Меню

Число обмоток трансформатора напряжения

Упрощенный вид расчета трансформатора

Но проще и дешевле собрать его своими руками. К тому же сам процесс сборки достаточно интересный. Но как показывает практика, в основе сборки лежит расчет трансформатора, он же блок питания. Поэтому стоит поговорить именно о проводимых расчетах, то есть, разобраться с формулами и указать на нюансы.

Конструкция трансформатора

Если посмотреть на трансформатор с внешней стороны, то это Ш-образное устройство, состоящее из металлического сердечника, картонного или пластикового каркаса и обмотки из медной проволоки. Обмоток две.

Сердечник – это несколько стальных пластин, которые обработаны специальным лаком и соединены между собой. Лак наносится специально, чтобы между пластинами не проходило напряжение. Таким способом борются с так называемыми вихревыми токами (токами Фуко). Все дело в том, что токи Фуко просто будут нагревать сам сердечник. А это потери.

Именно с потерями связан и состав пластин сердечника. Трансформаторное железо (так чаще всего называют сталь для сердечника специалисты), если посмотреть ее в разрезе, состоит из больших кристаллов, которые, в свою очередь, изолированы друг от друга окисной пленкой.

Назначение и функциональность

Итак, какие функции выполняет трансформатор?

  1. Это снижение напряжения до необходимых параметров.
  2. С его помощью снижается гальваническая развязка сети.

Что касается второй функции, то необходимо дать пояснения. Обе обмотки (первичная и вторичная) трансформатора тока между собой напрямую не соединены. Значит, сопротивление прибора, по сути, должно быть бесконечным. Правда, это идеальный вариант. Соединение же обмоток происходит через магнитное поле, создаваемой первичной обмоткой. Вот такой непростой функционал.

Расчет

Существует несколько видов расчетов, которыми пользуются профессионалы. Для новичков все они достаточно сложные, поэтому рекомендуем так называемый упрощенный вариант. В его основе лежат четыре формулы.

Формула закона трансформации

Итак, закон трансформации определяется нижеследующей формулой:

  • U1 – напряжение на первичной обмотке,
  • U2 – на вторичной,
  • n1 – количество витков на первичной обмотке,
  • n2 – на вторичной.

Так как разбирается именно сетевой трансформатор, то напряжение на первичной обмотке у него будет 220 вольт. Напряжение же на вторичной обмотке – это необходимый для вас параметр. Для удобства расчета берем его равным 22 вольт. То есть, в данном случае коэффициент трансформации будет равен 10. Отсюда и количество витков. Если на первичной обмотке их будет 220, то на вторичной 22.

Представьте, что прибор, который будет подсоединен через трансформатор, потребляет нагрузку в 1 А. То есть, на вторичную обмотку действует именно этот параметр. Значит, на первичную будет действовать нагрузка 0,1 А, потому что напряжение и сила тока находятся в обратной пропорциональности.

А вот мощность, наоборот, в прямой зависимости. Поэтому на первичную обмотку будет действовать мощность: 220×0,1=22 Вт, на вторичную: 22×1=22 Вт. Получается, что на двух обмотках мощность одинаковая.

Внимание! Если в собираемом вами трансформаторе не одна вторичная обмотка, то мощность первичной состоит из суммы мощностей вторичных.

Что касается количества витков, то рассчитать их на один вольт не составит большого труда. В принципе, это можно сделать методом «тыка». К примеру, наматываете на первичную обмотку десять витков, проверяете на ней напряжение и полученный результат делите на десять. Если показатель совпадает с необходимым для вас напряжением на выходе, то, значит, вы попали в яблочко. Если напряжение снижено, значит, придется увеличить количество витков, и наоборот.

И еще один нюанс. Специалисты рекомендуют наматывать витки с небольшим запасом. Все дело в том, что на самих обмотках всегда присутствуют потери напряжения, которые необходимо компенсировать. К примеру, если вам нужно напряжение на выходе 12 вольт, то расчет количества витков проводится из расчета напряжения в 17-18 В. То есть, компенсируются потери.

Площадь сердечника

Как уже было сказано выше, мощность блока питания – это сумма мощностей всех его вторичных обмоток. Это основа выбора самого сердечника и его площади. Формула такая:

В этой формуле мощность устанавливается в ваттах, а площадь получается в сантиметрах квадратных. Если сам сердечник имеет Ш-образную конструкцию, то сечение берется среднего стержня.

Обратите внимание! Все полученные расчетным путем параметры имеют неокругленную цифру, поэтому округлять надо обязательно и всегда только в большую сторону. К примеру, расчетная мощность получилась 35,8 Вт, значит, округляем до 40 Вт.

Количество витков в первичной обмотке

Здесь используется следующая формула:

n=50*U1/S, понятно, что U1 равно 220 В.

Кстати, эмпирический коэффициент «50» может изменяться. К примеру, чтобы блок питания не входил в насыщение и тем самым не создавал лишних помех (электромагнитных), то лучше в расчете использовать коэффициент «60». Правда, это увеличит число витков обмотки, трансформатор станет немного больше в размерах, но при этом снизятся потери, а, значит, режим работы блока питания станет легче. Здесь важно, чтобы количество обмоток уместилось.

Сечение провода

И последняя четвертая формула касается сечения используемого медного провода в обмотках.

d=0,8*√I, где d – это диаметр провода, а «I» – сила тока в обмотке.

Расчетный диаметр необходимо также округлить до стандартной величины.

Итак, вот четыре формулы, по которым проводится подбор трансформатора тока. Здесь неважно покупаете ли вы готовый прибор или собираете его самостоятельно. Но учтите, что такой расчет подходит только для сетевого трансформатора, который будет работать от сети в 220 В и 50 Гц.

Читайте также:  Что если у блока питания маленькое напряжение

Для высокочастотных приборов используются совершенно другие формулы, где придется проводить расчет потерь трансформатора тока. Правда, формула коэффициента трансформации и у него точно такая же. Кстати, в этих устройствах устанавливается ферромагнитный сердечник.

Заключение по теме

В этой статье мы постарались ответить на вопрос, как рассчитать трансформатор сетевого типа? Данный принцип подбора является упрощенным. Но для практических целей он даже очень достаточный. Так что новичкам лучше использовать именно его, и не лезть в дебри математических выкладок с большим количеством составляющих. Конечно, в нем не учитываются все потери, но округления показателей компенсируют их.

Источник



Область применения и принцип действия трансформаторов напряжения

Они встречаются везде, где присутствует необходимость преобразовать высокое напряжение сети в пропорционально более низкое значение. В этом и есть их назначение: преобразование величины напряжения. ТН-ы используют для:

  • уменьшения величины напряжения до величины, которую безопасно и удобно использовать в цепях измерения (вольтметры, ваттметры, счетчики), защиты, автоматики, сигнализации
  • защиты от высокого напряжения вторичных цепей, а следовательно и человека
  • повышения напряжения при испытаниях изоляции различного эо
  • на подстанциях ТН используют для контроля изоляции сети, работы в составе устройства сигнализации или защиты от замыканий на землю

Если бы не существовало трансформаторов напряжения, то, например, чтобы измерить напряжение на шине 10кВ, пришлось бы сооружать супермощный вольтметр с изоляцией, выдерживающей 10кВ. А это уже габариты ого-го. А ещё плюс к этому необходимо соблюсти точность измерений. Проблемка, но и это не всё. Если в таком приборе что-то коротнет, то электрик ошибается однажды…. при выборе профессии. 10кВ, а ведь есть и 750кВ, как там померить? Загвоздочка. Поэтому отдаем почести изобретателям трансформаторов, и в частности трансформаторов напряжения. Отвлеклись, продолжаем.

Прежде, чем двигаться дальше, нарисую однофазный ТН, чтобы было наглядно и более понятнее далее в изложении материала.

Значит на рисунке сверху у нас приходит напряжение на выводы А, Х трансформатора напряжения на первичную обмотку(1). Это напряжение номинальное напряжение, первичное напряжение. Далее оно трансформируется до величины вторичного напряжения, которое находится на вторичной обмотке (3). Выводы вторичной обмотки — а, х. Вывод вторичной обмотки заземляются. В — это вольтметр, но это может быть и другое устройство. (2) — это магнитопровод ТНа.

Принцип работы ТН

Принцип действия трансформатора напряжения аналогичен принципу работы трансформатора тока. Обозначим это еще раз. По первичной обмотке проходит переменный ток, этот ток образует магнитный поток. Магнитный поток пронизывает магнитопровод и обмотки ВН и НН. Если ко вторичной обмотке подключена нагрузка, то по ней начинает течь ток, который возникает из-за действия ЭДС. ЭДС наводится из-за действия магнитного потока. Подбирая разное количество витков первичной и вторичной обмоток можно получить нужное напряжение на выходе. Более подробно это показано в статье про векторную диаграмму трансформатора напряжения.

Если на ТН подавать постоянное напряжение, то ЭДС не создается постоянным магнитным потоком. Поэтому ТНы выпускают на переменное напряжение. Коэффициентом трансформации трансформатора напряжения называют естественно отношение напряжения первичной обмотки к напряжению вторичной и записывают через дробь. Например, 6000/100. Когда приходят молодые студенты, они иногда на вопрос какой коэффициент отвечают 60. Не стоит так делать.

Классификация трансформаторов напряжения

ТНы классифицируются по следующим параметрам:

  • напряжение первичной обмотки (3, 6, 10 … 750кВ)
  • напряжение основной вторичной обмотки (100 В — для однофазных, включаемых между фазами, трехфазных; 100√3 — однофазных, включаемых между фазой и землей напряжение дополнительной вторичной обмотки (100В — однофазные в сети с заземленной нейтралью, 100√3 — однофазные в сети с изолированной нейтралью
  • число фаз (однофазные, трехфазные)
  • количество обмоток (двухобмоточные, трехобмоточные)
  • класс точности (0,1 0,2 0,5 1 3 3Р 6Р)
  • способ охлаждения (сухие, масляные, газонаполненные)
  • изоляция (воздушно-бумажная, литая, компаунд, газ, масло, фарфор)

На напряжение 6, 10кВ используют литые ТНы, залитые эпоксидной смолой. Эти аппараты устанавливают в распредустройствах. Они занимают меньшие габариты, по сравнению с масляными. Также к их плюсам стоит отнести меньшее количество ухода за ними.

электромагнитные и емкостные

Если открыть объемы и нормы испытаний электрооборудования на странице ТНов, то можно увидеть, что трансформаторы напряжения там разделяются на электромагнитные и емкостные. В чем же состоит различие этих типов оборудования.

Электромагнитными считаем все ТНы в которых преобразование происходит по принципу, описанному выше (магнитные потоки, ЭДС и так далее). Индукционный ток, в брошюрах западных производителей их называют индуктивными, в противоположность емкостным. По моему всё именно так.

А вот емкостные трансформаторы напряжения, или же всё таки емкостные делители напряжения… Тут история умалчивает. Принцип работы такого оборудования можно понять, если нарисовать схему.

Вот, например схема ТН марки НДЕ-М. Они выпускаются на напряжение выше 110кВ. Состоит из емкостного делителя и электромагнитного устройства. Емкостной делитель состоит из конденсаторов С1 и С2. Принцип емкостного делителя в следующем. Напряжение линии Л делится обратно пропорционально величинам емкостей С1 и С2. То есть мы подключаем к С2 наш ТН и напряжение на нем пропорционально входному, которое идет по Л, но гораздо меньше его. Раз рассматриваем НДЕ, то вот табличка величин напряжения для разных классов оборудования.

Читайте также:  Указатель напряжения увн 80э тф электро трейд

Электромагнитное устройство состоит из понижающего трансформатора, реактора и демпфера.

Реактор предназначен для компенсации емкостного сопротивления и следовательно уменьшения погрешности.

Электромагнитный демпфер предназначен для устранения субгармонических колебаний, которые могут возникать при включениях и коротких замыканиях в обмотках ТНа.

Чем выше класс напряжения, тем емкостные трансформаторы напряжения выгоднее своих собратьев. За счет снижения размеров изоляции и материалов.

Источник

Измерительные трансформаторы напряжения

Назначение и принцип действия трансформатора напряжения

Измерительный трансформатор напряжения служит для понижения высокого напряжения, подаваемого в установках переменного тока на измерительные приборы и реле защиты и автоматики.

Для непосредственного включения на высокое напряжение потребовались бы очень громоздкие приборы и реле вследствие необходимости их выполнения с высоковольтной изоляцией. Изготовление и применение такой аппаратуры практически неосуществимо, особенно при напряжении 35 кВ и выше.

Применение трансформаторов напряжения позволяет использовать для измерения на высоком напряжении стандартные измерительные приборы, расширяя их пределы измерения; обмотки реле, включаемых через трансформаторы напряжения, также могут иметь стандартные исполнения.

Кроме того, трансформатор напряжения изолирует (отделяет) измерительные приборы и реле от высокого напряжения, благодаря чему обеспечивается безопасность их обслуживания.

Трансформаторы напряжения широко применяются в электроустановках высокого напряжения, от их работы зависит точность электрических измерений и учета электроэнергии, а также надежность действия релейной защиты и противоаварийной автоматики.

Измерительный трансформатор напряжения по принципу выполнения ничем не отличается от силового понижающего трансформатора. Он состоит из стального сердечника, набранного из пластин листовой электротехнической стали, первичной обмотки и одной или двух вторичных обмоток.

На рис. 1,а показана схема трансформатора напряжения с одной вторичной обмоткой. На первичную обмотку подается высокое напряжение U1, а на напряжение вторичной обмотки U2 включен измерительный прибор. Начала первичной и вторичной обмоток обозначены буквами А и а, концы — X и х. Такие обозначения обычно наносятся на корпусе трансформатора напряжения рядом с зажимами его обмоток.

Отношение первичного номинального напряжения к вторичному номинальному напряжению называется номинальным коэффициентом трансформации трансформатора напряжения Кн = U1 ном / U2 ном

Схема и векторная диаграмма трансформатора напряжения

Рис. 1. Схема и векторная диаграмма трансформатора напряжения: а — схема, б — векторная диаграмма напряжений, в — векторная диаграмма напряжений

При работе трансформатора напряжения без погрешностей его первичное и вторичное напряжение совпадают по фазе и отношение их величин равно K н. При коэффициенте трансформации K н=1 напряжение U 2 =U 1 (рис. 1,в).

Условные обозначения: З — один вывод заземляется; О — однофазный; Т — трехфазный; К — каскадный или с компенсационной обмоткой; Ф — с фарфоровой наружной изоляцией; М — масляный; С — сухой (с воздушной изоляцией); Е — емкостный; Д — делитель.

Выводы первичной обмотки (ВН) имеют обозначения А, Х для однофазных и A, B, С, N для трехфазных трансформаторов. Выводы основной вторичной обмотки (НН) имеют соответственно обозначения a, x и a, b, c, N, выводы вторичной дополнительной обмотки — ад и хд.

Начала первичных и вторичных обмоток присоединяются соответственно к выводам А, В, С и а, b, с. Основные вторичные обмотки соединяются обычно в звезду (группа соединения 0), дополнительные — по схеме разомкнутого треугольника. Как известно, в нормальном режиме работы сети напряжение на зажимах дополнительной обмотки близко к нулю (напряжение небаланса Uнб = 1 — 3 В), а при замыканиях на землю равно утроенному значению 3UО напряжения нулевой последовательности UО фазы.

В сети с заземленной нейтралью максимальное значение 3U равно фазному напряжению, с изолированной — утроенному фазному напряжению. Соответственно дополнительные обмотки выполняются на номинальное напряжение Uном = 100 В и 100/3 В.

Номинальным напряжением ТV называется номинальное напряжение его первичной обмотки; это значение может отличаться от класса изоляции. Номинальное напряжение вторичной обмотки принимается равным 100, 100/3 и 100/3 В. Как правило, трансформаторы напряжения работают в режиме холостого хода.

Измерительные трансформаторы напряжения с двумя вторичными обмотками

Измерительные трансформаторы напряженияТрансформаторы напряжения с двумя вторичными обмотками, кроме питания измерительных приборов и реле, предназначаются для работы на устройствах сигнализации замыканий на землю в сети с изолированной нейтралью или на защиту от замыканий на землю в сети с заземленной нейтралью.

Схема трансформатора напряжения с двумя вторичными обмотками показана на рис. 2,а. Выводы второй (дополнительной) обмотки, используемой для сигнализации или защиты при замыканиях на землю, обозначены ад и хд.

На рис. 2,6 приведена схема включения трех таких трансформаторов напряжения в трехфазной сети. Первичные и основные вторичные обмотки соединены в звезду. Нейтраль первичной обмотки заземлена. На измерительные приборы и реле от основных вторичных обмоток могут быть поданы три фазы и нуль. Дополнительные вторичные обмотки соединены по схеме разомкнутого треугольника. От них на устройства сигнализации или защиты подается сумма фазных напряжений всех трех фаз.

При нормальной работе сети, в которой включен трансформатор напряжения, эта векторная сумма равна нулю. Это видно из векторных диаграмм рис. 2,в, где Uа, Vв и Uc — векторы фазных напряжений, приложенных к первичным обмоткам, a Uaд, У b д и Ucд — векторы напряжений первичной н вторичной дополнительной обмотки. напряжений на вторичных дополнительных обмотках, совпадающие по направлению с векторами на соответствующих первичных обмотках (так же, как на рис. 1,в).

Читайте также:  Сглаживающие фильтры выпрямленного напряжения

Трансформатор напряжения с двумя вторичными обмотками

Рис. 2. Трансформатор напряжения с двумя вторичными обмотками. а — схема; б — включение в трехфазную цепь; в — векторная диаграмма

Сумма векторов Uaд, U b д и Ucд получена путем их совмещения соответственно схеме соединения дополнительных обмоток, при этом принималось, что стрелки векторов как первичных, так и вторичных напряжений соответствуют началам обмоток трансформатора.

Результирующее напряжение 3U0 между концом обмотки фазы С и началом обмотки фазы А па диаграмме равно нулю.

В действительных условиях обычно на выходе разомкнутого треугольника имеется ничтожно малое напряжение небаланса, не превышающее 2 — 3% номинального напряжения. Этот небаланс создается всегда имеющимися незначительной несимметрией вторичных фазных напряжений и небольшим отклонением формы их кривой от синусоиды.

Напряжение, обеспечивающее надежную работу реле, приключаемых к цепи разомкнутого треугольника, возникает только при замыканиях на землю со стороны первичной обмотки трансформатора напряжения. Так как замыкания на землю связаны с прохождением тока через нейтраль, появляющееся при этом напряжение на выходе разомкнутого треугольника согласно методу симметричных составляющих называют напряжением нулевой последовательности и обозначают 3U0. В этом обозначении цифра 3 указывает, что напряжение в данной цепи является суммарным для трех фаз. Обозначение 3U0 применяется также и для выходной цепи разомкнутого треугольника, подаваемой на реле сигнализации или защиты (рис. 2,6).

Векторные диаграммы напряжений первичной и вторичной дополнительной обмоток при однофазном замыкании на землю

Рис. 3. Векторные диаграммы напряжений первичной и вторичной дополнительной обмоток при однофазном замыкании на землю: а — в сети с заземленной нейтралью, б — в сети с изолированной нейтралью.

Наибольшее значение напряжение 3U0 имеет при однофазном замыкании на землю. При этом следует иметь в виду, что максимальная величина напряжения 3U0 в сети с изолированной нейтралью значительно, больше, чем в сети с заземленной нейтралью.

Распространенные схемы включения измерительных трансформаторов напряжения

Простейшая схема с использованием одного однофазного трансформатора напряжения, показанная на рис. 1,а, применяется в пусковых шкафах двигателей и на переключательных пунктах 6 — 10 кВ для включения вольтметра и реле напряжения устройства АВР.

На рис.4 приведены схемы включения однофазных трансформаторов напряжения с одной обмоткой для питания трехфазных вторичных цепей. Группа из трех соединенных по схеме звезда — звезда однофазных трансформаторов, показанная на рис. 4,а, применяется для питания измерительных приборов, счетчиков и вольтметров контроля изоляции в электроустановках 0,5 — 10 кВ с изолированной нейтралью и неразветвленной сетью, где не требуется сигнализация возникновения однофазных замыканий на землю.

Для обнаружения «земли» по этим вольтметрам они должны показывать величины первичных напряжений между фазами и землей (см. векторную диаграмму на рис. 3,6). Для этого нуль обмоток ВН заземляется и вольтметры включаются на вторичные фазные напряжения.

Так как при однофазных замыканиях на землю трансформаторы напряжения могут длительно находиться под линейным напряжением, их номинальное напряжение должно соответствовать первичному междуфазному напряжению. Вследствие этого в нормальном режиме при работе под фазным напряжением мощность каждого трансформатора, а следовательно, и всей группы понижается в √ 3 раз . Поскольку в схеме заземлен нуль вторичных обмоток, предохранители во вторичной цепи установлены во всех трех фазах.

Схемы включения однофазных измерительных трансформаторов напряжения с одной вторичной обмоткой

Рис. 4. Схемы включения однофазных измерительных трансформаторов напряжения с одной вторичной обмоткой: а — схема звезда — звезда для электроустановок 0,5 — 10 кВ с изолированной нейтралью, б — схема открытого треугольника для электроустановок 0,38 — 10 кВ, в — то же для электроустановок 6 — 35 кВ, г — включение трансформаторов напряжения 6 -18 кВ по схеме треугольник — звезда для питания устройств АРВ синхронных машин.

На рис. 4, 6 и в трансформаторы напряжения, предназначенные для питания измерительных приборов, счетчиков и реле, включаемых на междуфазные напряжения, включены по схеме открытого треугольника. Эта схема обеспечивает симметричные междуфазные напряжения Uab , Ubc, U c a при работе трансформаторов напряжения в любом классе точности.

Особенность схемы открытого треугольника это недоиспользование мощности трансформаторов, так как мощность такой группы из двух трансформаторов меньше мощности группы из трех соединенных в полный треугольник трансформаторов не в 1,5 раза, а в √ 3 раз.

Схема рис.4,б применяется для питания неразветвленных цепей напряжения электроустановок 0,38 -10 к В , что позволяет устанавливать заземление вторичных цепей непосредственно у трансформатора напряжения.

Во вторичных цепях схемы, показанной на рис. 4,в, вместо предохранителей установлен двухполюсный автомат, при срабатывании которого блок-контакт замыкает цепь сигнала » обрыв напряжения » . Заземление вторичных обмоток выполнено на щите в фазе B, которая дополнительно заземлена непосредственно у трансформатора напряжения через пробивной предохранитель. Рубильник обеспечивает отключение вторичных цепей от трансформатора напряжения с видимым разрывом. Эта схема применяется в электроустановках 6 — 35 кв при питании разветвленных вторичных цепей от двух и более трансформаторов напряжения.

На рис. 4 ,г трансформаторы напряжения включены по схеме треугольник — звезда, обеспечивающей вторичное линейное напряжение U = 173 В , что необходимо для питания устройств автоматического регулирования возбуждения (АРВ) синхронных генераторов и компенсаторов. С целью повышения надежности работы АРВ предохранители во вторичных цепях не устанавливаются, что допускается ПУЭ для неразветвленных цепей напряжения.

Источник