Меню

Бесконтактные датчики переменного тока

Бесконтактный TrueRMS измеритель тока

При проверке силовых электрических цепей часто возникает необходимость в измерении силы тока. Чтобы измерить величину постоянного тока, как правило, применяют резисторный шунт, включенный последовательно с нагрузкой, напряжение на котором пропорционально току. Однако, если возникнет необходимость в измерении больших токов, то потребуется шунт внушительной мощности, поэтому целесообразнее использовать другие методы измерения.

В связи с этим у меня возникла идея собрать измеритель тока на основе датчика Холла. Его схема представлена на рисунке.

Особенности амперметра:

  • Измерение силы переменного или постоянного тока без электрического контакта с цепью
  • Измерение истинного среднеквадратичного (TrueRMS) значения тока независимо от формы сигнала, а также максимального значения за период (приблизительно 0.5 секунды)
  • Вывод информации на символьный LCD дисплей
  • Два режима измерения (до 10А и до 50А)

Схема работает следующим образом. Провод с током располагается внутри ферритового кольца, создавая при этом магнитное поле, величина которого прямо пропорциональна силе тока. Датчик Холла, расположенный в воздушном зазоре сердечника, преобразует величину индукции поля в напряжение, и это напряжение подается на операционные усилители. ОУ необходимы, чтобы привести уровни напряжения с датчика к диапазону входных напряжений АЦП. Полученные данные обрабатываются микроконтроллером и выводятся на LCD дисплей.

Предварительный расчет схемы

В качестве сердечника использовано кольцо R20*10*7 из материала N87. Датчик Холла — SS494B.

С помощью надфиля в кольце протачивается зазор такой толщины, чтобы там поместился датчик, то есть около 2 мм. На данном этапе уже можно примерно оценить чувствительность датчика к току и максимально возможный измеряемый ток.

Эквивалентная проницаемость сердечника с зазором приблизительно равна отношению длины магнитной линии к величине зазора:

Тогда, подставив это значение в формулу расчета индукции в сердечнике и умножив это все на чувствительность датчика, найдем зависимость выходного напряжения датчика от силы тока:

Здесь KB — чувствительность датчика к индукции магнитного поля, выраженная в В/Тл (берется из даташита).

Например, в моем случае lз = 2 мм = 0,002 м, KB = 5 мВ/Гаусс = 50 В/Тл, откуда получаем:

Реальная чувствительность к току оказалась равной 0,03В/А, то есть расчет получается весьма точным.

Согласно даташиту на SS494B, максимальная измеряемая датчиком индукция равна 420 Гауссов, следовательно максимальный измеряемый ток равен:

Фото датчика в зазоре:

Расчет цепей ОУ

В амперметре имеется два канала: до 10 А (23 вывод МК), и до 50 А (24 вывод МК). Переключением режимов занимается мультиплексор АЦП.

В качестве опорного напряжения АЦП выбран внутренний ИОН, поэтому сигнал необходимо привести к диапазону 0 — 2.56 В. При измерении токов величиной ±10 А напряжение датчика составляет 2,5±0,3 В, следовательно нужно усилить и сместить его так, чтобы нулевая точка находилась точно посередине диапазона АЦП. Для этого используется ОУ IC2:A, включенный как неинвертирующий усилитель. Напряжение на его выходе описывается уравнением:

Здесь под R2 подразумеваются последовательно соединенные R2 и P2, а под R3 соответственно R3 и P3, чтобы выражение не выглядело слишком громоздким. Чтобы найти сопротивления резисторов запишем уравнение дважды (для токов -10А и +10А):

Напряжения нам известны:

Задав R4 равным 20 кОм, получаем систему из двух уравнений, где переменными являются R2 и R3. Решение системы можно легко найти с помощью математических пакетов, например MathCAD (файл расчетов приложен к статье).

Аналогичным образом рассчитывается и вторая цепь, состоящая из IC3:A и IC3:B. В ней сигнал с датчика сначала проходит через повторитель IC3:A, а затем попадает на делитель на резисторах R5, R6, P5. После ослабления сигнала, он дополнительно смещается операционным усилителем IC3:B.

Описание работы микроконтроллера

Микроконтроллер ATmega8A выполняет обработку сигналов с ОУ и вывод результатов на дисплей. Он тактируется от внутреннего генератора на 8 МГц. Фьюзы стандартные, за исключением CKSEL. В PonyProg они выставляются так:

АЦП сконфигурирован на работу с частотой 125 кГц (коэффициент деления равен 64). По окончании преобразования АЦП вызывается обработчик прерывания. В нем запоминается максимальное значение тока, а также суммируются квадраты токов последовательных выборок. Как только число выборок доходит до 5000, микроконтроллер вычисляет RMS значение тока и выводит данные на дисплей. Затем переменные обнуляются и все происходит с начала. На схеме указан дисплей WH0802A, но можно использовать любой другой дисплей с контроллером HD44780.

Прошивка микроконтроллера, проект для CodeVision AVR и файл симуляции в Proteus приложены к статье.

Настройка схемы

Настройка устройства сводится к регулировке подстроечных резисторов. Сначала нужно настроить контрастность дисплея, вращая P1.

Затем, переключившись кнопкой S1 в режим до 10А, настраиваем P2 и P3. Выкручиваем один из резисторов максимально вправо и, вращая второй резистор, добиваемся нулевых показаний прибора. Пробуем измерить ток, величина которого точно известна, при этом показания амперметра должны получиться ниже, чем есть на самом деле. Подкручиваем оба резистора немного влево, так чтобы сохранилась нулевая точка, и опять измеряем ток. На этот раз показания должны стать чуть больше. Продолжаем это до тех пор, пока не добьемся точного отображения величины тока.

Теперь переключимся в режим до 50А и настроим его. Резистором P4 выставляем ноль на дисплее. Измеряем какой-либо ток и смотрим на показания. Если амперметр завышает их, то крутим P5 влево если занижает, то крутим вправо. Опять выставляем ноль, проверяем показания при заданном токе и так далее.

Фото устройства

Измерение постоянного тока:

Из-за недостаточно точной калибровки, значения немного завышаются.

Измерение переменного тока частотой 50 Гц, в качестве нагрузки используется утюг:

В теории среднеквадратичный ток синусоиды равняется 0.707 от максимального, но, судя по показаниям, этот коэффициент равен 0.742. После проверки формы напряжения в сети, выяснилось что оно лишь напоминает синусоиду. Учитывая это, такие показания прибора выглядят вполне достоверными.

У прибора все же есть недостаток. На выходе датчика постоянно присутствуют шумы. Проходя через ОУ, они попадают на микроконтроллер, в результате чего невозможно добиться идеального нуля (вместо нуля отображается примерно 30-40 мА RMS). Это можно исправить, увеличив емкость C7, но тогда ухудшатся частотные характеристики: на высоких частотах показания будут занижаться.

Источник

Бесконтактные датчики: обзор, принцип действия, назначение. Сенсорный выключатель

Нередко в электронике находит свое применение такой радиоэлемент, как геркон. Его особенность состоит в способности замыкания контактов при облучении магнитным полем. Что это означает? Взяв простой магнит или разместив недалеко от геркона электромагнит, можно легко производить замыкание и размыкание контактов этого радиоэлемента. По своей сути он и является своеобразным бесконтактным датчиком.

Определение понятия

Что же такое бесконтактный датчик? Под ним понимают такой электронный прибор, который регистрирует присутствие определенного объекта в зоне своего действия и срабатывает без каких-либо механических или любых других воздействий.

Сенсорный выключатель.

Бесконтактные датчики применяются в самых различных сферах. Это создание бытовых приборов и системы охраны объектов, промышленные технологии и автомобилестроение. Кстати, в народе данный элемент называют «бесконтактным выключателем».

Преимущества

Среди основных достоинств бесконтактных датчиков выделяют их:

— высокую степень герметичности;

— долговечность и надежность;

— разнообразие вариантов установки;

— отсутствие контакта с объектом и обратного воздействия.

Классификация

Существуют различные типы бесконтактных датчиков. Они классифицируются по принципу действия и бывают:

Бесконтактные датчики оптические.

Рассмотрим каждый из этих видов приборов отдельно.

Емкостные датчики

В основе этих приборов находится измерение электроконденсаторов. В их диэлектрике и находится тот объект, который подлежит регистрации. Назначение бесконтактных датчиков такого типа заключается в работе со множеством приложений. Это, например, распознавание жестов. Емкостными выпускают автомобильные датчики дождя. Такие приборы дистанционно измеряют уровень жидкости в процессе обработки различных материалов и т. д.

Читайте также:  Характеристики электрического тока опасность поражения электрическим током

Емкостной бесконтактный датчик представляет собой аналоговую систему, работающую на расстоянии до семидесяти сантиметров. В отличие от других типов подобных приборов, он обладает большей точностью и чувствительностью. Ведь изменение в нем емкости происходит всего лишь в несколько пикофарад.

Схема бесконтактного датчика данного типа включает в себя пластины, состоящие из проводящей печатной платы, а также зарядку. В этом случае происходит формирование конденсатора. Причем это будет происходить в любое время либо в проводящем заземленном элементе, либо в каком-то объекте, диэлектрическая проницаемость которого отлична от воздуха. Такой прибор сработает и в случае появления в зоне действия устройства человека или части его тела, которая будет аналогична потенциалу земли. По мере приближения, например, пальца, изменится емкость конденсатора. И даже учитывая то, что система является нелинейной, обнаружить возникший в просматриваемых границах посторонний объект для нее не составит никакого труда.

Схема подключения такого бесконтактного датчика может быть усложнена. В устройстве могут быть задействованы сразу несколько независимых друг от друга элементов в направлениях влево/вправо, а также вниз/вверх. Это позволит расширить возможности прибора.

Оптические датчики

Такие бесконтактные выключатели на сегодняшний день находят свое широкое применение во многих отраслях человеческой деятельности, где работает оборудование, необходимое для обнаружения объектов. При подключении бесконтактного датчика используется кодирование. Это позволяет не допустить ложного срабатывания устройства при постороннем влиянии источников света. Работают подобные датчики и при низких температурах. В этих условиях на них надевают термокожухи.

Назначение бесконтактных датчиков.

Что представляют собой оптические бесконтрольные датчики? Это электронная схема, реагирующая на изменение того светового потока, который падает на приемник. Подобный принцип действия позволяет зафиксировать наличие или же отсутствие объекта в той или иной пространственной области.

В конструкции оптических бесконтактных датчиков имеется два основных блока. Один из них – источник излучения, а второй – приемник. Они могут находиться как в одном, так и в различных корпусах.

При рассмотрении принципа действия бесконтактного датчика можно выделить три типа оптических устройств:

  1. Барьерный. Работа оптических выключателей такого типа (Т) осуществляется на прямом луче. При этом приборы состоят из двух отдельных частей – передатчика и приемника, располагающихся соосно друг относительно друга. Тот поток излучения, который испускается излучателем, должен быть направлен точно в приемник. При прерывании луча объектом выключатель срабатывает. Такие датчики имеют хорошую помехозащищенность. Кроме этого, им не страшны ни капли дождя, ни пыль и т. д.
  2. Диффузный. Работа оптических выключателей типа D основана на использовании отраженного от объекта луча. Приемник и передатчик такого устройства располагают в одном корпусе. Излучателем направляется поток на объект. Луч, отражаясь от его поверхности, распределяется в различных направлениях. При этом часть потока возвращается назад, где и улавливается приемником. В результате выключатель срабатывает.
  3. Рефлекторный. Такие оптические бесконтактные датчики относятся к типу R. В них используется луч, отраженный от рефлектора. Приемник и излучатель такого устройства также располагаются в одном корпусе. При попадании на рефлектор луч отражается, оказывается в зоне приемника, в результате чего и происходит срабатывание устройства. Такие приборы действуют при расстоянии до объекта не более 10 метров. Возможно, их применение для фиксации полупрозрачных предметов.

Индуктивные датчики

В основе работы данного прибора лежит принцип учета изменений индуктивности основных его составляющих – катушки и сердечника. Отсюда пошло и само название такого датчика.

Изменения индукции свидетельствуют о том, что в магнитном поле катушки появился металлический предмет, который изменил его и, соответственно, всю схему подключения, основная функция в которой возложена на компаратор. При этом происходит подача сигнала на реле и отключение электрического тока.

Исходя из этого можно говорить об основном предназначении такого прибора. Его используют для измерения перемещений части оборудования, которое должно быть отключено, если превышены пределы проходимости. Сами датчики имеют границы движения, варьируемые в пределах от одного микрона до двадцати миллиметров. В связи с этим такой прибор называют еще и индуктивным выключателем положения.

Обзор бесконтактных датчиков подобного типа позволяет выделить из них несколько разновидностей. Подобная классификация основана на различном количестве проводов подключения:

  1. Двухпроводные. Такие индуктивные датчики подключают непосредственно в цепь. Это наиболее простой, но при этом достаточно капризный вариант. Он требует номинального сопротивления нагрузке. При снижении или увеличении данного показателя работа прибора становится некорректной.
  2. Трехпроводные. Подобный вид индукционного датчика является самым распространенным. В таких схемах два провода следует подключить к напряжению, а один – непосредственно к нагрузке.
  3. Четырех- и пятипроводные. В этих датчиках два провода подключают к нагрузке, а пятый используют для возможности выбора необходимого режима работы.

Ультразвуковые датчики

Эти устройства находят свое широкое применение в самых различных сферах производства, решая множество задач по автоматизации технологических циклов. Ультразвуковые бесконтактные датчики используются для определения местонахождения и удаленности различных объектов.

Например, они служат для обнаружения этикеток, причем даже и прозрачных, для измерения расстояния и осуществления контроля над передвижением объекта. С их помощью определяют уровень жидкости. Необходимость в этом возникает, например, для учета расхода топлива при выполнении транспортных работ. И это только некоторые из большого количества применений выключателей ультразвукового типа.

Ультразвуковые бесконтактные датчики.

Такие датчики довольно компактны. Их отличает качественная конструкция и отсутствие различных подвижных деталей. Это оборудование не боится загрязнений, что достаточно актуально в условиях производств, а также почти не требует обслуживания.

В составе ультразвукового датчика находится пьезоэлектрический обогреватель, являющийся одновременно и излучателем, и приемником. Данная конструктивная деталь воспроизводит поток звуковых импульсов, принимая его и преобразуя полученный сигнал в напряжение. Далее оно подается на контроллер, который производит обработку данных и вычисляет то расстояние, на котором находится объект. Подобная технология называется эхолокационной.

Сенсор бесконтактных датчиков.

Активный диапазон ультразвукового датчика является рабочим диапазоном обнаружения. Это то расстояние, в пределах которого ультразвуковой прибор может «увидеть» объект, и неважно, приближается ли тот к чувствительному элементу в осевом направлении или движется поперек звукового конуса.

В зависимости от принципа работы выделяют ультразвуковые датчики:

  1. Положения. Такие устройства используют для исчисления временного промежутка, необходимого для прохождения звука от прибора к тому или иному объекту и назад. Бесконтактные ультразвуковые датчики положения применяют для контроля местоположения и наличия разнообразных механизмов, а также для их подсчета. Используются такие приборы и в качестве сигнализатора уровня различных жидкостей или сыпучих материалов.
  2. Расстояния и перемещения. Принцип работы подобных приборов аналогичен тому, который используется в описанном выше устройстве. Разница имеется только в типе того сигнала, который присутствует на выходе. Он аналоговый, а не дискретный. Датчики подобного типа применяются для преобразования имеющихся показателей расстояния до объекта в определенные электрические сигналы.

Магниточувствительные датчики

Эти выключатели применяются для осуществления контроля положения. Датчики срабатывают при приближении магнита, который расположен на движущейся части механизма. Такие устройства обладают расширенным температурным диапазоном (от -60 до +125 градусов по Цельсию). Подобная функциональность позволяет автоматизировать большое количество сложных производственных процессов.

Типы бесконтактных датчиков.

Бесконтактный датчик температуры магниточувствительного типа применяют:

— на химических и металлургических производствах;

— в районах Крайнего Севера;

— на подвижном составе;

— в холодильных установках;

Свое применение они находят в охранных системах зданий, а также для автоматического открывания окон и входных дверей.

Самыми современными и быстродействующими являются магниточувствительные датчики, работающие на эффекте Холла. Они не подвержены механическому износу, так как обладают электронным выходным ключом. Ресурс таких датчиков практически неограничен. В связи с этим их применение является выгодным и практичным решением задач по измерению числа оборотов вала, фиксации расположения быстро движущихся объектов и т. д.

Читайте также:  Что такое временные диаграммы токов

При измерении уровня жидкостей широко применяют поплавковые магниточувствительные датчики. Они являются оптимальным вариантом для определения необходимых показателей из-за недорогой цены и простоты конструкции.

Микроволновые датчики

Подобная разновидность бесконтактных выключателей является наиболее универсальным вариантом конструкции, чего позволяет добиться непрерывное сканирование обслуживаемой зоны. При этом стоит иметь в виду, что они находятся в более высокой ценовой категории, чем, например, ультразвуковые аналоги.

Функционирование подобного прибора происходит благодаря излучению электромагнитных волн, имеющих высокую частоту, значение которой несколько отличается в устройствах различных производителей. Микроволновые датчики настроены на сканирование и приемку отраженных волн. Это позволяет аппарату фиксировать даже самые малейшие изменения электромагнитного фона. Если это происходит, то сразу же срабатывает система оповещения, подключенная к датчику, в виде сигнализации, освещения и т. д.

Микроволновые приборы обладают повышенной точностью срабатывания и чувствительностью. Для них не являются преградами кирпичные стены, двери и предметы мебели. Данный факт следует учесть при установке системы. Уровень чувствительности прибора может быть изменен с помощью настройки датчика движения.

Применяют микроволновые выключатели для управления внутренним и наружным освещением, устройствами сигнализации, электроприборами и т. д.

Пирометрические датчики

Для организма любого живого существа характерно наличие теплового излучения, которое является пучком электромагнитных волн разной длины. При повышении температуры тела увеличивается и объем излучаемой им энергии.

На основе фиксации теплового излучения работают датчики, которые называются пирометрическими сенсорами. Они бывают:

— суммарного излучения, измеряющими полную тепловую энергию тела;

— частичного излучения, измеряющие энергию ограниченного приемником участка;

— спектрального отношения, выдающие показатель отношения энергии определенных участков спектра.

Бесконтактные датчики-сенсоры чаще всего применяются в приборах, фиксирующих движение объектов.

Сенсорные выключатели

Развивающиеся технологии затронули практически все сферы жизнедеятельности человека. Не обошли они стороной и вопросы обустройства дома. Одним из ярких примеров тому является сенсорный выключатель. Это устройство позволяет управлять освещением помещения с помощью легкого прикосновения.

Подключение бесконтактного датчика.

Сенсорный выключатель сразу же срабатывает даже при самом слабом прикосновении к кнопке. В его конструкцию входит три основных элемента. Среди них:

  1. Блок управления, обрабатывающий поступивший сигнал и передающий его нужным элементам.
  2. Устройство коммутации. Эта деталь смыкает и размыкает цепь, а также изменяет силу тока, потребляемую светильником.
  3. Управляющая (сенсорная) панель. С помощью этой детали выключатель воспринимает сигналы с пульта ДУ или от касания. Самые современные устройства срабатывают при проведении рядом с ними рукой.

Стандартные модели могут:

— включать и выключать свет;

— контролировать работу отопительных приборов, сообщая об изменениях температуры;

— открывать и закрывать жалюзи;

— включать и выключать бытовые устройства.

Сенсорные выключатели производят различных видов. Конкретная модель выбирается в зависимости от потребностей офиса или жилого дома. Например, желание приобрести и установить сенсорное устройство может возникнуть из-за расположения стационарного выключателя в неудобном месте с невозможностью его переноса. А может, в доме или в квартире живет человек, подвижность которого ограничена. Порой стационарные выключатели находятся на такой высоте, что недоступны для детей. Решение проблемы потребует выбора определенной модели. Некоторые хозяева предпочитают устанавливать сенсорные выключатели для изменения яркости света не вставая с кровати и т. д.

Источник

Бесконтактные датчики

Что такое бесконтактный датчик?

Бесконтактные датчики – это такие датчики, которые работают без физического и механического контакта. Они работают через электрическое и магнитное поле, а также широко используются и оптические датчики. В этой статье мы с вами разберем все три типа датчиков: оптические, емкостные и индуктивные, а также в конце проделаем опыт с индуктивным датчиком. Кстати, в народе бесконтактные датчики называют также и бесконтактными выключателями, так что не бойтесь, если увидите такое название ;-).

Оптический датчик

Итак, пару слов об оптических датчиках… Принцип срабатывания оптических датчиков показан на рисунке ниже

оптические бесконтактные датчики

Барьерный

Помните какие-нибудь кадры из фильмов, где главным героям приходилось пройти через оптические лучи и не задеть ни один из них? Если луч задевался какой-либо частью тела, срабатывала сигнализация.

Бесконтактные датчики

Луч излучается посредством какого-либо источника. А также есть “лучеприемник”, то есть та штучка, которая принимает луч. Как только луча не будет на лучепримнике, то сразу же в нем включится или выключится контакт, который будет уже непосредственно управлять сигнализацией или еще чем-нибудь по вашему усмотрению. В основном источник луча и лучеприемник, называется лучеприемник правильно “фотоприемник”, идут в паре.

Очень большой популярностью в России пользуются оптические датчики перемещений фирмы СКБ ИС

бесконтактный датчик угловых перемещений Бесконтактные датчики

В этих типах датчиков есть и источник света и фотоприемник. Они находятся прямо в корпусе этих датчиков. Каждый тип датчиков представляет из себя законченную конструкцию и используется в ряде станков, где нужна повышенная точность обработки, вплоть до 1 микрометра. В основном это станки с системой Числового Программного Управления (ЧПУ), которые работают по программе и требуют минимального вмешательства человека. Эти бесконтактные датчики построены по такому принципу

Такие типы датчиков обозначаются буквой “T ” и называются барьерными. Как только оптический луч прервался, датчик сработал.

Плюсы:

  • дальность действия может достигать до 150 метров
  • высокая надежность и помехозащищенность

Минусы:

  • при больших расстояниях срабатывания требуется точная настройка фотоприемника на оптический луч.

Рефлекторный

Рефлекторный тип датчиков обозначается буквой R . В этих типах датчиков излучатель и приемник расположены в одном корпусе.

дифузионные бесконтактные датчики

Принцип действия можно увидеть на рисунке ниже

Свет от излучателя отражается от какого-либо светоотражателя (рефлектора) и попадает в приемник. Как только луч прерывается каким-либо объектом, то датчик срабатывает. Очень удобен этот датчик на конвейерных линиях при подсчете продукции.

Диффузионный

И последний тип оптических датчиков – диффузионные – обозначаются буквой D. Выглядеть могут по разному:

Бесконтактные датчики

Принцип работы такой же, как и у рефлекторного, но здесь свет уже отражается от предметов. Такие датчики рассчитаны на маленькое расстояние срабатывания и неприхотливы в своей работе.

Емкостные и индуктивные датчики

Оптика оптикой, но самые неприхотливые в своей работе и очень надежные считаются индуктивные и емкостные датчики. Примерно вот так они выглядят

емкостные и индуктивны бесконтактные датчики

Они очень похожи друг на друга. Принцип их работы связан с изменением магнитного и электрического поля. Индуктивные датчики срабатывают при поднесении к ним какого-либо металла. На другие материалы они не “клюют”. Емкостные же срабатывают почти на любые вещества.

Как работает индуктивный датчик

Как говорится, лучше один раз увидеть, чем сто раз услышать, поэтому проведем небольшой опыт с индуктивным датчиком.

Итак, у нас в гостях индуктивный датчик российского производства

индуктивный датчик

Читаем, что на нем написано

Бесконтактные датчики

Марка датчика ВБИ бла бла бла бла, S – расстояние срабатывания, здесь оно составляет 2 мм, У1 – исполнение для умеренного климата, IP – 67 – уровень защиты (короче уровень защиты здесь очень крутой), Ub – напряжение, при котором работает датчик, здесь напряжение может быть в диапазоне от 10 и до 30 Вольт, Iнагр – ток нагрузки, этот датчик может выдать в нагрузку силу тока до 200 миллиампер, думаю, это прилично.

На развороте бирки схема подключения этого датчика.

Бесконтактные датчики

Ну что, проверим работу датчика? Для этого цепляем нагрузку. Нагрузкой у нас будет светодиод, соединенный последовательно с резистором с номиналом в 1 кОм. Зачем нам резистор? Светодиод в момент включения начинает бешено жрать ток и сгорает. Для того чтобы это предотвратить, в цепь ставится последовательно со светодиодом резистор.

Читайте также:  Соленоид ток радиус функция

Бесконтактные датчики

На коричневый провод датчика подаем плюс от Блок питания, а на синий – минус. Напряжение я взял 15 Вольт.

Наступает момент истины… Подносим к рабочей зоне датчика металлический предмет, и датчик у нас тут же срабатывает, о чем говорит нам светодиод, встроенный в датчик, а также наш подопытный светодиод.

работа индуктивного датчика

На другие материалы, кроме металлов, датчик не реагирует. Баночка канифоли для него ничего не значит :-).

Бесконтактные датчики

Вместо светодиода может использоваться вход логической схемы, то есть датчик при срабатывании выдает сигнал логической единицы, которая может использоваться в цифровых устройствах.

Заключение

В мире электроники эти три типа датчиков находят все более широкое применение. С каждым годом производство этих датчиков растет и растет. Они используются абсолютно в разных областях промышленности. Автоматизация и роботизация без этих датчиков была бы невозможна. В этой статье я разобрал только простейшие датчики, которые выдают нам только сигнал “включен-выключен” или, если сказать на профессиональном языке, один бит и нформации. Более навороченные типы датчиков могут выдавать различные параметры и даже могут соединяться с компьютерами и другими устройствами напрямую.

Где купить индуктивный датчик

В нашем радиомагазине индуктивные датчики стоят в 5 раз дороже, чем если бы их заказывать с Китая с Алиэкспресса.

Бесконтактные датчики

Вот здесь можете глянуть разнообразие индуктивных датчиков.

Источник



Бесконтактный TrueRMS измеритель тока

При проверке силовых электрических цепей часто возникает необходимость в измерении силы тока. Чтобы измерить величину постоянного тока, как правило, применяют резисторный шунт, включенный последовательно с нагрузкой, напряжение на котором пропорционально току. Однако, если возникнет необходимость в измерении больших токов, то потребуется шунт внушительной мощности, поэтому целесообразнее использовать другие методы измерения.

В связи с этим у меня возникла идея собрать измеритель тока на основе датчика Холла. Его схема представлена на рисунке.

Особенности амперметра:

  • Измерение силы переменного или постоянного тока без электрического контакта с цепью
  • Измерение истинного среднеквадратичного (TrueRMS) значения тока независимо от формы сигнала, а также максимального значения за период (приблизительно 0.5 секунды)
  • Вывод информации на символьный LCD дисплей
  • Два режима измерения (до 10А и до 50А)

Схема работает следующим образом. Провод с током располагается внутри ферритового кольца, создавая при этом магнитное поле, величина которого прямо пропорциональна силе тока. Датчик Холла, расположенный в воздушном зазоре сердечника, преобразует величину индукции поля в напряжение, и это напряжение подается на операционные усилители. ОУ необходимы, чтобы привести уровни напряжения с датчика к диапазону входных напряжений АЦП. Полученные данные обрабатываются микроконтроллером и выводятся на LCD дисплей.

Предварительный расчет схемы

В качестве сердечника использовано кольцо R20*10*7 из материала N87. Датчик Холла — SS494B.

С помощью надфиля в кольце протачивается зазор такой толщины, чтобы там поместился датчик, то есть около 2 мм. На данном этапе уже можно примерно оценить чувствительность датчика к току и максимально возможный измеряемый ток.

Эквивалентная проницаемость сердечника с зазором приблизительно равна отношению длины магнитной линии к величине зазора:

Тогда, подставив это значение в формулу расчета индукции в сердечнике и умножив это все на чувствительность датчика, найдем зависимость выходного напряжения датчика от силы тока:

Здесь KB — чувствительность датчика к индукции магнитного поля, выраженная в В/Тл (берется из даташита).

Например, в моем случае lз = 2 мм = 0,002 м, KB = 5 мВ/Гаусс = 50 В/Тл, откуда получаем:

Реальная чувствительность к току оказалась равной 0,03В/А, то есть расчет получается весьма точным.

Согласно даташиту на SS494B, максимальная измеряемая датчиком индукция равна 420 Гауссов, следовательно максимальный измеряемый ток равен:

Фото датчика в зазоре:

Расчет цепей ОУ

В амперметре имеется два канала: до 10 А (23 вывод МК), и до 50 А (24 вывод МК). Переключением режимов занимается мультиплексор АЦП.

В качестве опорного напряжения АЦП выбран внутренний ИОН, поэтому сигнал необходимо привести к диапазону 0 — 2.56 В. При измерении токов величиной ±10 А напряжение датчика составляет 2,5±0,3 В, следовательно нужно усилить и сместить его так, чтобы нулевая точка находилась точно посередине диапазона АЦП. Для этого используется ОУ IC2:A, включенный как неинвертирующий усилитель. Напряжение на его выходе описывается уравнением:

Здесь под R2 подразумеваются последовательно соединенные R2 и P2, а под R3 соответственно R3 и P3, чтобы выражение не выглядело слишком громоздким. Чтобы найти сопротивления резисторов запишем уравнение дважды (для токов -10А и +10А):

Напряжения нам известны:

Задав R4 равным 20 кОм, получаем систему из двух уравнений, где переменными являются R2 и R3. Решение системы можно легко найти с помощью математических пакетов, например MathCAD (файл расчетов приложен к статье).

Аналогичным образом рассчитывается и вторая цепь, состоящая из IC3:A и IC3:B. В ней сигнал с датчика сначала проходит через повторитель IC3:A, а затем попадает на делитель на резисторах R5, R6, P5. После ослабления сигнала, он дополнительно смещается операционным усилителем IC3:B.

Описание работы микроконтроллера

Микроконтроллер ATmega8A выполняет обработку сигналов с ОУ и вывод результатов на дисплей. Он тактируется от внутреннего генератора на 8 МГц. Фьюзы стандартные, за исключением CKSEL. В PonyProg они выставляются так:

АЦП сконфигурирован на работу с частотой 125 кГц (коэффициент деления равен 64). По окончании преобразования АЦП вызывается обработчик прерывания. В нем запоминается максимальное значение тока, а также суммируются квадраты токов последовательных выборок. Как только число выборок доходит до 5000, микроконтроллер вычисляет RMS значение тока и выводит данные на дисплей. Затем переменные обнуляются и все происходит с начала. На схеме указан дисплей WH0802A, но можно использовать любой другой дисплей с контроллером HD44780.

Прошивка микроконтроллера, проект для CodeVision AVR и файл симуляции в Proteus приложены к статье.

Настройка схемы

Настройка устройства сводится к регулировке подстроечных резисторов. Сначала нужно настроить контрастность дисплея, вращая P1.

Затем, переключившись кнопкой S1 в режим до 10А, настраиваем P2 и P3. Выкручиваем один из резисторов максимально вправо и, вращая второй резистор, добиваемся нулевых показаний прибора. Пробуем измерить ток, величина которого точно известна, при этом показания амперметра должны получиться ниже, чем есть на самом деле. Подкручиваем оба резистора немного влево, так чтобы сохранилась нулевая точка, и опять измеряем ток. На этот раз показания должны стать чуть больше. Продолжаем это до тех пор, пока не добьемся точного отображения величины тока.

Теперь переключимся в режим до 50А и настроим его. Резистором P4 выставляем ноль на дисплее. Измеряем какой-либо ток и смотрим на показания. Если амперметр завышает их, то крутим P5 влево если занижает, то крутим вправо. Опять выставляем ноль, проверяем показания при заданном токе и так далее.

Фото устройства

Измерение постоянного тока:

Из-за недостаточно точной калибровки, значения немного завышаются.

Измерение переменного тока частотой 50 Гц, в качестве нагрузки используется утюг:

В теории среднеквадратичный ток синусоиды равняется 0.707 от максимального, но, судя по показаниям, этот коэффициент равен 0.742. После проверки формы напряжения в сети, выяснилось что оно лишь напоминает синусоиду. Учитывая это, такие показания прибора выглядят вполне достоверными.

У прибора все же есть недостаток. На выходе датчика постоянно присутствуют шумы. Проходя через ОУ, они попадают на микроконтроллер, в результате чего невозможно добиться идеального нуля (вместо нуля отображается примерно 30-40 мА RMS). Это можно исправить, увеличив емкость C7, но тогда ухудшатся частотные характеристики: на высоких частотах показания будут занижаться.

Источник