Меню

Чему равно индуктивное емкостное сопротивление при постоянном токе при очень высокой частоте

Чему равно индуктивное емкостное сопротивление при постоянном токе при очень высокой частоте

Пусть источник переменного тока включен в цепь, в которой индуктивностью и емкостью можно пренебречь. Переменный ток изменяется в соответствии с законом:

Тогда, если применить к участку цепи ($а R в$) (рис.1) закон Ома получим:

где $U$ — напряжение на концах участка. Разность фаз между током и напряжением равна нулю. Амплитудное значение напряжения ($U_m$) равно:

где коэффициент $R$ — называется активным сопротивлением. Наличие активного сопротивления в цепи всегда приводит к выделению тепла.

Готовые работы на аналогичную тему

Ёмкостное сопротивление

Допустим, что в участок цепи включен конденсатор емкости $С$, а $R=0$ и $L=0$. Будем считать силу тока ($I$) положительной, если она имеет направление, которое указано на рис. 2. Пусть заряд на конденсаторе равен $q$.

Мы можем использовать следующие соотношения:

Если $I(t)$ определена уравнением (1), то заряд выражен как:

где $q_0$ произвольный постоянный заряд конденсатора, который не связан с колебаниями тока, поэтому можем допустить, что $q_0=0.$ Получим напряжение равно:

Формула (6) показывает, что на конденсаторе колебания напряжения отстают от колебаний силы тока по фазе на $\frac<\pi ><2>.$ Амплитуда напряжения на емкости равна:

Величину $X_C=\frac<1><\omega C>$ называют реактивным емкостным сопротивлением (емкостным сопротивлением, кажущимся сопротивлением емкости). Если ток постоянный, то $X_C=\infty $. Это значит, что постоянный ток не течет через конденсатор. Из определения емкостного сопротивления видно, что при больших частотах колебаний, малые емкости являются небольшими сопротивлениями переменного тока.

Индуктивное сопротивление

Пусть участок цепи имеет только индуктивность (рис.3). Будем считать $I>0$, если ток направлен от $а$ к $в$.

Если в катушке течет ток, то в индуктивности появляется ЭДС самоиндукции, следовательно, закон Ома примет вид:

По условию $R=0. \mathcal E$ самоиндукции можно выразить как:

Из выражений (8), (9) следует, что:

Амплитуда напряжения в данном случае равна:

Читайте также:  Что такое прямой ток в физике

где $X_L-\ $индуктивное сопротивление (кажущееся сопротивление индуктивности).

Закон Ома для цепей переменного тока

называют полным электросопротивлением, или импедансом, иногда называют законом Ома для переменного тока. Однако необходимо помнить, что формула (12) относится к амплитудам тока и напряжения, а не мгновенным их значениям.

Задание: Чему равно действующее значение силы тока в цепи. Цепь переменного тока состоит из последовательно соединенных: конденсатора емкостью $C$, катушки индуктивности $L$, активного сопротивления $R$. На зажимы цепи подается напряжение действующее напряжение $U$ частота которого $\nu$.

Решение:

Так как все элементы цепи соединены последовательно, то сила тока во всех элементах одинакова.

Амплитудное значение силы тока выражается «законом Ома для переменного тока»:

оно связано с действующим значением силы тока как:

В условиях задачи мы имеем действующее значение напряжения $U$, нам в формуле (1.1) требуется амплитуда напряжения, используя формулу:

Подставим в формулу (1.2) формулы (1.1) и (1.3), получим:

где $\omega =2\pi \nu .$

Задание: Используя условия задачи в первом примере, найдите действующие значения напряжений на катушке индуктивности ($U_L$), сопротивлении ($U_R$), конденсаторе ($U_C$).

Решение:

Используем результат примера 1. Напряжение на катушке индуктивности выражается формулой:

Напряжение на активном сопротивлении ($U_R$) равно:

Напряжение на конденсаторе ($U_C$) определяется как:

Источник

Емкостное сопротивление.

Емкостное сопротивление в цепи переменного тока — это та часть сопротивления, которая создается конденсатором, включенным в цепь переменного тока (при пренебрежимо малой емкости подводящих прово­дов).

Для получения формулы емкостного сопротивления определим, как меняется сила тока в цепи, содержащей только конденсатор.

Емкостное сопротивление

.

Напряжение на обкладках конденсатора u = φ1 – φ2 = q/C равно напряже­нию на входе цепи, поэтому

Для силы тока, которая определяется как производная заряда q по времени, из (q = C Um cos ωt) полу­чим:

Свободные электромагнитные колебания в колебательном контуре

Между напряжением и силой тока в цепи с конденсатором наблюдается сдвиг фаз на π/2 (), причем ток опережает напряжение. Когда конденсатор разряжается (напряжение на нем равно нулю), ток максима­лен.

Читайте также:  В чем преимущества переменного тока перед постоянным током

Емкостное сопротивление

Амплитуда силы тока равна

Емкостное сопротивление

.

Емкостное сопротивление

называется емкостным сопротивлением. Если вместо амплитуд силы тока и напряжения в (Im = Um ) использовать их действующие значения, то, учитывая , получим:

Емкостное сопротивление

.

Это означает, что действующие значения силы тока и напряжения на конденсаторе связаны так же, как и сила постоянного тока и напряжение согласно закону Ома, причем роль активного сопротивления R играет емкостное сопротивление Хс.

Чем больше емкость конденсатора и частота напряжения, тем меньше емкостное сопротивле­ние и тем больше ток перезарядки.

Благодаря сдвигу фаз между током и напряжением в среднем за период не происходит ни накопления энергии на конденсаторе, ни ее диссипации (рассеяния). За четверть периода, когда конденсатор заряжается до максимального значения, на нем происходит накопление энергии электрического поля; в следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.

Источник

Зависимость индуктивного и емкостного сопротивления от частоты тока

date image2014-02-13
views image3618

facebook icon vkontakte icon twitter icon odnoklasniki icon

Из формул для расчета емкостного и индуктивного сопротивлений видно, что емкостное сопротивление изменяется обратно пропорционально круговой частоте, а индуктивное сопротивление – прямо пропорционально, что отражено на графике зависимости индуктивного и емкостного сопротивлений от частоты переменного тока ( рис.62)

Рассмотрим последовательную цепь переменного тока, содержащую резистор, конденсатор и катушку индуктивности(рис.63)

равно сумме на отдельных ее участках, а ток один и тот же.

— общее сопротивление в цепи z.

общее сопротивление цепи

обобщенный закон Ома

, при частоте сопротивление минимально, таким образом значения амплитуды колебания силы тока возрастают до максимума.

Источник



«Исследование зависимости емкостного и индуктивного сопротивления от частоты переменного тока».
методическая разработка по физике (11 класс) по теме

Широкова Людмила Николаевна

Изучить зависимость емкостного и индуктивного сопротивления от частоты переменного тока при постоянных параметрах элементов.

Скачать:

Вложение Размер
induktivnoe_i_emkostnoe_soprotivlenie.doc 92.5 КБ
elementy_cepey_peremennogo_toka.ppt 397 КБ

Предварительный просмотр:

«Исследование зависимости емкостного и индуктивного сопротивления от частоты переменного тока».

Изучить зависимость емкостного и индуктивного сопротивления от частоты переменного тока при постоянных параметрах элементов.

Урок по данной теме проведён

в МОУ «СОШ № 75» г. Чусового

(Районный семинар физиков)

(1час в кабинете информатики)

Тема учебного занятия:

«Исследование зависимости емкостного и индуктивного сопротивления от частоты переменного тока».

Форма учебного занятия: комбинированный урок с использованием информационных технологий.

Класс: 11 класс «Средняя общеобразовательная школа № 75»

Цель урока: Изучить зависимость емкостного и индуктивного сопротивления от частоты переменного тока при постоянных параметрах элементов.

`продолжить усвоение понятий «емкостного» и «индуктивного» сопротивлений в цепи переменного тока

`формирование практических навыков экспериментирования в виртуальной физической лаборатории

`продолжить формирование умений самостоятельно работать с полученной информацией

Тип урока: комбинированный (с использованием ИКТ).

компьютер, мультимедийный проектор, экран, презентация к уроку, конструктор —

«Виртуальная лаборатория», лист отчета.

I. Актуализация знаний.

Организационный момент. Тема. Цель урока.

∙ Что понимают под емкостным сопротивлением? От чего оно зависит?

∙ Что понимают под индуктивным сопротивлением? От чего оно зависит?

Мы это постараемся проверить сегодня на уроке, но вспомним закон Ома.

II. Лабораторная работа

собираем виртуальную схему на монтажном столе ПК;

записываем показания вольтметров на листе отчета обеих схем;

выполняем математические вычисления в тетради;

строим график в тетради;

отвечаем на контрольный вопрос;

сдаем тетрадь вместе с листом отчета.

а) катушка в цепи переменного тока

собираем виртуальную цепь, указанную на схеме отчетного листа,

задаем параметры элементов цепи:

— резистор R = 100 Ом

— мощность Р = 500 Вт

— индуктивность катушки L = 100мГн = 0,1гн

— напряжение на генераторе U = 100в

Изменяя частоту генератора, записать показания вольтметров (напряжения на резисторе U R и напряжение на катушке U L ) в таблицу 1

Источник