Меню

Что нужно сделать чтобы изменить напряжение

Как понизить напряжение: способы и приборы

Нужно знать, как понизить напряжение в цепи, чтобы не повредить электрические приборы. Всем известно, что к домам подходит два провода – ноль и фаза. Это называется однофазной сетью. Трехфазная крайне редко используется в частном секторе и многоквартирных домах. Необходимости в ней просто нет, так как вся бытовая техника питается от сети переменного однофазного тока. Но вот в самой технике требуется делать преобразования – понижать переменное напряжение, преобразовывать его в постоянное, изменять амплитуду и прочие характеристики. Именно эти моменты и нужно рассмотреть.

Снижение напряжения с помощью трансформаторов

Самый простой способ – это использовать трансформатор пониженного напряжения, который совершает преобразования. Первичная обмотка содержит большее число витков, чем вторичная. Если есть необходимость снизить напряжение вдвое или втрое, вторичную обмотку можно и не использовать. Первичная обмотка трансформатора используется в качестве индуктивного делителя (если от нее имеются отводы). В бытовой технике используются трансформаторы, со вторичных обмоток которых снимается напряжение 5, 12 или 24 Вольта.

Это наиболее часто используемые значения в современной бытовой технике. 20-30 лет назад большая часть техники питалась напряжением в 9 Вольт. А ламповые телевизоры и усилители требовали наличия постоянного напряжения 150-250 В и переменного для нитей накала 6,3 (некоторые лампы питались от 12,6 В). Поэтому вторичная обмотка трансформаторов содержала такое же количество витков, как и первичная. В современной технике все чаще используются инверторные блоки питания (как на компьютерных БП), в их конструкцию входит трансформатор повышающего типа, он имеет очень маленькие габариты.

Делитель напряжения на индуктивностях

Индуктивность – это катушка, намотанная медным (как правило) проводом на металлическом или ферромагнитном сердечнике. Трансформатор – это один из видов индуктивности. Если от середины первичной обмотки сделать отвод, то между ним и крайними выводами будет равное напряжение. И оно будет равно половине напряжения питания. Но это в том случае, если сам трансформатор рассчитан на работу именно с таким питающим напряжением.

Но можно использовать несколько катушек (для примера можно взять две), соединить их последовательно и включить в сеть переменного тока. Зная значения индуктивностей, несложно произвести расчет падения на каждой из них:

  1. U(L1) = U1 * (L1 / (L1 + L2)).
  2. U(L2) = U1 * (L2 / (L1 + L2)).

В этих формулах L1 и L2 – индуктивности первой и второй катушек, U1 – напряжение питающей сети в Вольтах, U(L1) и U(L2) – падение напряжения на первой и второй индуктивностях соответственно. Схема такого делителя широко применяется в цепях измерительных устройств.

Делитель на конденсаторах

Очень популярная схема, используется для снижения значения питающей сети переменного тока. Применять ее в цепях постоянного тока нельзя, так как конденсатор, по теореме Кирхгофа, в цепи постоянного тока – это разрыв. Другими словами, ток по нему протекать не будет. Но зато при работе в цепи переменного тока конденсатор обладает реактивным сопротивлением, которое и способно погасить напряжение. Схема делителя похожа на ту, которая была описана выше, но вместо индуктивностей используются конденсаторы. Расчет производится по следующим формулам:

  1. Реактивное сопротивление конденсатора: Х(С) = 1 / (2 * 3,14 *f * C).
  2. Падение напряжения на С1: U(C1) = (C2 * U) / (C1 + C2).
  3. Падение напряжения на С2: U(C1) = (C1 * U) / (C1 + C2).

Здесь С1 и С2 – емкости конденсаторов, U – напряжение в питающей сети, f – частота тока.

Делитель на резисторах

Схема во многом похожа на предыдущие, но используются постоянные резисторы. Методика расчета такого делителя немного отличается от приведенных выше. Использоваться схема может как в цепях переменного, так и постоянного тока. Можно сказать, что она универсальная. С ее помощью можно собрать понижающий преобразователь напряжения. Расчет падения на каждом резисторе производится по следующим формулам:

  1. U(R1) = (R1 * U) / (R1 + R2).
  2. U(R2) = (R2 * U) / (R1 + R2).

Нужно отметить один нюанс: величина сопротивления нагрузки должна быть на 1-2 порядка меньше, чем у делительных резисторов. В противном случае точность расчета будет очень грубая.

Практическая схема блока питания: трансформатор

Для выбора питающего трансформатора вам потребуется знать несколько основных данных:

  1. Мощность потребителей, которые нужно подключать.
  2. Значение напряжения питающей сети.
  3. Значение необходимого напряжения во вторичной обмотке.

Чтобы рассчитать число витков в первичной обмотке, вам нужно 50 разделить на площадь сечения сердечника. Сечение вычисляется по формуле:

А мощность Р1 = Р2 / КПД. Коэффициент полезного действия трансформатора никогда не будет более 0,8 (или 80%). Поэтому при расчете берется максимальное значение – 0,8.

Мощность во вторичной обмотке:

Эти данные известны по умолчанию, поэтому произвести расчет не составит труда. Вот как понизить напряжение до 12 вольт, используя трансформатор. Но это не все: бытовая техника питается постоянным током, а на выходе вторичной обмотки — переменный. Потребуется совершить еще несколько преобразований.

Схема блока питания: выпрямитель и фильтр

Далее идет преобразование переменного тока в постоянный. Для этого используются полупроводниковые диоды или сборки. Самый простой тип выпрямителя состоит из одного диода. Называется он однополупериодный. Но максимальное распространение получила мостовая схема, которая позволяет не просто выпрямить переменный ток, но и избавиться максимально от пульсаций. Но такая схема преобразователя все равно неполная, так как от переменной составляющей одними полупроводниковыми диодами не избавиться. А понижающие трансформаторы напряжения 220 В способны преобразовать переменное напряжение в такое же по частоте, но с меньшим значением.

Электролитические конденсаторы используются в блоках питания в качестве фильтров. По теореме Кирхгофа, такой конденсатор в цепи переменного тока является проводником, а при работе с постоянным — разрывом. Поэтому постоянная составляющая будет протекать беспрепятственно, а переменная замкнется сама на себя, следовательно, не пройдет дальше этого фильтра. Простота и надежность – это именно то, что характеризует такие фильтры. Также могут применяться сопротивления и индуктивности для сглаживания пульсаций. Подобные конструкции используются даже в автомобильных генераторах.

Стабилизация напряжения

Вы узнали, как понизить напряжение до нужного уровня. Теперь его нужно стабилизировать. Для этого используются специальные приборы – стабилитроны, которые изготовлены из полупроводниковых компонентов. Они устанавливаются на выходе блока питания постоянного тока. Принцип работы заключается в том, что полупроводник способен пропустить определенное напряжение, излишек преобразуется в тепло и отдается посредством радиатора в атмосферу. Другими словами, если на выходе БП 15 вольт, а установлен стабилизатор на 12 В, то он пропустит именно столько, сколько нужно. А разница в 3 В пойдет на нагрев элемента (закон сохранения энергии действует).

Читайте также:  Как правильно поставить реле напряжения

Заключение

Совершенно другая конструкция – это стабилизатор напряжения понижающий, он делает несколько преобразований. Сначала напряжение сети преобразуется в постоянное с большой частотой (до 50 000 Гц). Оно стабилизируется и подается на импульсный трансформатор. Далее происходит обратное преобразование до рабочего напряжения (сетевого или меньшего по значению). Благодаря использованию электронных ключей (тиристоров) постоянное напряжение преобразуется в переменное с необходимой частотой (в сетях нашей страны — 50 Гц).

Источник



Как повысить напряжение в сети

Чтобы на даче безотказно работала бытовая техника ей нужно подать соответствующее напряжение. А что делать, если напряжение в сети пониженное?

Часто в деревнях и на дачах говорят о плохом напряжении в электросети. Это связанно не только с их плохим техническим состоянием, но и с покупкой разнообразной бытовой техникой, которой требуется электричество, которого часто не хватает.

В то же время местные электросети не спешат менять оборудование на современное, а значит, на более совершенное которое с достоинством выдержит повышенные нагрузки.

Участник дачного форума «Дом и Дача» Terristor как-то столкнулся с проблемой – стиральная машина перестала работать. То есть барабан с трудом крутился, да и насос не мог поднять воду из скважины.

На 1-ом Рисунке обычная работа понижающего трансформатора.
На 2-ом уже переделанный трансформатор готовый к работе на повышение напряжения.

Он замерил напряжение, и прибор показал всего 180 вольт, а этого напряжения не хватает для работы многих бытовых электроприборов.

Но нет, худа без добра. Как-то раз он читал журнал «Радио» и на глаза ему попалась статья о том, как при помощи обычного понижающего трансформатора сделать повышающий.

А фокус состоял в том, что если взять понижающий трансформатор, который из 220 вольт делает 40, поковыряться в нём, то после небольших изменений можно получить на выходе не понижение, а повышения напряжения на 40 вольт от напряжения в сети.

Случайно у Terristor был такой трансформатор. И обладая небольшими познаниями в радиотехнике, он через 15 минут его переделал и сделал пробный пуск.

Перед испытанием напряжение было 192 вольта, а после, как и намечалось, напряжение увеличилось на 40 вольт. Это оказалось отличным решением в сложившейся ситуации и несмотря на нехватку напряжения электроприборы работали безотказно.

Плюсы этой систем:

Простота при сборке. Например, при мощности вторичной обмотки трансформатора 100 вольт, можно не опасаясь подключить насос мощностью 500 Вт.
Реальная дешевизна прибора.

Минусы этой системы:

Напряжение, выдаваемое прибором, автоматически не регулируется и если вдруг напряжение в сети стабилизировалось, и стало 220 вольт то на выходе у вас будет 260 вольт, многовато, но не опасно, если вовремя заметить.

Сам Terristor всю зиму пользовался этим трансформатором. За это время он ни разу не проверял напряжение и ни один электроприбор не испортился.

На случай если напряжение в вашем районе часто меняется можно использовать специальную розетку которая отключает электроприборы которые к ней подключаются если напряжение повысилось сверх нормы.

Формулы для расчётов

Нужен трансформатор с первичной обмоткой на 220 вольт. Вторичная обмотка — на необходимое «недостающее напряжение». На вторичной обмотке максимальный ток даже у маломощных понижающих трансформаторов достаточен.

Расчёт можно сделать по нескольким формулам.

По рис. 1 можно вычислить ток вторичной обмотки где Iн – номинальный ток нагрузки А; Pн – номинальная мощность нагрузки (по паспорту трансформатора) Вт; Uн — номинальное напряжение питания нагрузки.

Зная, какое напряжение нужно добавить, определяется требуемая мощность трансформатора по рис. 2 где P – мощность трансформатора в Вт., I2 – номинальный ток вторичной обмотки А, U2 — напряжение вторичной обмотки, В. Затем нужно взять трансформатор с подходящими данными – по мощности и выходному напряжению.

И в завершении нужно подсчитать результат по формуле на рис. 3. где Ктр — коэффициент трансформации; U1 — номинальное напряжение первичной обмотки (220), В.

В последней формуле можно видеть, что напряжение на нагрузке можно как увеличить, так и уменьшить. Чтобы правильно фазировать трансформатор, достаточно поменять местами выводы одной из обмоток.

Трансформатор лучше установить в коридоре или в подвале, потому что установка шумит, а уже оттуда сделать проводку до нужных электроприборов.

Размещено участником форума «Дом и Дача» Terristor
Редактор: Адамов Роман

Источник

Как поднять напряжение в сети до 220 в частном доме

Морозной зимой сельским жителям много хлопот доставляет обогрев своих жилищ. Тем же, кто отказался от печного отопления, проблему, как будто специально, создает заниженный уровень поступающей электроэнергии.

Да и в многоэтажных зданиях многочисленных городских поселков жители страдают от плохого электричества. Вот люди и задаются вопросом: Как повысить напряжение в сети до 220 в частном доме с наименьшими затратами и почему энергоснабжающие организации не качественно выполняют свои обязанности?

Предлагаю рассмотреть его объективно с точки зрения потребителя и поставщика. Решение проблем лучше искать совместными усилиями на основе компромисса.

  • Электрические районные сети: где искать потери напряжения
    • Виды трансформаторных подстанций10/0,4 кВ: простая оценка по внешнему виду
    • Устройство воздушных линий электропередач: влияние конструкции на качество электроснабжения
    • Распределение нагрузки по фазам: как просто определить дисбаланс
  • Электропроводка в частном доме: скрытые ошибки монтажа, создающие проблемы
  • Общие организационные вопросы: что обсуждать с поставщиком электроэнергии
  • Как повысить напряжение в сети: 2 подхода
    • Как повысить напряжение: бюджетные варианты от бывалого
    • Стабилизатор напряжения для частного дома: на какие характеристики обращать внимание

Электрические районные сети: где искать потери напряжения

Рекомендую обратить внимание на три вопроса:

  1. Работу трансформаторной подстанции.
  2. Состояние линии электропередач.
  3. Равномерность распределения нагрузки по фазам.

Виды трансформаторных подстанций 10/0,4 кВ: простая оценка по внешнему виду

Электроэнергия от промышленных генераторов к нам в жилой дом поступает по линиям электропередач через трансформаторные подстанции. На них напряжение с 10 или 6 киловольт снижается до 0,4.

Читайте также:  Как проверить напряжения частотника

Конструкция ТП должна пройти реконструкцию с заменой изношенного оборудования, отвечать современным требованиям надежности и безопасности.

Трансформаторная подстанция

В этом случае вам просто уже повезло. Если воздушная ЛЭП 380 вольт идет от подобной модульной подстанции, то она обладает резервом мощности.

Однако довольно часто еще можно встретить старые конструкции ТП, введенные в работу в советское время.

Сельская трансформаторная подстанция

Нельзя сказать, что они выработали свой ресурс и не пригодны к работе. Просто надо понять, что сейчас сильно изменились условия их эксплуатации. Они уже не справляются нормально с современными, сильно возросшими нагрузками.

Их резерв мощности был рассчитан на энергоснабжение групп потребителей в частных домах, подключенных к бытовой проводке, собранной алюминиевыми жилами 2,5 мм кв. Сила тока тогда практически никогда не превышала 16 ампер, что соответствовало примерно 3 киловаттам.

С тех пор многое изменилось. Даже простой электрочайник потребляет 2 кВт. А ведь еще есть различные отопители и нагреватели, стиральные машины, микроволновки, бытовой инструмент. У многих мастеров работают насосы, станки, сварка.

Все эти потребители вместе сильно нагружают старые трансформаторные подстанции: их мощности не хватает на обеспечение полноценного питания подключенных нагрузок.

Воздушная линия электропередач: влияние конструкции на качество электроснабжения

Закон Ома определяет, что падение напряжения на участке воздушной линии электропередач от трансформаторной подстанции до конечного потребителя зависит от силы тока и величины сопротивления проводов.

На последний параметр влияют протяженность токопроводящей магистрали и конструкция проводников:

  • тип металлических жил;
  • общее поперечное сечение провода;
  • качество контактных соединений в местах стыковок — переходное сопротивление.

Чем длиннее магистраль от трансформаторной подстанции до последнего потребителя, тем больше проблем возникает у энергоснабжающей организации, да и жителей дальних домов.

Существующие нормативы ПУЭ определяют, что уровень напряжения в однофазной сети должен укладываться в предел 207÷253 вольта. Для обеспечения этого условия на ТП предусмотрена возможность его оперативного регулирования.

Обычно им пользуются для переключения режимов работы при смене сезонов: зимний период связан с большим энергопотреблением. Он требует завышать выходной уровень сети 0,4 на трансформаторной подстанции.

Длинные воздушные линии и возросшее количество мощных потребителей приводят к тому, что у владельцев домов, запитанных около ТП, напряжение находится на максимуме предела регулирования и поднимать его уже нельзя, а на самых удаленных потребителях падает ниже допустимого уровня вплоть до 180 вольт, а то и ниже.

В этой ситуации поставщик энергии быстро решить вопрос не сможет. Ему необходимо:

  • полностью менять оборудование трансформаторной подстанции;
  • или строить новые линии электроснабжения;
  • либо решать одновременно все задачи.

Нам следует понимать, что они энергозатратны, не дешевы, требуют приложения больших усилий и материальных средств.

Как устроена старая ВЛ

За основу передачи энергии раньше массово использовали алюминиевые провода со стальным сердечником. Их так и называли: АС. Кстати, производство алюминиево-стальных проводов различных типов существует до сих пор.

Провода АС

В сельской местности применяется провод АС с сечением 16 мм квадратных, как наиболее бюджетный вариант. Его небольшой диаметр при значительной длине и наличии стальной жилы создает довольно высокое электрическое сопротивление.

Ухудшает его еще способ соединения раскатки провода на составляющие проволоки и скрутку их в единый узел. Хорошо, если он выполняется с обжатием в гильзе. А ведь его могут сделать и на скорую руку.

Косвенным признаком вины алюминиевых проводов является характерное снижение напряжения вечером и нормальная величина ночью, когда большая часть нагрузки снята.

Модернизация ВЛ кабелем СИП

Современная конструкция воздушного кабеля сделана для обеспечения минимальных потерь напряжения. У них используется улучшенная технология сборки и повышенная проводимость токопроводящих жил. Каждая из фаз покрыта слоем светостойкой ПВХ изоляции, что разрешает скручивать их единой магистралью.

Кабель СИП

Кабель СИП монтируется по специальной технологии, обеспечивающей минимальные потери напряжения при транспортировке по нему электрической энергии.

Распределение нагрузки по фазам: как просто определить дисбаланс

Идеальное трехфазное напряжение создается генераторами на холостом ходу.

Трехфазное напряжение

Его схему и диаграмму удобно представлять векторной формой в виде равностороннего треугольника. Между вершинами A, B и C создается линейное напряжение 380, а относительно нуля и вершин — фазное.

Схема трехфазного подключения

Это напряжение 220 поступает к нам в жилой дом и ко всем потребителям. К нему каждый владелец по своему усмотрению подключает нагрузку. Процесс этот носит чисто случайный характер на всем протяжении питающей ЛЭП.

Если какая-то фаза станет перегруженной (течет больший ток), то на ней может произойти посадка напряжения. Точка рабочего нуля в треугольнике смещается из центра, меняются разности двух других фазных потенциалов.

На этот процесс снабжающая организация реагировать практически не может. Она влияет на него на стадии проекта и очень редко переключает потребителей при эксплуатации.

Электрические замеры под напряжением на ВЛ около дома способны дать объективную оценку качества напряжения. Но делать их могут только подготовленные бригады электриков с соблюдением ряда организационных и технических мероприятий.

Причина низкого напряжения довольно часто может быть создана по вине владельца здания.

Электропроводка в частном доме: скрытые ошибки монтажа, создающие проблемы

Внимание: зона ответственности снабжающей организации заканчивается на ответвительной опоре! Схема подключения к ней, кабель ввода в дом и весь внутренний монтаж лежат на совести частного владельца.

Поэтому вначале надо обращать внимание на состояние качества уличной проводки, а затем — внутридомовой.

Контакты на улице

Ввод в здание и подключение к счетчику делают бригады электриков от поставщика и энергосбыта. От качества их работы может пострадать хозяин дома. Ему следует контролировать состояние проводов и создаваемых контактов.

Счетчик на столбе

Обычная скрутка алюминиевых жил на воздухе покрывается слоем окислов и ухудшает переходное сопротивление. Это место начинает больше греться и сильнее окисляться. Процесс со временем нарастает, хотя визуально может быть не заметен.

Естественный обдув воздухом и длина открытого провода его маскируют, но не останавливают. Увеличенное переходное сопротивление такого контакта — причина потери напряжения на нем.

Подключение ответвления специальными зажимами с нарушениями технологии — тоже возможная причина плохого контакта.

Прокалывающий зажим СИП

Если на нем образовались трещины, сколы, потемнения и другие дефекты, то они явно свидетельствуют об увеличенном переходном сопротивлении, потерях энергии.

Читайте также:  Что за ошибка низкое напряжение лямбда

Контакты вводного автомата

Подключение силового провода к автоматическому выключателю на вводе часто требует использования специальных переходников с созданием надежного ужима. Халатная работа сразу может не сказаться, но со временем проявиться.

Переходное сопротивление контактов владелец может проверить созданием электропроводке режима максимальной нагрузки на некоторое время. Сразу потребуется проконтролировать их нагрев. Проводя визуальный осмотр, следует обращать внимание на потемнение корпуса защитного модуля, состояние изоляции.

Внутри дома возможны и другие причины, ведущие к снижению уровня электричества.

Общие организационные вопросы: что обсуждать с поставщиком электроэнергии

Приступать к обсуждению возникших проблем следует только после того, как окончательно стало ясно, что у владельца здания все выполнено надежно и его вины нет.

Это же должны подтвердить соседи, у которых не решены аналогичные вопросы. Действовать лучше сообща. Обращаться следует в различные инстанции власти с письменными заявлениями, но начать необходимо с поставщика. Он в первую очередь должен обеспечить качество подводимой электроэнергии.

Однако, как показано выше, этот процесс, скорее всего, растянется на длительный срок. Владельцу дома до его решения придется принимать самостоятельные меры.

Как повысить напряжение в сети: 2 подхода

Решить вопрос можно своими руками или приобрести специальное промышленное оборудование.

Как повысить напряжение: бюджетные варианты от бывалого

Способ №1: старый стабилизатор от черно-белого телевизора

Кинескопные ламповые модели телевизоров в советское время потребляли много электроэнергии, порядка 400 ватт. Им требовалось стабилизированное питание.

Для них многочисленные заводы массово выпускали различные модели стабилизаторов напряжения. Со временем необходимость в них пропала и они попали к мастерам в кладовки, а кто-то просто выбросил, хотя надежность и работоспособность этих устройств сохранилась и по сей день.

Старый стабилизатор напряжения

Использовать такой старый стабилизатор вполне допустимо, но, стоит обратить внимание на его выходную мощность. Питать через него лучше какой-то один бытовой прибор с электродвигателем.

Если имеются два одинаковых стабилизатора, то их можно объединить и подключить более высокую нагрузку.

Способ №2: понижающий трансформатор

Подойдет любая модель от старого ненужного зарядного устройства автомобильных аккумуляторов или самодельная конструкция. Показываю на примере трансформатора 220/12-36 вольт. Его номинальная мощность 315 вольт-ампер.

Трансформатор для зарядного устройства

На правой части картинки показаны выходные цепи со снятым корпусом. Подобных зарядных было выпущено очень много. Из них можно выцепить схему электроники. Она не нужна.

Далее поступаем очень просто. Собираем схему увеличения напряжения, когда первичная обмотка работает, как обычно, а вторичка добавляет свои вольты к питанию прибора.

Увеличение напряжения

С научной точки зрения необходимо выполнять фазировку, а на ее основе ставить перемычку между обмотками, которая позволит сделать вольт-добавку. Предлагаю более простой вариант:

  1. Соединяем перемычкой произвольно одну клемму входной цепи с любой выходной, действуя по принципу: «мне повезет».
  2. Включаем трансформатор в сеть обмоткой 220 и замеряем сигнал на его выходе вольтметром.
  3. Если он увеличился, то удача нам улыбнулась и все получилось.
  4. Когда напряжение снизилось, то это значит, что мы собрали схему понижения и требуется переключить перемычку на одной из клемм входа или выхода.

Если отсутствует трансформатор заводского исполнения, то его не так уж сложно намотать своими руками на подходящем магнитопроводе. Можно использовать даже статор от сгоревшего асинхронного двигателя.

Методику расчета и сборки описывать не буду. Она довольно подробно изложена в этой статье про трансформаторный паяльник Момент. Что будет не понятно — спрашивайте. Я помог уже многим читателям в этом вопросе.

Чтобы не допустить перегрева добавочного ТН, достаточно правильно подобрать к нему предохранитель, контролировать и ограничивать время работы при максимальных нагрузках.

Способ №3: стабилизатор напряжения своими руками

Любителям мастерить предлагаю собрать относительно не сложную электронную схему на трансформаторе с тремя обмотками, работающими по принципу приведенной выше вольт-добавки понижающего трансформатора.

Предлагаемый стабилизатор напряжения своими руками нормально справляется со стабилизацией электроэнергии для нагрузок 1,5 кВт при уровне сети 200 вольт и 700 ватт при снижении до 180В. Работает он автоматически.

Схема релейного стабилизатора напряжения

Компаратор имеет 4 ступени настройки порогов срабатывания. Переключение обмоток осуществляют контакты реле РП-21 постоянного тока с напряжением 24 вольта. Их можно заменить аналогами, но обращайте внимание на коммутационную способность контактов. Иначе они сгорят.

Марки и номиналы компонентов электронной базы показаны на схеме. Однако, проще купить такой прибор промышленного изготовления.

Стабилизатор напряжения для частного дома: на какие характеристики обращать внимание

Индуктивная нагрузка

Выбирать модель стабилизатора следует под конкретные нужды его эксплуатации. Необходимо учесть, что пусковые токи электродвигателей превышают в два-три раза номинальную величину нагрузки.

Стабилизатор напряжения

Мощность источника должна их надежно перекрывать. Особенно важно выполнять это требование для электродвигателей насосов различных жидкостей и компрессоров, начинающих свой запуск под нагрузкой рабочей среды, а не раскручивающихся на холостом режиме.

Способы регулирования

Стабилизаторы напряжения работают по принципу автотрансформатора и построены по одной из двух схем:

  1. ступенчатого переключения дополнительных обмоток релейными или полупроводниковыми ключами;
  2. плавного регулирования выходной величины за счет перемещения сервопривода по принципу работы ЛАТР.

В первом случае на автотрансформаторе создаются отпайки. Их количество влияет на величину ступени регулирования напряжения. Коммутации происходят по командам от электронного блока тиристорами или симисторами.

Стабилизатор с сервоприводом плавнее переключает напряжение движением угольных электродов по виткам автотрансформатора.

Стабилизаторы напряжения изготавливают для работы с трехфазной и однофазной нагрузкой. Однако при их выборе надо хорошо представлять условия их эксплуатации.

Особенности трехфазного питания

В доме с таким электроснабжением на вводе лучше устанавливать 3 однофазных устройства на каждую фазу отдельно. Любой из них будет нормально выравнивать напряжение при разных нагрузках намного лучше, чем один общий.

Трехфазные электродвигатели и трансформаторы подключают через соответствующие 3-х фазные стабилизаторы. Они больше приспособлены к симметричным нагрузкам.

Режим Bypass

Полезной функцией прибора является возможность транзита электроэнергии, минуя орган стабилизации.

Режим байпас

Видеоролик владельца Voltra BY «Как выбрать стабилизатор для дома» поможет вам определиться с поиском подходящей конструкции. Рекомендую посмотреть.

Если же у вас еще остались вопросы и не ясно, как повысить напряжение в сети до 220 в частном доме, то спрашивайте. Постараюсь помочь.

Источник