зарубежные, то и предлагаемый производителями расчет основан на зарубежных требованиях;

— отсутствие формульных выводов, и как следствие — отсутствие наглядного подтверждения верности расчётов.

3. Ввиду временного отсутствия необходимой литературы и технической документации (книг, пособий) предприятия-изготовители СОПТ должны предоставлять рекомендации по выбору емкости АБ с учетом всех особенностей применяемого ими оборудования.

4. Применение ориентировочных расчетов (п.3-5 таблицы 1) не рекомендуется, особенно при больших толчковых нагрузках.

Заключение

Инженеры компании НПП «Микропроцессорные технологии» разработали методику расчета и выбора емкости АБ [6]. Документ является стандартом организации и представлен на сайте www.i-mt.net. Стандарт основан на действующих, нормативных документах [1, 2, 7, 8] и позволяет избежать излишних инвестиционных потерь при проектировании объектов.

Читайте также:  Расчет шунта для амперметра постоянного тока калькулятор

Особенностями разработанного стандарта организации являются:

  • соответствие действующим нормативным документам;
  • устранения выбора завышенной емкости АБ;
  • доступность и наглядность;
  • не предлагается кардинальных изменений, но вводятся уточнения с учетом специфики современного оборудования.

Применение алгоритма расчета, изложенного в данном документе, позволяет выбирать емкость АБ, удовлетворяющую требованиям надежности и экономичности. В качестве одного из примеров успешного применения метода может служить подстанция Южно-Якутских сетей. Первоначально по проекту было заложены АБ емкостью 65 А*ч. После проведения уточняющих расчетов, была определена емкость АБ 30 А*ч, достаточная для работы оборудования, что дало существенную экономию средств Заказчика. Объект успешно введен в эксплуатацию с проведением необходимых испытаний.

Источник

Источники и сети постоянного оперативного тока

Источники и сети постоянного оперативного токаНа подстанциях для питания оперативных цепей постоянного тока используются, как правило, кислотные аккумуляторные батареи (стационарные и переносные) и в отдельных случаях щелочные. Стационарные аккумуляторные батареи составляют из отдельных аккумуляторов, обычно соединенных последовательно.

Аккумулятором называют вторичный химический источник тока, работа которого заключается в накоплении электрической энергии (заряд) и отдаче этой энергии потребителю (разряд).

Основными частями кислотного аккумулятора (рис. 1) являются свинцовые положительные 2 и отрицательные 1 пластины, соединительные свинцовые полосы 5, электролит, сепараторы 3 и сосуд. В качестве положительных используются свинцовые пластины с большим числом ребер, что увеличивает рабочую поверхность пластин, в качестве отрицательных— пластины коробчатого типа. После формовки на положительных пластинах образуется двуокись свинца РbO2, а на отрицательных — губчатый свинец Рb.

 Аккумуляторы типа СК-24 в деревянном сосуде

Рис. 1. Аккумуляторы типа СК-24 в деревянном сосуде: 1 — отрицательная пластина, 2 — положительная пластина, 3 — сепаратор, 4 — подпорное стекло, 5 — соединительная полоса, 6 — наконечник для ответвления

Электролит состоит из серной кислоты повышенной чистоты и дистиллированной воды. Плотность электролита стационарного заряженного аккумулятора при 25 °С равна 1,21 г/см3.

Между положительными и отрицательными пластинами аккумулятора установлены изоляционные перегородки — сепараторы, препятствующие замыканию пластин при их возможном короблении и выпадению из них активной массы.

Аккумулятор характеризуется емкостью, ЭДС, зарядным и разрядным токами. Номинальной емкостью аккумулятора (в ампер-часах) является его емкость при 10-часовом разряде и нормальной температуре (25 °С) и плотности (1,21 г/см3) электролита.

На подстанциях преимущественно применяют аккумуляторные батареи напряжением 220 В, собранные из аккумуляторов С, СК, СН.

Аккумуляторы С (стационарные) предназначены для разрядов длительностью от 3 до 10 ч и более. Аккумуляторы СК (стационарные для кратковременных режимов разряда) допускают разряд в течение 1—2 ч. Поэтому в аккумуляторах СК применяют усиленные соединительные полосы между пластинами, рассчитанные на большой ток.

Сосуды аккумуляторов С и СК — открытые, для номеров С-16, СК-16 и меньше — стеклянные, а для больших номеров — деревянные, выложенные изнутри свинцом (или керамические). Аккумуляторы типа СН характерны тем, что они помещаются в герметичных закрытых сосудах. Эти аккумуляторы имеют сравнительно небольшую массу и габариты, их можно устанавливать в одном помещении с другим электрооборудованием.

Номер аккумулятора (после буквенного обозначения) характеризует его емкость. Емкость в ампер-часах равна номеру аккумулятора, умноженному на единичную емкость отдельного аккумулятора с типовым номером 1. Для аккумуляторов типов С-1 и СК-1 эта емкость равна 36 А-ч, а для типов С-10 и СК-10 — 360 А-ч.

На небольших подстанциях при отсутствии значительных толчковых нагрузок и резких колебаний в сети оперативного тока (при включении выключателей и т. д.) применяют переносные стартерные аккумуляторные батареи небольшой емкости напряжением 24 и 48 В. На таких подстанциях батарея обычно длительно работает в нормальном режиме разряда и через определенное время — после потери ею своей номинальной емкости (что определяют контрольными замерами напряжения батареи) — заменяется резервной. Иногда применяют щелочные аккумуляторы, у которых электролитом служит водный раствор едкого калия с плотностью 1,19—1,21 г/см3.

В положительных пластинах щелочных, аккумуляторов активным веществом служит гидрат окиси никеля, а в отрицательных — кадмий с примесью железа (никель-кадмиевые аккумуляторы) или только железо (никель-железные аккумуляторы). На подстанциях чаще всего находят применение железоникелевые аккумуляторы из элементов типов НЖ и ТНЖ.

Свинцовые и щелочные аккумуляторы имеют свои преимущества и недостатки: свинцовые имеют по сравнению со щелочными более высокое разрядное напряжение (1,8— 2 и 1,1—1,3 В), более высокую отдачу емкости и энергии. Поэтому при составлении батареи одинакового напряжения свинцовых аккумуляторов требуется почти вдвое меньше. Особенностями щелочных аккумуляторов являются компактность, герметичность, механическая прочность, малый саморазряд и возможность эксплуатации в условиях низких температур.

Аккумуляторные батареи являются наиболее надежным источником питания вторичных устройств, так как они обеспечивают независимое (автономное) питание оперативных цепей при исчезновении напряжения переменного тока.

В аварийном режиме батареи принимают нагрузку всех электроприемников постоянного тока, обеспечивая действие релейной защиты и автоматики, а также возможность включения и отключения выключателей. Предельная продолжительность аварийного режима принимается равной 0,5 ч для всех электроприемников и цепей оперативного постоянного тока, а для средств связи и телемеханики 1— 2 ч. Таким образом обеспечивается наличие оперативного тока в течение времени, необходимого для ликвидации аварии (0,5—2,0 ч).

Применение аккумуляторных батарей ограничено из-за их высокой стоимости и сложности эксплуатации. Поэтому они устанавливаются на наиболее крупных подстанциях. На подстанциях 500 кВ и выше устанавливают по две батареи и больше.

В настоящее время для заряда аккумуляторов используют статические выпрямительные устройства, называемые зарядными агрегатами. На старых подстанциях пока продолжает эксплуатироваться значительное количество двигателей-генераторов.

При эксплуатации электрическая энергия, накопленная в аккумуляторе, непрерывно расходуется. Для ее пополнения служат подзарядные агрегаты, в качестве которых также могут быть использованы двигатели-генераторы и статические выпрямительные устройства. Мощность подзарядных агрегатов обычно составляет 20—25 % мощности зарядных агрегатов. В ряде случаев один и тот же агрегат может выполнять функции зарядного и подзарядного агрегата.

Двигатели-генераторы состоят из приводного асинхронного электродвигателя и генератора постоянного тока с параллельным возбуждением. Обе машины устанавливаются на одной раме, а их валы соединяются эластичной муфтой. При заряде аккумуляторной батареи напряжение генератора зарядного агрегата должно изменяться, поэтому генератор постоянного тока выбирают с регулированием напряжения в широких пределах путем изменения его возбуждения шунтовым реостатом. В качестве статических зарядных и подзарядных агрегатов широко используются кремниевые выпрямительные устройства.

В отличие от двигателя-генератора статические выпрямительные устройства дешевле, не имеют движущихся частей, более удобны в обслуживании, имеют большой срок службы и большую перегрузочную способность и поэтому наиболее распространены.

Распределение постоянного тока, связь зарядных и подзарядно-зарядных агрегатов с аккумуляторной батареей осуществляется через щиты постоянного тока (ЩПТ), на которых размещаются коммутационная аппаратура и контрольно-измерительные приборы. Для удобства действий дежурного персонала на ЩПТ наносятся мнемонические схемы постоянного тока.

Аккумуляторные батареи, ЩПТ, зарядные и подзарядные агрегаты, электроприемники постоянного тока связаны между собой кабельными линиями, а в отдельных случаях шинопроводами. В совокупности они образуют схему электрических соединений сети постоянного тока.

Различают три основных режима работы аккумуляторных батарей: постоянный подзаряд, заряд—разряд и заряд—покой—разряд.

На подстанциях аккумуляторные батареи обычно работают в режиме постоянного подзаряда . В этом случае подзарядный агрегат, оснащенный устройством стабилизации напряжения (с точностью ±2%), все время питает постоянно включенные электроприемники сети оперативного тока (сигнальные лампы, обмотки реле, контакторов), а также подзаряжает аккумуляторную батарею, компенсируя ее саморазряд.

Вследствие этого аккумуляторная батарея все время полностью заряжена. Кратковременные толчки нагрузки воспринимаются в основном батареей.

На рис. 2 представлена схема аккумуляторной установки подстанции напряжением 500 кВ. На подстанции установлены две аккумуляторные батареи и три подзарядно-зарядных агрегата, один из которых резервный. Аккумуляторные батареи собраны из кислотных свинцовых аккумуляторов типа СК, в качестве зарядно-подзарядных агрегатов использованы полупроводниковые выпрямительные устройства ВАЗП-380/260-40/80 . Щит постоянного тока собран из комплектных панелей постоянного тока серии ПСН-1200-71.

Принципиальная схема аккумуляторной установки без дополнительных элементов

Рис. 2. Принципиальная схема аккумуляторной установки без дополнительных элементов: АБ1, АБ2 — аккумуляторные батареи, ВУ1, ВУ2, ВУЗ — выпрямительные устройства, УМС — устройство мигающего света, УКН — устройство контроля уровня напряжения, УКИ — устройство контроля изоляции, ШУ — шинки управления, ШС — шинки сигнализации, ( + ) —шинка мигания, I, II, III, IV — номера секций, ШП — шины питания электромагнитов включения выключателей

Шины щита разделены на две основные (I и II) и две вспомогательные (III и IV) секции. Электроприемники питаются от I или II секции, вспомогательные секции служат для взаимного резервирования источников питания: аккумуляторных батарей и выпрямительных зарядно-подзарядных агрегатов.

Читайте также:  Все время бьюсь током обо все

Подключение электроприемников и источников питания осуществляется с помощью автоматических выключателей серий А3700 и АК-63. Эти выключатели выполняют функции коммутационных аппаратов и защищают присоединения ЩПТ от КЗ. Щит оборудован устройствами мигающего света УМС, контроля изоляции УКИ и уровня напряжения УКН.

В установках, где для включения мощных электромагнитов масляных выключателей требуется повышенное напряжение, устанавливают дополнительные элементы. Батареи с дополнительными элементами состоят из 120, 128, 140 элементов вместо 108. В таких случаях схема несколько изменяется.

Чтобы предотвратить сульфатацию пластин дополнительных элементов, между отрицательным полюсом и ответвлениями от 108-го элемента включается регулируемый резистор, с помощью которого создается ток разряда, равный току разряда основных элементов. Таким образом обеспечиваются одинаковые условия работы основных и дополнительных элементов и исключается возможность глубоких зарядов и разрядов, что предотвращает сульфатацию и увеличивает срок службы аккумуляторов. В режиме постоянного подзаряда батарея всегда находится в заряженном состоянии и готова к питанию потребителей постоянным током.

В нормальном режиме напряжение на каждом включенном элементе батареи должно быть 2,2 В с допустимым колебанием ±2 %. В тех случаях, когда для питания вторичных устройств необходим постоянный ток различного напряжения, используют переносные аккумуляторные батареи и ответвления от промежуточных элементов батареи.

Например, для большинства устройств релейной защиты необходимо напряжение 220 В, для устройств телемеханики 24, 48 или 60 В, а для питания мощных электромагнитных приводов масляных выключателей — напряжение до 250 В и выше, чтобы при больших токах включения компенсировать падение напряжения в кабеле от батареи до РУ, где установлены выключатели.

В некоторых установках аккумуляторные батареи эксплуатируют в режиме заряда—разряда. В этом случае напряжение на зажимах аккумуляторов не остается постоянным, а изменяется в сравнительно широких пределах (для свинцовых батарей при разряде напряжение меняетсz от 2 до 1,8—1,75 В, а при заряде от 2,1 до 2,6—2,7 В).

Для поддержания стабильного уровня напряжения батареи во всех режимах на сборных шинах щита постоянного тока ЩПТ в схемах батарей, работающих по методу заряд—разряд, предусматривается элементный коммутатор, служащий для изменения числа аккумуляторов, подключенных к сборным шинам установки или к зарядному агрегату.

Работа аккумуляторных установок в режиме заряд — покой — разряд здесь не рассматривается, поскольку этот режим на подстанциях не применяется.

Аккумуляторные батареи напряжением 24, 36 или 48 В обычно составляют из нескольких переносных батарей, которые соединяют последовательно. В большинстве случаев устанавливают два комплекта таких батарей, из которых один является резервным.

Источник



Обслуживание источников оперативного тока — Аккумуляторные батареи

Содержание материала

  • Обслуживание источников оперативного тока
  • Аккумуляторные батареи
  • Преобразователи энергии
  • Схемы аккумуляторных установок и распределения оперативного тока

Устройство и характеристики аккумуляторов.

На подстанциях применяют главным образом свинцово-кислотные аккумуляторы типа С (СК) в открытых стеклянных сосудах, а аккумуляторы большей емкости — в деревянных баках, выложенных внутри свинцом. Аккумуляторные пластины разной полярности, находящиеся в одном сосуде, отделяются друг от друга сепараторами из мипора (мипласта). Сосуды заполняются электролитом (водным раствором чистой серной кислоты). Положительные пластины выполняются из чистого свинца и имеют сильно развитую поверхность. При формировании собранного аккумулятора (особом режиме первого заряда) на поверхности положительных пластин из металлического свинца основы образуется слой диоксида свинца РbO2, являющийся активной массой этих пластин. Отрицательные пластины изготовляются также из металлического свинца, но имеют коробчатую форму. Ячейки свинцового каркаса пластин заполняются активной массой, приготовляемой из оксидов свинца и свинцового порошка РЬ. Чтобы эта масса не выпадала из ячеек, пластины покрывают с боков тонкими перфорированными свинцовыми листами. В процессе формирования на отрицательных пластинах образуется губчатый свинец.
Наряду с аккумуляторами типа С (СК) применяются аккумуляторы типа СН. Они имеют намазные пластины, сепараторы из стекловойлока, винипласта и мипора, сосуды из прессованного стекла с уплотненными крышками. Все это обеспечивает надежность и длительный срок службы аккумуляторов. В эксплуатации они не требуют столь частой доливки воды, снижаются требования к вентиляции помещений.
Основными характеристиками аккумуляторов С (СК) являются их номинальная емкость, продолжительность и ток разряда, максимальный ток заряда. Их значения определяются типом, размером и числом пластин и получаются умножением соответствующих значений для аккумуляторов С-1 (СК-1) на типовой номер. Характеристики аккумуляторов типа С-1 (СК-1) приведены в табл. 6.1.
Таблица 6.1
Электрические характеристики аккумуляторов типов С-1 и СК-1

Параметр для режима разряда, ч

Разрядный ток, А

Предельное напряжение разряда, В

Максимальный зарядный ток, А

В эксплуатации емкость аккумулятора зависит от концентрации и температуры электролита, от режима разряда. С ростом плотности электролита емкость аккумулятора возрастает. Однако крепкие растворы увеличивают сульфатацию пластин. Повышение температуры электролита также приводит к возрастанию емкости, что объясняется снижением вязкости и усилением диффузии свежего электролита в поры пластин. Но с повышением температуры увеличивается саморазряд и сульфатация пластин.
Исследованиями установлено, что для стационарных аккумуляторов типа С (СК) оптимальной является плотность электролита в начале разряда 1,2-1,21 г/см3 при нормальной температуре 25°С. Температура воздуха в помещении, где установлена аккумуляторная батарея, должна поддерживаться в пределах 15-25°С.
Емкость аккумуляторов нормируется при условии непрерывного разряда в течение 10 ч неизменным по значению током. На практике разряды могут быть более короткими (1-2 ч) — большими токами и более длительными — малыми токами. При больших токах разряда емкость аккумулятора быстро снижается.
Факторами, ограничивающими разряд, являются конечное напряжение на зажимах аккумулятора и плотность электролита в сосудах. При 3-10-часовом разряде снижение напряжения допускается до 1,8 В, а при 1-2-часовом — до 1,75 В на элемент. Более глубокие разряды во всех режимах приводят к повреждению аккумуляторов. Разряды малыми токами прекращают, когда напряжение становится равным 1,9 В на элемент. При разряде контролируется как напряжение, так и плотность электролита. Уменьшение плотности на 0,03-0,05, т.е. до значений 1,17-1,15, свидетельствует о том, что емкость исчерпана.
Особенности эксплуатации аккумуляторов. В аккумуляторах непрерывно происходят неуправляемые химические и электрохимические реакции, приводящие к снижению их емкости. Происходит так называемый саморазряд аккумулятора, т.е. потеря им запасенной энергии. Саморазряду подвержены как работающие, так и отключенные от сети аккумуляторы. Новая батарея аккумуляторов теряет в течение суток не менее 0,3% своей емкости. Со временем саморазряд возрастает. При некоторых условиях (высокая температура и плотность электролита) наблюдается повышение саморазряда. Одной из причин повышенного саморазряда является присутствие в электролите примесей железа, хлора, меди и других элементов. Практически невозможно получить электролит, свободный от примесей. Однако их содержание не должно превышать установленных норм, поэтому применяемые для составления электролита кислота и дистиллированная вода проверяются на содержание вредных примесей.
В режиме разряда аккумулятора на его пластинах образуется свинцовый сульфат. При нормальной эксплуатации аккумуляторов сульфат имеет тонкое кристаллическое строение и легко растворяется при заряде, переходя в оксид свинца на положительных пластинах и в губчатый свинец на отрицательных. При некоторых условиях, рассмотренных ниже, возникает ненормальная сульфатация пластин, когда сравнительно быстро увеличивается количество крупных кристаллов сульфатов, которые закрывают собой поры активной массы пластин, мешая доступу электролита, при этом возрастает внутреннее сопротивление аккумулятора, а емкость его снижается. Внешними признаками ненормальной сульфатации являются образование на поверхности пластин беловатых пятен, выпадение светло-серого шлама в сосуде, коробление положительных и выпучивание отрицательных пластин.

Режим работы аккумуляторных батарей

Принципиальная схема подзаряда концевых элементов батареи от общего подзарядного агрегата

Раньше аккумуляторные батареи на подстанциях эксплуатировались в режиме «заряд-разряд». Этому режиму соответствовали схемы установок с элементным коммутатором, которые сохранились еще на многих подстанциях. С помощью элементного коммутатора можно увеличивать число аккумуляторов, присоединенных к шинам постоянного тока, для поддержания необходимого уровня напряжения при разряде и уменьшать их число при заряде, когда напряжение на аккумуляторах возрастает. Режим работы аккумуляторов с периодическими зарядами и разрядами имеет существенные недостатки, связанные с преждевременным износом аккумуляторов и занятостью персонала по контролю и уходу за батареями.
В настоящее время аккумуляторные батареи на подстанциях эксплуатируются в режиме постоянного подзаряда, что улучшило работу большей части аккумуляторов и упростило их эксплуатацию. Сущность режима заключается в том, что полностью заряженная аккумуляторная батарея включается параллельно с подзарядным агрегатом, который обеспечивает питание подключенной нагрузки и в то же время подзаряжает малым током батарею, восполняя потерю емкости в результате саморазряда. В случае аварии на стороне переменного тока или остановки по какой-либо причине подзарядного агрегата батарея принимает на себя всю нагрузку сети постоянного тока. После ликвидации аварии батарея заряжается от зарядного агрегата и переводится на работу в режиме постоянного подзаряда.
При постоянном подзаряде режим батареи характеризуется напряжением на зажимах каждого элемента в пределах 2,2±0,05 В и током подзаряда 10-30 мА, умноженным на типовой номер аккумулятора. Для аккумуляторов типа СН рекомендуется поддерживать напряжение 2,18±0,04 В на элемент и ток подзаряда 10-20 мА на каждый номер аккумулятора. Более точное значение этих величин, определяемых индивидуальными свойствами аккумуляторных батарей, устанавливается в зависимости от плотности электролита. Если, например, плотность электролита снижается по сравнению с начальной (1,2-1,21 для аккумуляторов типов С, СК и 1,22-1,225 для аккумуляторов типа СН), то это свидетельствует о недостаточности тока подзаряда — напряжение подзаряда следует повысить. Измерение плотности электролита должно производиться с учетом его температуры, так как плотность изменяется (уменьшается при повышении и увеличивается при понижении температуры электролита) на 0,003 г/см3 на каждые 5°С по отношению к нормативной температуре 25°С. На чрезмерно большой ток подзаряда указывает усиленное выпадение в сосуде коричневого шлама.
Уравнительные заряды и дозаряды аккумуляторных батарей. Аккумуляторные батареи с элементным коммутатором, переведенные в режим постоянного подзаряда, обладают тем основным недостатком, что батарея оказывается разделенной на две части, находящиеся в неодинаковых условиях. Основная часть батареи (107 элементов) подзаряжается и таким образом поддерживается в заряженном состоянии. Остальные (концевые) аккумуляторы не подзаряжаются и постепенно теряют свою емкость вследствие саморазряда. При недостаточном уходе пластины концевых аккумуляторов сульфатируются. Наблюдается разная степень заряженности отдельных элементов.
Для устранения следов сульфатации и выравнивания отстающих элементов батареи по мере необходимости подвергают уравнительным зарядам (перезарядам). При уравнительном заряде батарея предварительно разряжается током 10-часового режима до напряжения 1,8 В на элемент. Затем нормально заряжается тем же током до появления признаков заряженности — сильного газообразования, возрастания напряжения до 2,6-2,8 В на элемент, увеличения плотности электролита до 1,2-1,21 г/см3 — и оставляется в покое на 1 ч. Заряды с одночасовыми перерывами продолжаются до тех пор, пока батарея не получит двух-, трехкратной номинальной емкости. Признаком, по которому судят об окончании заряда, является бурное газообразование всех элементов, наступающее вслед за включением батареи на заряд.
Для аккумуляторных батарей типа СН дополнительно производят перезаряды после каждой доливки аккумуляторов.
Уравнительные заряды аккумуляторных батарей без элементных коммутаторов, работающих в режиме постоянного подзаряда, невозможны по той причине, что при этом напряжение на каждом элементе возрастает до 2,6-2,8 В. Для профилактики такие батареи 1 раз в 3 мес. подвергаются дозарядам. Они производятся без отключения нагрузки путем повышения напряжения до 2,3-2,35 В на элемент до достижения плотности электролита 1,2-1,21 г/см3 во всех элементах. Начальный ток заряда устанавливается не выше тока 10-часового режима разряда. Продолжительность дозаряда обычно не превышает 1-2 суток в зависимости от состояния аккумуляторов.
Для поддержания работоспособности концевых элементов в нормальном режиме работы батареи применяют схемы подзаряда этих элементов от самостоятельного источника тока или общего подзарядного агрегата. Схема включения подзарядного агрегата на всю батарею приведена на рис. 6. 6. В схеме концевые элементы шунтируют регулируемым балластным резистором, выбранным по току нагрузки батареи R=Uкон./ I нагр. , что обеспечивает поддержание напряжения 2,2±0,05 В на элемент. При уменьшении нагрузки сети персонал соответственно изменяет сопротивление резистора. Ток, проходящий через амперметр, должен быть равен нулю.
Неисправности аккумуляторов, осмотры и уход за аккумуляторными батареями. Основными неисправностями являются следующие:
ненормальная сульфатация пластин — образование крупных кристаллов сульфата, не растворяющихся при чрезмерно высокой плотности электролита и высокой температуре, при систематических глубоких разрядах и недостаточных зарядах большими токами и длительном нахождении батареи в разряженном состоянии. Если сульфатация не очень глубокая, то она устраняется проведением уравнительного заряда. При глубокой сульфатации необходим десульфатационный заряд;
короткое замыкание между пластинами разной полярности. Причинами могут быть замыкания пластин шламом, накопившимся на дне сосуда, коробление положительных пластин и губчатые наросты на отрицательных пластинах, разрушения сепарации. Признаками КЗ является низкое напряжение на элементе в конце заряда и низкая плотность электролита в сосуде, а также слабое газовыделение. Неисправность выявляется тщательным осмотром;
коробление пластин. Причинами коробления положительных пластин могут быть большие зарядные и разрядные токи, высокое напряжение подзаряда, короткое замыкание, низкий уровень электролита, наличие вредных примесей в электролите (солей железа, азотистых и хлористых соединений, марганца, меди). Вырезать и выправить положительные пластины удается, если они эксплуатировались не более 3 лет. Коробление отрицательных пластин обычно является результатом давления соседней покоробленной положительной пластины;
чрезмерное образование шлама. Выпадение небольшого количества шлама на дне сосуда — явление обычное и неизбежное. Однако большое количество коричневого шлама свидетельствует о слишком высоком напряжении подзаряда или излишних перезарядах. Шлам светло-серого цвета указывает на систематически допускаемую сульфатацию пластин или присутствие в электролите примесей, содержащих хлор.

Читайте также:  Как посчитать силу тока аккумулятора

Рис. 6.6. Принципиальная схема подзаряда концевых элементов батареи от общего подзарядного агрегата:
1 — основные элементы; 2 — концевые элементы; 3 — подзарядный агрегат; 4 — сопротивление нагрузки; R — регулируемый балластный резистор
Среди прочих неисправностей аккумуляторов могут быть названы неисправности сосудов, изношенность и хрупкость сепарации, загрязнение электролита и понижение его плотности.
Характерными неисправностями аккумуляторов СН являются сульфатация пластин и загрязнение электролита вредными примесями. Признаки сульфатации — понижение разрядного напряжения и снижение емкости элементов. Устраняется сульфатация проведением тренировочных разрядов.

схема выпрямительного зарядно-подзарядного агрегата ВАЗП-380/220-40/80

Рис. 6.7. Упрощенная структурная схема выпрямительного зарядно-подзарядного агрегата ВАЗП-380/220-40/80:
SF — автоматический выключатель; L1, L2 — дроссели; SAC — переключатель режимов работы; Т1-Т4 — трансформаторы питания блоков управления и обратной связи; ТА, ТВ, ТС — трансформаторы каналов формирования импульсов управления соответственно фаз А, В, С;
R1-R4 — резисторы; PV1 — вольтметр цепи питания; РА2 и PV2 — амперметр и вольтметр цепи напряжения выхода

Помутнение или потемнение электролита указывает на его загрязнение. В этом случае производится химический анализ электролита. Если он подтвердит наличие вредных примесей, электролит заменяют.
На указанные неисправности аккумуляторов необходимо обращать внимание при осмотрах, которые проводятся по графику. При осмотрах проверяют так же:
— целость сосудов, состояние стеллажей и изоляции сосудов;
— защищенность контактных соединений и шинок от коррозии;
— положение покровных стекол, предотвращающих вынос электролита из сосуда пузырьками газа, образующимися при заряде аккумуляторов;
— уровень электролита в сосудах, который должен быть на 10-15 мм выше края пластин. При понижении уровня производится доливка, как правило, дистиллированной водой, а не электролитом. Частые доливки электролитом способствуют сульфатации пластин;
— напряжение на соединительных пластинах аккумулятора, плотность и температуру электролита каждого элемента. Измерения следует проводить не реже 1 раза в месяц. Результаты измерений записывают в журнал. Обращается внимание на отсутствие «отстающих элементов»;
— исправность вентиляции и отопления. Температура в помещении аккумуляторной батареи должна быть не ниже 10°С.
При обслуживании аккумуляторных батарей персонал обязан соблюдать правила техники безопасности , так как приходится иметь дело с опасными для человека материалами. Серная кислота при попадании на кожу вызывает ожоги, а при попадании в глаза поражает их. Поэтому все работы с кислотой (электролитом) должны производиться в специальных костюмах, резиновых фартуках, перчатках и защитных очках. При приготовлении электролита концентрированную серную кислоту следует вливать тонкой струей в воду и непрерывно размешивать раствор. В помещении аккумуляторной батареи должен постоянно находиться 5%-ный содовый раствор и сосуд с большим количеством чистой воды для удаления и нейтрализации кислоты, случайно попавшей на кожу.
Курение и применение открытого огня в аккумуляторных помещениях запрещается по избежание взрыва смеси водорода, выделяющегося при электролизе воды и кислоты, с воздухом.

Источник