Меню

Частота тока в высоковольтных лэп

Почему ЛЭП гудят на частоте 100 Гц?

ЛЭП («Квант» №2, 2018)

Разные линии электропередач — ЛЭП — отличаются по напряжению, под которым находятся их провода по отношению к земле. Высоковольтные ЛЭП с напряжением больше 100 кВ создают звук, похожий на громкий шелест или потрескивание. Он возникает при коронном разряде воздуха вблизи мест крепления проводов к опорам через изоляторы. Не эти звуки нас интересуют. В нашей стране огромная протяженность ЛЭП между деревнями и небольшими поселками, они передают электроэнергию при напряжениях порядка 10 кВ. А к домам в таких поселках ЛЭП несут энергию при напряжениях 220–380 В. Вот к их-то гудению чаще всего и прислушиваются жители этих поселений и городские отдыхающие.

Причин, которые могут вызвать звук, несколько. Начнем с механической. Действительно, натянутый провод представляет собой струну или стержень, и на проводе могут возникать резонансные стоячие волны. В качестве примера обсудим такую задачу:

Расстояние L между опорами линии электропередач равно 50 м. Гибкие, но нерастяжимые провода натянуты так, что вблизи опор они составляют с горизонтом одинаковые малые углы α = 10°. Какова самая низкая частота поперечных колебаний таких проводов при ветре?

Если масса участка провода между двумя опорами ЛЭП равна M, то линейная плотность провода составляет M/L. Угол α = 10° ≈ 0,17 рад значительно меньше 1, поэтому его косинус, равный 0,98, примерно равен 1. Это означает, что горизонтальная проекция силы \(\overrightarrow\) натяжения провода вблизи опоры, равная силе натяжения провода f в самой нижней точке между двумя опорами, мало отличается от величины самой этой силы F. Равновесное положение провода в отсутствие ветра соответствует силе натяжения провода вблизи опор, равной F = Mg /2sinα. Скорость распространения волн по натянутому проводу определяется соотношением \(v =\sqrt\) (при этом изгибная жесткость провода не учитывается). Минимальная частота колебаний (стоячей волны), на которой будет «гудеть» провод, соответствует тому, что на длине провода между опорами укладывается половина длины волны: L = λ/2 . Эта частота равна

Получается, что наш «механизм» не объясняет гудение проводов, которое слышно на частоте 100 Гц.

Может быть, причина не в поперечных, а в продольных колебаниях? Посмотрим. Скорость продольных волн в железе 5,85 км/с, а в алюминии 6,26 км/с, поэтому в достаточно жестких на изгиб проводах ЛЭП, имеющих стальной сердечник и накрученные на него алюминиевые провода, скорость продольных волн порядка v = 6 км/с. Если расстояние между опорами ЛЭП составляет L = 50 м, то резонансная частота колебаний провода равна

Это тоже не объясняет частоту гудения на 100 Гц. И, кроме того, не очень понятен механизм возбуждения продольных волн.

Теперь рассмотрим магнитную причину возможного гудения проводов. Каждый провод ЛЭП, по которому течет ток, находится во внешнем магнитном поле Земли, которое в наших (российских) широтах имеет вертикальную составляющую индукции магнитного поля, направленную вниз, т.е. перпендикулярно горизонтальным (почти) проводам ЛЭП. Величина этой вертикальной составляющей порядка B = 5 · 10 −5 Тл. Если в проводе течет переменный ток с частотой 50 Гц, то сила Ампера толкает провод в горизонтальном направлении, перпендикулярном проводу. Если, например, опоры ЛЭП — это деревянные столбы, то провода крепятся к опоре через изоляторы на так называемых крюках и располагаются по одну или по разные стороны от опоры на разных уровнях по вертикали. Поскольку фазы токов в проводах отличаются, то опора (деревянный столб) испытывает изгибные напряжения на частоте 50 Гц, а это не те 100 Гц, которые нас интересуют.

Токи в проводах создают в пространстве вокруг себя магнитное поле, которое накладывается на магнитное поле Земли. Рассмотрим ЛЭП из двух проводов. По проводам течет переменный ток, поэтому сила Ампера, под действием которой провода отталкиваются друг от друга, периодически меняется. Частота изменения силы отталкивания равна удвоенной частоте изменения тока, т.е. равна 100 Гц. Пусть провода находятся на расстоянии d друг от друга, тогда на участок провода длиной L, по которому течет ток I, приходится максимальная сила

С учетом того, что μ = 4π · 10 −7 Гн/м, при максимальной величине силы тока 50 А, расстоянии между опорами ЛЭП 50 м и расстоянии между проводами 1 м получается максимальная сила Fmax = 0,03 Н. Средняя по времени сила равна половине от максимального значения, поэтому переменная составляющая силы взаимодействия двух проводов имеет максимальное значение 0,015 Н. Это значение силы очень мало, и, по-видимому, не этим механизмом объясняется гудение на частоте 100 Гц.

Однако силы действуют не только между проводами ЛЭП, разделенными большими промежутками, но и внутри каждого провода, который состоит из стальной центральной жилы и намотанных на нее алюминиевых жил. Алюминий, как известно, окисляется на поверхности, и пленка окисла плохо проводит ток. Если, например, не по всем алюминиевым жилам течет одинаковый ток, то в этом случае система жил в одном проводе получается несимметричной и в месте расположения железного сердечника периодически изменяется магнитное поле. Частота изменения силы, действующей на стальной сердечник, равна как раз 100 Гц. При этом стальной сердечник притягивается к тем алюминиевым жилам, по которым течет наибольший ток. Расстояния между серединами жил небольшие (≈ 0,5 см), и они не всегда прижаты друг к другу так, чтобы нигде не было зазоров. Кроме того, стальной сердечник имеет немалую магнитную восприимчивость (μ ≈ 10 3 ), поэтому силы возникают большие, а тряска и столкновения жил приводят к появлению звука именно на частоте 100 Гц (и на более высоких гармониках, кратных 100 Гц).

Вот он механизм возникновения звука, который может «бегать» вдоль проводов!

Ровно по такой же причине на частоте 100 Гц гудят трансформаторы и дроссели люминесцентных ламп в нашей стране. (Кстати, в США они гудят на частоте 120 Гц.) Звук на этой частоте передается опорам через изоляторы. Сухое дерево, из которого сделаны опоры, является хорошим резонатором, поэтому оно и само трясется на частотах 50 и 100 Гц и трясет окружающий воздух. Таким образом и возникает звук, который называют гудением проводов или опор ЛЭП.

Источник

Преимущества высоковольтных ЛЭП постоянного тока по сравнению с ЛЭП переменного тока

Ставшие традиционными, высоковольтные линии электропередачи, сегодня функционируют неизменно используя переменный ток. Но задумывались ли вы о преимуществах, которые может дать высоковольтная ЛЭП постоянного тока в сравнении с ЛЭП тока переменного? Да, речь именно о высоковольтных ЛЭП постоянного тока (HVDC Power Transmission).

Безусловно, для формирования высоковольтной линии постоянного тока необходимы прежде всего преобразователи, которые делали бы из переменного тока постоянный, а из постоянного — переменный. Такие инверторы и конвертеры дороги, как и запчасти к ним, имеют ограничения по перегрузке, к тому же для каждой линии устройство должно быть без преувеличения уникальным. На малых же расстояниях потери мощности в преобразователях делают такую ЛЭП вообще невыгодной.

Но в каких же применениях предпочтительней будет именно постоянный ток? Почему высокое напряжение при переменном токе иногда оказывается не достаточно эффективным? И наконец, применяются ли где-нибудь уже высоковольтные ЛЭП постоянного тока? На эти вопросы и попробуем получить ответы.

Преимущества высоковольтных ЛЭП постоянного тока по сравнению с ЛЭП переменного тока

За примерами далеко ходить не надо. Электрический кабель, проложенный по дну Балтийского моря между двумя странами-соседями, Германией и Швецией, имеет длину 250 метров, и будь ток переменным, то емкостное сопротивление внесло бы значительные потери. Или при поставке электроэнергии к отдаленным районам, когда нет возможности установить промежуточное оборудование. Здесь тоже постоянный ток высокого напряжения вызовет меньше потерь.

А что если потребуется повысить мощность имеющейся линии без прокладки дополнительной? А на случай электроснабжения систем распределения переменного тока, которые между собой не синхронизированы?

Между тем, при конкретной передаваемой для постоянного тока мощности, при высоком напряжении, нужно меньшее сечение провода, а вышки могут быть ниже. Например, канадская двухполюсная ЛЭП «Nelson River Bipole» соединяет распределительную сеть и удаленную электростанцию.

Кабель постоянного тока

Электрические сети переменного тока можно стабилизировать без возрастания опасности КЗ. Коронные разряды, порождающие потери в линиях переменного тока из-за пиков сверхвысокого напряжения, при постоянном токе значительно меньше, соответственно, меньше выделяется вредного озона. Опять же снижение расходов на сооружение ЛЭП, например для трех фаз необходимо три провода, а для HVDC — всего два. И снова максимум преимуществ для подводных кабелей — не только меньше материалов, но и меньше емкостных потерь.

Фирма AAB с 1997 года осуществляет установки линий HVDC Light мощностью до 1,2 ГВт при напряжении до 500 кВ. Так, между сетями Великобритании и Ирландии возведено соединение с номиналом по мощности в 500 МВт.

Данное соединение улучшает безопасность и надежность при поставке электроэнергии между сетями. Пролегая с запада на восток, один из кабелей сети имеет длину 262 километра, причем 71% длины кабеля находится на дне моря.

Линия электропередачи постоянного тока

Еще раз вспомним, что если бы переменный ток расходовался на перезарядку емкости кабеля, появились бы лишние потери мощности, а поскольку ток применяется постоянный, то и потери мизерны. Кроме того, потери в диэлектрике при переменном токе также не стоит упускать из виду.

В общем виде, на постоянном токе большую мощность можно передать через один и тот же проводник, поскольку пики напряжения при той же мощности, но при переменном токе, выше, к тому же изоляция должна бы быть толще, сечение больше, расстояние между проводами больше и т. д. Учитывая все эти факторы, коридор ЛЭП постоянного тока обеспечивает более плотную передачу электрической энергии.

Высоковольтные линии электропередачи постоянного тока (HVDC)

Высоковольтные линии постоянного тока не создают вокруг себя низкочастотного переменного магнитного поля, как это типично для ЛЭП переменного тока. Некоторые ученые говорят о вреде этого переменного магнитного поля для здоровья человека, для растений, для животных. Постоянный ток, в свою очередь, создает лишь постоянный (не переменный) градиент поля электрического в пространстве между проводом и землей, а это безопасно как для здоровья людей, так и для животных, и для растений.

Стабильности систем переменного тока способствует постоянный ток. Благодаря высокому напряжению и постоянному току, можно передавать энергию между системами переменного тока, которые не синхронизированы между собой. Так предотвращается распространение каскадных отказов. При некритичных же отказах, энергия просто движется в систему либо из системы.

Это способствует еще большему внедрению высоковольтных сетей постоянного тока, порождая новые основания.

Читайте также:  Катушка график тока замыкание

Преобразовательная подстанция Siemens для линии передачи постоянного тока высокого напряжения (HVDC)

Преобразовательная подстанция Siemens для линии передачи постоянного тока высокого напряжения (HVDC) между Францией и Испанией

Схема современной линии HVDC

Схема современной линии HVDC

Регулировку потока энергии осуществляет система управления либо преобразовательная станция. Поток не связан с режимом работы подключенных к линии систем.

Межсистемные связи на линиях постоянного тока обладают сколь угодно малой емкостью передачи, в сравнении с линиями переменного тока, и проблема слабых связей устраняется. Сами же линии могут разрабатываться с учетом оптимизации потоков энергии.

К тому же пропадают трудности синхронизации нескольких разных систем управления операциями отдельных энергетических систем. Быстрые аварийные контроллеры на линиях электропередачи постоянного тока повышают надежность и стабильность общей сети. Регулировка потока энергии может гасить колебания в параллельных линиях.

Названные преимущества помогут развить внедрение соединений на базе постоянного тока высокого напряжения с целью разбить крупные энергетические системы на несколько частей, которые между собой синхронизируемы.

Высоковольтная линия постоянного тока

Например, в Индии построено несколько региональных систем, которые между собой соединены высоковольтными линиями постоянного тока. Присутствует там и цепочка преобразователей, управляемая из специального центра.

Так же и в Китае. В 2010 году ABB построила в Китае первый в мире сверхвысокого напряжения постоянного тока 800 кВ в Китае. Линия сверхвысокого напряжения постоянного тока Чжундун – Ваннань на 1100 кВ, протяженностью 3400 км и мощностью 12 ГВт была завершена в 2018 году.

По состоянию на 2020 год было завершено строительство как минимум тринадцати линий сверхвысокого напряжения постоянного тока в Китае . Линии HVDC передают большие мощности на значительные расстояния, причем к каждой линии подключено несколько поставщиков электроэнергии.

Как правило, разработчики высоковольтных ЛЭП постоянного тока не предоставляют широкой публике информацию о стоимости своих проектов, поскольку это коммерческая тайна. Тем не менее, особенности проектов вносят свои коррективы, и стоимость варьируется в зависимости от: мощности, длины кабелей, способа прокладки, стоимости земли и т. д.

Экономически сопоставляя все аспекты, принимают решение о целесообразности возведения линии HVDC. Так например, возведение четырехлинейной ЛЭП между Францией и Англией, мощностью 8ГВт, вместе с береговыми работами потребовало примерно миллиард фунтов.

Список значимых проектов высоковольтных линий постоянного тока (HVDC) прошлого

В 1880-х годах шла так назваемая война токов между сторонниками сети постоянного тока, такими как Томас Эдисон, и сторонниками сети переменного тока, такими как Никола Тесла и Джордж Вестингауз. Постоянный ток выдержал 10 лет, но быстрое развитие силовых трансформаторов, необходимых для повышения напряжения и, таким образом, ограничения потерь, привело к распространению сетей переменного тока. Только с развитием силовой электроники стало возможным использование постоянного тока высокого напряжения.

Технология HVDC появилась в 1930-х годах XX века. Она был разработана ASEA в Швеции и Германии. Первая линия HVDC была построена в Советском Союзе в 1951 году между Москвой и Каширой. Затем в 1954 году была построена еще одна линия между островом Готланд и континентальной Швецией.

Москва — Кашира (СССР) — длина 112 км, напряжение — 200 кВ, мощность — 30 МВт, год постройки — 1951. Считается первой в мире полностью статической электронной высоковольтной линией постоянного тока, введённой в эксплуатацию. В настоящее время линия не существует.

Готланд 1 (Швеция) — длина 98 км, напряжение — 200 кВ, мощность — 20 МВт, год постройки — 1954. Первое в мире коммерческое соединение HVDC. Расширен компанией ABB в 1970 г., выведен из эксплуатации в 1986 г.

Волгоград — Донбасс (СССР) — длина 400 км, напряжение — 800 кВ, мощность — 750 МВт, год постройки — 1965. Первая очередь линии электропередачи постоянного тока 800 кВ Волгоград — Донбасс была введена в действие в 1961-м году, что в прессе того времени омечалось, как очень важный этап в техническом развитии советской энергетики. В настоящее время линия разобрана.

Испытание высоковольтных выпрямителей

Испытание высоковольтных выпрямителей для линии постоянного тока в лаборатории ВЭИ, 1961 год

Схема высоковольтной линии постоянного тока Волгоград — Донбасс

HVDC между островами Новой Зеландии — длина 611 км, напряжение — 270 кВ, мощность — 600 МВт, год постройки — 1965. С 1992-го года реконструирована А BB . Напряжение 350 кВ.

С 1977 года все системы HVDC были построены с использованием твердотельных компонентов, в большинстве случаев тиристоров, с конца 90-х годов начали применятся преобразователи на IGBT-транзисторах.

Инверторы на IGBT-транзисторах на преобразовательной подстанции

Инверторы на IGBT-транзисторах на преобразовательной подстанции Siemens для линии передачи постоянного тока высокого напряжения (HVDC) между Францией и Испанией

Кахора Басса (Мозамбик — ЮАР) — длина 1420 км, напряжение 533 кВ, мощность — 1920 МВт, год постройки 1979. Первый HVDC с напряжением выше 500 кВ. Ремонт ABB 2013-2014 гг.

Экибастуз – Тамбов (СССР) — длина 2414 км, напряжение — 750 кВ, мощность — 6000 МВт. Начало реализации проекта — 1981 год. После запука в работу это была бы самая длинная ЛЭП в мире. Строительные площадки заброшены примерно в 1990 году из-за распада Советского Союза, линия так и не была завершена.

Interconnexion France Angleterre (Франция — Великобритания) — длина 72 км, напряжение 270 кВ, мощность — 2000 МВт, год постройки 1986.

Гэчжоуба — Шанхай (Китай) — 1046 км, 500 кВ, мощность 1200 МВт, 1989 г.

Риханд-Дели (Индия) — длина 814 км, напряжение — 500 кВ, мощность — 1500 МВт, год постройки — 1990.

Балтийский кабель (Германия — Швеция) — длина 252 км, напряжение — 450 кВ, мощность — 600 МВт, год постройки — 1994.

Тянь-Гуан (Китай) — длина 960 км, напряжение — 500 кВ, мощность — 1800 МВт, год постройки — 2001.

Талчер-Колар (Индия) — длина 1450 км, напряжение — 500 кВ, мощность — 2500 МВт, год постройки — 2003.

Три ущелья — Чанчжоу (Китай) — длина 890 км, напряжение — 500 кВ, мощность — 3000 МВт, год постройки — 2003. В 2004-м и в 2006-м от гидроэлектростанции «Три ущелья» было построено еще 2 линии HVDC на Хуэйчжоу и Шанхай дляной 940 и 1060 км.

Гидроэлектростанция Три ущелья

Самая крупная гидроэлектростанция в мире «Три ущелья» соединена с Чанчжоу, Гуандуном и Шанхаем посредством высоковольтных линий постоянного тока

Сянцзяба-Шанхай (Китай) — линия из Фулуна в Фэнся. Длина 1480 км, напряжение — 800 кВ, мощность — 6400 МВт, год постройки — 2010.

Юньнань — Гуандун (Китай) — длина 1418 км, напряжение — 800 кВ, мощность — 5000 МВт, год постройки — 2010.

Источник

Высоковольтные ЛЭП

16 декабря 2019

Время на чтение:

Перемещение электроэнергии осуществляется при помощи ЛЭП. Такие установки должны быть надежды, а также безопасны для людей и экологии. В этой статье говорится о том, что представляет собой воздушная линия электропередачи, а также представлено несколько простых схем.

Что это такое

Аббревиатура расшифруется как линии электропередач. Эта установка необходима для передачи электрической энергии по кабелям, находящимся на открытой местности (воздухе) и установленными при помощи изоляторов и арматуры к стойкам или опорам. За точку начала и конца линий электропередач принимают линейные входы или линейные выходы РУ, а для ветвления — специальная опора и линейный вход.

Как выглядит станция ЛЭП

Опоры можно разделить на:

  • промежуточные которые находятся на прямых участках трассы установок, их используют только для удержания кабелей;
  • анкерные в основном монтируются на прямых границах ВЛ;
  • концевые стойки — это подвид анкерных, они ставятся в начале и конце ВЛ. При стандартных условиях функционирования установки, они принимают нагрузку от кабелей;
  • специальные стойки используются для изменения положения кабелей на ЛЭП;
  • декорированные стойки, помимо поддержки, они выполняют роль эстетичной красоты.

Линии электропередач можно условно разделить на воздушные и подземные. Последние все больше набирают популярность из-за удобства прокладки, высокой надежности и снижения потерь напряжения.

Обратите внимание! Эти линии различаются методом прокладки, особенностью конструкции. В каждой есть свои плюсы и минусы.

При работе с ЛЭП необходимо соблюдать все правила безопасности, потому что во время монтажа можно получить не только травмы, но и погибнуть.

Типы используемых опор

Технические характеристики линий электропередач

Основные параметры ЛЭП:

  • l — промежутки между стойками или опорами ЛЭП;
  • dd — пространство ме­ж­ду со­сед­ни­ми кабельными линиями;
  • λλ — можно расшифровать как протяженность гир­лян­ды ЛЭП;
  • HH — высота стойки;
  • hh — самое малое разрешенное рас­стоя­ние от низкой отметки кабеля до почвы.

Расшифровывать все характеристики установок сможет не каждый. Поэтому за помощью можно обратиться к профессионалу.

Ниже представлена таблица линий электропередач, обновленная в 2010 году. Более полное описание можно находить на форумах электрики.

Чтобы понизить число ава­рий­ных выключений, которые возникают при плохих погодных условиях, линии электростанций снабжаются грозо­за­щит­ны­ми канатами, которые устанавливаются на стойках вы­ше кабелей и используются для подавления пря­мых по­па­да­ний грозы в ЛЭП. Они похожи на металлические оцин­ко­ван­ные мно­го­про­во­лоч­ные тросы или специальные уси­лен­ные алюминиевые кабели малого се­че­ния.

Производятся и используются такие устройства от молний с встроенными в их труб­ча­тый стержень оп­ти­ко-во­ло­кон­ны­ми жилами, которые дают мно­го­ка­наль­ную связь. На территориях с постоянно по­вто­ряю­щи­ми­ся и силь­ны­ми морозами, лед откладывается на провода и образуются ава­рии из-за пробивания воздушных линий при приближении про­вис­ших канатов и кабелей.

Рабочая температура линий электропередач составляет от 150 до 200 градусов. Внутри провода не имеют изоляцию. Они должны обладать высокой степенью проводимости, а также устойчивостью к механическим повреждениям.

Ниже описано, какие линии электропередач используются для передачи электроэнергии.

Два основных вида

ЛЭП используются для перемещения и распространения электроэнергии. Виды линий можно поделить:

  • по виду расположения кабелей — воздушные (находятся на открытом воздухе) и закрытые (в кабель-каналах);
  • по функциям — сверхдальние, для магистралей, распределительные.

Воздушные ЛЭП также можно разделить на подвиды, который зависят от проводников, типа тока, мощности, применяемого сырья. Ниже подробно описаны эти классификации.

Переменного тока

По типу тока ЛЭП можно подразделить на две группы. Первая из них — это линии электропередач постоянного тока. Такие установки помогают свести к минимуму потери при перемещении энергии, потому используются для передачи тока на дальние расстояния. Этот вид ЛЭП достаточно популярен в европейских государствах, но в России такие линии электропередач можно пересчитать по пальцам. Многие железные дороги работают на переменном токе.

Схема передачи энергии

Постоянного тока

Вторая группа — это линии электропередач постоянного тока, в которых энергия всегда одинакова независимо от направления и сопротивления. Почти все установки в России питаются постоянным током. Их проще произвести и эксплуатировать, но потери при перемещении тока очень часто достигают 10 кВт/км за полгода на ЛЭП с напряжением 450 кВ.

Читайте также:  Термин электричество произошел от словосочетания электрический ток тест

Классификация ЛЭП

Такие установки могут классифицироваться по назначению, напряжению, режиму работы и так далее. Ниже подробно описан каждый этот пункт.

По роду тока

В последние годы передача электроэнергии выполняется в основном на переменном токе. Такой метод популярен, потому что, большее количество источников электроэнергии выдают переменное напряжение (за исключением индивидуальных источников, например солнечные батареи), а главным потребителем выступают установки переменного тока.

Схема монтажа проводов ВЛ

Очень часто передача электроэнергии на постоянном токе более благоприятна. Для понижения потерь в ЛЭП, при передаче электрической энергии на любом виде тока, при помощи трансформаторов (ТТ) поднимают напряжение.

Также при выполнении передачи от установки к потребителю на постоянном токе нужно превращать электрическую энергию из переменного тока в постоянный, для этого существуют специальные выпрямители.

По предназначению

По назначению линии электропередач можно разделить на несколько видов. По расстоянию линии делятся на:

  • сверхдальние. На таких ЛЭП напряжение будет свыше 500 киловольт. Их применяют для перемещения энергии на дальние расстояния. В основном они необходимы для того, чтобы объединять разные энергосистемы или их элементы;

Классификация ВЛЭП

  • магистральные. Такие линии бывают с напряжением 220 или 380 кВ. Они объединяют друг с другом большие энергетические центры или разные установки;
  • распределительные. К этому виду относятся системы с напряжением в 35, 110 и 150 кВ. Применяются для объединения районов и малых питающих центров;
  • подводящие электрическую энергию к людям. Напряжение — не выше 20 кВ, самые популярные виды на 6 и 10 кВ. Эти ЛЭП подводят энергию к распределительным точкам, а потом и к людям в дом.

По напряжению

По базисному напряжению такие ЛЭП в основном разделяют на две главные группы. С низким напряжением до 1 кВ. ГОСТами указываются четыре основных напряжения, 40, 220, 380 и 660 В.

С напряжение выше 1 кВ. ГОСТом здесь описано 12 параметров, средние показатели — от 3 до 35 кВ, высокие — от 100 до 220 кВ, самые высокие — 330, 500 и 700 кВ и ультравысокие — больше 1 МВ. Его также называют высоковольтным напряжением.

ЛЭП 330 Кв

По системе функционирования нейтралей в электроустановках

Такие установки можно разделить на четыре сети:

  • трехфазные, в которых не присутствует заземление. В основном эта схема применяется в сетях напряжением до 35 кВ, где перемещаются малые токи;
  • трехфазные, в которых есть заземление с помощью индуктивности. Эту установку также называют резонансно-заземленного вида. В таких воздушных линиях применяется напряжение 3-35 кВ, где перемещаются токи большой величины;
  • трехфазные, в которых присутствует полное заземление. Такой режим функционирования нейтрали применяется в воздушных линиях со средним и высоким напряжениями. Здесь нужно использовать трансформаторы тока;
  • глухозаземленная нейтраль. Здесь работают воздушные линии с напряжением меньше 1,0 кВ или больше 220 кВ.

Процесс монтажа

По режиму работы в зависимости от механического состояния

Также бывает и такое разделения ЛЭП, где предусматривается внешнее состояние всех частей установки. Это линии электропередач в хорошем состоянии, где кабели, стойки и другие элементы почти новые. Основной акцент делается на качество кабелей и канатов, на них не должно быть механических повреждений.

Также бывает аварийное положение, где качество кабелей и канатов достаточно низкое. В таких установках необходимо проводить незамедлительный ремонт.

  • линии электропередач хорошего режима работы — все составляющие новые и не повреждены;
  • аварийные линии — при явных видимых повреждениях проводов;
  • линии монтажного вида — в процессе монтажа стоек, кабелей и канатов.

Определять состояние линий электропередач необходимо только опытному электромонтеру.

Если установка аварийная, то это может привести к ряду последствий. Например, энергия будет подаваться не постоянно, возможно короткое замыкание, оголённые провода при соприкосновении могут вызвать пожар. Если ЛЭП вовремя не подверглась монтажу и случились ненепоправимые последствия, то это может грозить огромными штрафами.

Подземные кабельные линии электропередач

Предназначение ВЛ электропередач

Такими ВЛ называются установки, которые используются для перемещения и рас­пределения электрической энергии по кабелям, находящимся на открытом воздухе и удерживающимися, при помощи специальных стоек. ВЛ устанавливаются и используются в самых различных погодных условиях и гео­графической местности, склонны к атмосферному влиянию (осадки, перепады температур, ветры).

Поэтому воздушные линии необходимо устанавливать с учетом погодных факторов, загрязнения атмосферы, требований прокладки (для города, поля, деревни) и прочее. Установка должна соответствовать ряду правил и нормативам:

  • экономически выгодная стоимость;
  • ­высокой электропроводностью, прочностью используемых канатов и стоек;
  • устойчивость к механическим повреждениям, коррозии;
  • быть безопасной для природы ичеловека, не занимать много свободной территории.

Как выглядят изоляторы

Какое напряжение ЛЭП

По определенных характеристикам, можно узнать напряжение линий электропередач по внешнему виду. Первое на что стоит обратить внимание — это изолятор. Чем больше их находится на установке, тем она будет мощнее.

Самые популярные изоляторы воздушных линий 0,4кВ. Их обычного изготавливают из прочного стекла. По их количеству можно определяться в мощности.

ВЛ-6 и ВЛ-10 по форме такой же, но намного крупнее. Кроме штыревого фиксирования, иногда применяют такие изоляторы по аналогу гирлянд по одному/двум образцам.

Обратите внимание! На воздушной линии 35кВ чаще всего устанавливают навесные изоляторы, хотя иногда можно увидеть штыревого вида. Гирлянда складывается из трех-пяти видов.

Число роликов в гирлянде может быть таким:

  • ВЛ-110кВ — 6 роликов;
  • ВЛ-220кВ — 10 роликов;
  • ВЛ-330кВ — 12 роликов;
  • ВЛ-500кВ — 22 ролика;
  • ВЛ-750кВ — от 20 и выше.

Как узнать мощность ЛЭП

Также напряжение можно узнать по числу кабелей:

  • ВЛ-0,4 кВ число проводов от 2 до 4 и выше;
  • ВЛ-6, 10 кВ — всего три кабеля наустановке;
  • ВЛ-35 кВ, 110 кВ — для каждого изолятора свой провод;
  • ВЛ-220 кВ — для каждого изолятора один большой провод;
  • ВЛ-330 кВ — в фазах по два кабеля;
  • ВЛ-750 кВ — от 3 до 5 проводов.

В заключении необходимо отметить, что в современном мире невозможно обойтись без линий электропередач. Именно они снабжают всю страну электричеством. В настоящее время применяют воздушные и кабельные ЛЭП повсеместно.

Источник



Высоковольтные линии постоянного и переменного тока. Генерация напряжения в электротехнике. Часть 1

В 1919 г. инженер Михаил Осипович Доливо-Добровольский написал работу «О пределах применимости трехфазного переменного тока для передачи электроэнергии на расстояние». Проведя исследования, он доказал, что при электропередачах большой мощности и на очень дальнее расстояние произойдет обратный переход от переменного тока к постоянному. [30]

Считается, что ушли в прошлое времена, когда решался вопрос, каким быть электросетям в мире – сетям постоянного или переменного тока (так называемая «война токов или напряжений», имевшая место на рубеже 19-20 веков). В настоящее время большинство сетей – это сети переменного напряжения с частотой 50 / 60 Гц. Тем не менее, последние события в энергетике показывают, что старая дискуссия может вернуться.

В настоящее время идут процессы, которые могут потеснить монополию переменного тока

1) Развитие высоковольтных систем постоянного тока (ЛПТ / HVDC систем) в системах электропередачи продолжается благодаря следующим преимуществам [1]:
  • Отсутствуют потери на излучение, так электромагнитные волны излучает только проводник с переменным током.
  • В сети нет реактивной (паразитной) мощности и, следовательно, затрат на борьбу с ней, т.е. нет коэффициента мощности и необходимости его улучшения.
  • Экономия на материалах опор ЛЭП, проводов.

Основное преимущество HVDC – это возможность передать большее количество энергии на большое расстояние с меньшими капитальными затратами и меньшими потерями, чем в HVAC линиях [1]. В зависимости от уровня напряжения и конструкционных особенностей потери составляют около 3% на 1км [1]. HVDC позволяют более эффективно использовать энергетические источники удаленные от нагрузочных центров.

Основные примеры, где использование HVDC более эффективно, чем HVAC:

  • Подводные кабели (например, 250 км Балтийский кабель между Швецией и Германией [1], 600 км кабель NorNed между Норвегией и Голландией, 290 км связка Basslink между Австралийским материком и Тасманией [1]). В подводных кабелях линии переменного тока неэффективны по причине потерь на токи Фуко в солёной воде.
  • Дальнемагистральные мощные линии электропередачи типа «конечная точка – конечная точка» без промежуточных ответвлений, например, в удаленных (незаселенных) областях.
  • Увеличение мощности существующей силовой сети в ситуациях, где дополнительные провода устанавливать трудно или дорого.
  • Передача мощности и стабилизация между несинхронизированными распределительными системами переменного напряжения (Power transmission and stabilization between unsynchronised AC distribution systems).
  • Подключение удалённой генерирующей электростанции к главной сети, например: Nelson River DC Transmission System.
  • Стабилизация преобладающей AC сети за счет того, что HVDC не вносит вклад в общий ток КЗ системы (Stabilizing a predominantly AC power-grid, without increasing prospective short circuit current).
  • Снижение цены линии электропередачи. HVDC нуждается в меньшем количестве проводников так как нет необходимости поддержки многофазных систем. Так же, из-за отсутствия скин-эффекта могут использоваться более тонкие проводники.
  • Облегчение передачи (обмена) энергией между странами (районами, сетями), которые используют разные частоты промышленной сети.
  • Синхронизация сетей переменного напряжения, выработанного ВИЭ [1].

Преимущества и недостатки HVDC по другому источнику [2]:

A. Преимущества HVDC

  • Большая передаваемая мощность для проводника одного сечения (нет излучения, нет скин-эффекта и др.).
  • Более простая конструкция линии (нет реактивных компенсаторов и др.).
  • Может быть использован возврат через землю (ОЛВЗ). Имеется в виду, что меньше потери на токи Фуко и др., т.к. в HVAC линиях также используется ОЛВЗ / SWER.
  • В случае ОЛВЗ каждый проводник может работать как независимая цепь.
  • Нет зарядного тока, т.е. переменного тока идущего на подзаряд емкостей линии (No charging current. Additional current must flow in the cable to charge the cable capacitance). Это особенно важно в подземных / подводных кабелях. Поэтому в подводных ЛЭП HVDC используется уже несколько десятилетий.
  • Нет скин эффекта.
  • Кабели могут работать при более высоком градиенте напряжения (так как нет токов Фуко).
  • Коэффициент мощности линии всегда равен единице: реактивной мощности нет, линия не требует реактивной компенсации.
  • Меньше коронный разряд и радиопомехи, особенно в плохую погоду, для проводника с теми же самыми диаметром и RMS напряжением как в HVAC.
  • Синхронная работа не требуется.
  • Следовательно, дистанция линии не ограничена требованиями стабильности.
  • Может соединять системы переменного напряжения с разными частотами.
  • Низкий ток КЗ в линии с постоянным током (Low short-circuit current on DC line).
  • Не вносит вклад в ток КЗ AC линии (Does not contribute to short-circuit current of a A.C system).
  • Регулирование перетоков мощности легко осуществляется / контролируется (Tie-line power is easily controlled).
Читайте также:  Приложение показывает силу тока при зарядке

B. Недостатки HVDC

  • Конверторы дороги.
  • Конверторы сопряжения с HVAC сталкиваются с проблемой реактивной мощности.
  • Конверторы генерируют гармоники, требуются фильтры.
  • Мультитерминальную (сеть с множеством потребителей) систему построить нелегко (Multiterminal or network operation is not easy) [2].

Дальние дистанции технически недостижимы для линий HVAC без промежуточных станций компенсации реактивной мощности. Частота и промежуточные реактивные компоненты вызывают проблемы стабильности AC линии. С другой стороны HVDC линия электропередачи не имеет проблемы стабильности из-за отсутствия частоты, и следовательно, нет ограничения на длину линии. Цена на единицу длины для HVDC линии ниже, чем для HVAC при той же мощности и надёжности. Однако, цена терминального оборудования (оборудования конечных станций) HVDC линии значительно выше чем HVAC. Наибольшее ценовое преимущество HVDC линии достигается на расстояниях свыше 500-800 км. HVDC линии меньше воздействует на человека и на природу в целом, это делает HVDC более «дружелюбной» по отношению к окружающей среде [2].

Преимущества HVDC [9]:

Высоковольтные DC и сверхвысоковольтные DC системы – это совершенные технологии, превосходно подходящие для целей интеграции различных источников энергии таких, как солнце и ветер в локальные электрические сети. Это особенно важно для крупномасштабных оффшорных проектов ветроэлектростанций, или крупномасштабных СЭС. HVDC имеют многочисленные преимущества над традиционной HVAC ЛЭП. Одно из главных преимуществ HVDC – малые потери при передаче энергии, в отличие от больших потерь в HVAC линиях.

Основное практическое правило выглядит следующим образом: на каждые 1000 км DC линии потери составляют менее 3% (на примере линии 5000 МВт, 800 кВ). Обычно потери DC линии на 30-40% меньше, чем потери для линий AC, при тех же уровнях напряжения. Поэтому для ЛЭП большой длины DC (ЛПТ) являются единственным приемлемым решением, как с технической, так экономической точки зрения. Подтверждение можно можно почерпнуть из опытных данных, представленных ниже и полученных на HVAC и HVDC Transmission system for the Nelson River Bipole [1, 2]. Из графиков сравнения затрат на строительство стандартной ЛЭП и ЛПТ, видно что начиная с расстояния 450 миль ЛПТ более выгодны, и с дальнейшим ростом расстояния выгода растёт.

На рисунке ниже показана наземная ЛЭП: площадь занимаемая HVDC оптимальна и составляет около одной трети площади HVAC. HVDC это два проводника, а HVAC это три проводника плюс нейтраль, в результате установочная цена на милю для HVDC ниже.

HVDC лучше HVAC для оффшорных (вне береговых) подводных проектов. Для подводных систем электропередачи, потери в AC линии из-за её ёмкости очень велики, что делает HVDC экономически выгоднее на более коротких дистанциях, чем на земле.

Благодаря преимуществам (см. выше) одна и таже ЛЭП может передать в 3 раза больше энергии при переходе с технологии HVAC к HVDC [19]:

Преимущества HVDC [12]:

Особенность системы ABB HVDC Light – возможность стабилизировать напряжение линий переменного тока, а так же возможность использования для связи с изолированными удаленными источниками генерации в местах, где строительство новых воздушных линий сверхвысокого напряжения слишком затратно. Это важно для ветряных электростанций, так как они значительно удалены и разница в скорости ветра может привести к значительным колебаниям напряжения.

Так же система HVDC выгодна для подземных подводных кабелей. Вот примеры реализованных проектов:

  • Протяженный подземный кабель (70 км Gotland HVDC Light) от ветряной электростанции (Швеция).
  • Протяженный подземный кабель (59 км Terranora interconnector и 180 км Murraylink) между двумя сетями (Австралия) [12] и др.

Замечание: HVDC имеют много особенностей, которые продолжают изучаться и часто не могут быть отнесены только к преимуществам или только недостаткам, например, коронный разряд не только приводит к потерям и радиошумам, но и вырабатывает озон.

Таким образом, преимущества HVDC для подводных и подземных применений обусловлены отсутствием токов Фуко, а преимущества на дальних дистанциях – малой занимаемой площадью из-за меньшего расстояния между проводами и отсутствия скин-эффекта (нет необходимости разбивать проводники на несколько меньших, работает весь объем провода, независимо от сечения) и проблем коэффициента мощности.

Недостатки HVDC связаны со использованием сложных преобразователей (конверторов), необходимостью их контроля и обслуживания [1].

С начала развития линий постоянного тока с 1880-х годов и до середины 20 века во многих странах было предпринято несколько попыток построения ЛПТ систем (Италия, Швейцария, Германия и др.). Только затем началось существенное развитие DC систем. После Великой Отечественной Войны в СССР были введены в строй ЛПТ ЛЭП 30 МВт ЛПТ Кашира–Москва (1951 г), 750 МВт Волгоград–Донбасс (1964 г) и др. С тех пор число ЛПТ ЛЭП в мире увеличилось и продолжает расти.

Достигнуты большие мощности и расстояния ЛПТ ЛЭП, например – UHVDC Xiangjiaba-Shanghai 2,071 км 7200 МВт ±800 кВ (от ГЭС Xiangjiaba до Шанхая) [1,11]. Количество реализованных и проектируемых ЛПТ ЛЭП за период 2000 г — 2013 г превысило количество всех построенных в 20 веке ЛПТ ЛЭП. В общем, рост ЛПТ систем касается только сферы большой энергетики, так как традиционно в бытовом применении (и для большинства промышленных нагрузок) во всём мире используется переменное напряжение 50 или 60 Гц.

Ниже приведена карта HVDC линий Европы (многие из которых обслуживают объекты возобновляемой энергетики такие, как ветро- и гидро- электростанции), а также проектируемые HVDC Китая [4,5].

2) Возобновляемая энергетика как «локомотивная отрасль» тянет за собой развитие систем / линий постоянного тока (ЛПТ / HVDC) за счёт их преимущества

В связи с прохождением пика потребления углеводородов в результате роста цен на газ и нефть резко возрастает роль возобновляемых источников энергии, а также всех смежных с ними отраслях, том числе строительстве ЛПТ. Линии переменного тока AC эффективны в системах с машинной генерацией напряжения синусоидальной формы, например: ДЭС, ТЭС, АЭС и т.п.. А для таких возобновляемых источников энергии, таких как ВЭС и СЭС более эффективны в работе ЛПТ.

Это связано с тем что:

  • Данные ВИЭ не могут самостоятельно генерировать переменное напряжение с фиксированной частотой и напряжением (как генераторы на обычных ЭС). Это связано с нестабильностью альтернативных источников энергии (Солнце, ветер) и актуальной проблемой выгодного аккумулирования энергии. Поэтому для ВИЭ требуются импульсные преобразователи, которым легче работать с ЛПТ. Наоборот, паровые, дизельные, газовые и др. приводы генераторов обычных ЭС изначально легко дают фиксированное переменное напряжение («стабильное напряжение, стабильная частота»).

Выходит, что эффективность ЛЭП переменного тока как бы «привязана» к нефти, газу др. НВИЭ. Исключением являются ГЭС (ВИЭ), но ГЭС не могут работать круглосуточно и поэтому также нуждаются в объединении сетей (в ГЭС с накопительным водохранилищем работа на номинальную мощность производится периодически т.к. вода аккумулируется в периоды пониженных нагрузок). ГЭС работающие на водотоке не годны для выработки больших мощностей – см. ниже.

Рассмотрим распространенную ситуацию с централизованной электростанцией в регионе, когда электростанция – это одиночный центр, питающий весь окружающий регион. В этом случае никакие объединения электросетей не требуются или требуются только для аварийного режима. Речь может идти об объединении единиц ЭС – ЭС на ВИЭ (ВЭС СЭС и др.), сильно рассредоточенными по большой территории, поэтому вопрос объединения десятков, сотен, и более единиц ЭС в единую сеть крайне важен. А в случае объединения ЛПТ выигрывает по сравнению с ЛЭП переменного тока по простоте и эффективности.

Причины необходимости объединения ЭС на ВИЭ и выгодности HVDC для этих целей:

  • Парковые ВЭС (Ветроэлектростанции / Wind farms) и СЭС электростанции изначально является сильно рассредоточенными по большой территории на площади несколько десятков и сотен кв. км. Примером могут служить оффшорные, горные, равнинные парковые ВЭС – в среднем от 30 до 300 единичных ВЭС мощностью 1-6 МВт каждая на территории 10-300 кв. км [7].
  • Парковые ЭС на ВИЭ требуют объединения в единую энергосистему, так как источник энергии нестабилен, а дешёвый аккумулятор электроэнергии до сих пор не разработан.
  • Парковые ЭС часто удалены и рассредоточены, так как привязаны к ресурсам солнца и ветра, поэтому требуется много длинных ЛЭП, что более подходит для HVDC технологии.
  • Для объединения многих терминалов (источников и потребителей) HVDC значительно выгоднее (см преимущества выше). Главная причина – не требуется синхронизация, терминалы подключаются параллельно.
  • При использовании HVDC линий упрощается постройка системы «сетевая электростанция». При этом парковая ЭС может выдавать энергию в сеть, принимать энергию из сети в аккумуляторы, передавать / ретранслировать потоки энергии.
  • При использовании HVDC линий упрощается постройка системы «объединённая сетевая электростанция» для большого числа малых частных ЭС / потребителей.
  • При использовании HVDC упрощается построение энергосистемы «силовой интернет», включающей множество мелких и крупных станций типа «источник», «потребитель», «аккумулятор», а также их комбинаций.
  • Даже в настоящее время, когда большинство основных магистральных сетей – HVAC, из-за своей выгодности HVDC используются для сопряжения сетей HVAC, сопряжения сетей HVAC с ЭС на ВИЭ.

Система BorWin1 – одна из крупнейших HVDC систем Германии. Используется для энергетического соединения оффшорного ветропарка BARD Offshore 1 (400 МВт) и других оффшорных ветроферм, расположенных в Германии рядом с Боркумом с Европейской энергетической сетью. Характеристики: мощность 400 МВт, биполярная линия, напряжение 150 кВ. ЛЭП HVDC BorWin1, идущая от оффшорной платформы BorWin Alpha к подстанции Diele, содержит участки 75 км подземного и 125 км подводного кабеля. Запущена в строй в 2009 г.

Система Atlantic Wind Connection (AWC), HVDC магистральная линия длиной 350 миль от Sayreville NJ до Virginia Beach передаёт от 6000 до 7000 MВт мощности от парковой ветроэлектростанции в общую сеть (в процессе строительства).

А если кто то спросит: «что случится если ветер перестанет дуть?», то мы всегда можем ответить, что ветер всегда дует где-нибудь, мы только должны перебросить энергию туда где она необходима. И сделать это можно с помощью линий HVDC [9].

Источник