Меню

Что принимают за направление тока кратко

Направление электрического тока

Направление электрического токаПодключим к пальчиковой батарейке светодиод, и если полярность окажется соблюдена правильно, то он засветится. В каком направлении установится ток? В наше время всем известно, что от плюса к минусу. А внутри батарейки, стало быть, от минуса к плюсу — ток ведь в этой замкнутой электрической цепи постоянный.

За направление тока в цепи принято считать направление движения положительно заряженных частиц, но ведь в металлах то движутся электроны, а они, мы знаем, заряжены отрицательно. Значит в реальности понятие «направление тока» — это условность. Давайте разберемся, почему в то время как электроны текут по цепи от минуса к плюсу, все вокруг говорят, что ток идет от плюса к минусу . Для чего такая несуразность?

Ответ кроется в истории становления электротехники. Когда Франклин разрабатывал свою теорию электричества, он рассматривал его движение подобно движению жидкости, которая как-бы перетекает от одного тела к другому. Где электрической жидкости больше — оттуда она течет в ту сторону, где ее меньше.

Франклин поэтому и назвал тела с избытком электрической жидкости (условно!) положительно электризованными, а тела с недостатком электрической жидкости — отрицательно электризованными. Отсюда и пошло представление о движении электрических зарядов. Положительный заряд перетекает, словно через систему сообщающихся сосудов, от одного заряженного тела к другому.

Позже французский исследователь Шарль Дюфе в своих экспериментах с электризацией натиранием установил, что заряжаются не только натираемые тела, но и натирающие, причем при контакте заряды обеих тел нейтрализуется. Получалось, что есть на самом деле два отдельных вида электрического заряда, которые при взаимодействии друг друга нейтрализуют. Эту теорию двух электричеств развил современник Франклина Роберт Симмер, который на себе убедился в том, что в теории Франклина что-то не до конца правильно.

Шотландский физик Роберт Симмер носил по две пары чулок: утепленные шерстяные и сверху еще вторые шелковые. Когда он снимал с ноги оба чулка сразу, а затем выдергивал один чулок из другого, то наблюдал такую картину: шерстяной и шелковый чулки раздуваются, принимая как бы форму его ноги и резко слипаются друг с другом. При этом чулки из одинакового материла, как шерстяные и шелковые, отталкивались друг от друга.

Если же Симмер держал в одной руке два шелковых, а в другой — два шерстяных чулка, то когда он сближал руки, отталкивание чулков из одинакового материала и притяжение чулков из разного материала приводило к интересному взаимодействию между ними: разнородные чулки словно набрасывались друг на друга и сплетались в клубок.

Наблюдения за поведением собственных чулков привели Роберта Симмера к выводу, что в каждом теле имеется не одна, а две электрические жидкости – положительная и отрицательная, которые содержатся в теле в одинаковых количествах. При натирании двух тел какая-то из них может перейти из одного тела в другое, тогда в одном теле окажется избыток одной из жидкостей, а в другом – ее недостаток. Оба тела станут наэлектризованными противоположными по знаку электричествами.

Тем не менее, электростатические явления успешно можно было объяснить как при помощи гипотезы Франклина, так и при помощи гипотезы двух электричеств Симмера. Эти теории некоторое время конкурировали между собой. Когда же в 1779 году Алессандро Вольта создал свой вольтов столб, после чего был исследован электролиз, ученые пришли к однозначному выводу, что действительно в растворах и жидкостях движутся два противоположных потока носителей заряда — положительные и отрицательные. Дуалистическая теория электрического тока, хотя и не была понятна всем, все же восторжествовала.

Наконец, в 1820 году, выступая перед Парижской академией наук, Ампер предлагает выбрать в качестве основного направления тока одно из направлений движения заряда. Ему было удобно сделать так, поскольку Ампер исследовал взаимодействия токов между собой и токов с магнитами. И чтобы каждый раз во время сообщения не упоминать, что в двух направлениях по одному проводнику движутся два потока противоположного заряда.

Читайте также:  Виды тока в электротехнике

Ампер предложил просто принять за направление тока направление движения положительного электричества, и все время говорить о направлении тока, имея ввиду движение положительного заряда . С тех пор предложенное Ампером положение о направлении тока принято повсеместно, и используется до сих пор.

Когда Максвелл разрабатывал свою теорию электромагнетизма, и решил применять правило правого винта для удобства определения направления вектора магнитной индукции, он также придерживался этого положения: направление тока — это направление движения положительного заряда.

Фарадей в свою очередь отмечал, что направление тока условно, это просто удобное средство для ученых, чтобы однозначно определять направление тока. Ленц, вводя свое Правило Ленца (смотрите — Основные законы электротехники), также оперировал термином «направление тока», имея ввиду движение положительного электричества. Это просто удобно.

И даже после того как Томсон в 1897 году открыл электрон, условность направления тока все равно сохранилась. Даже если в проводнике или в вакууме реально движутся только электроны, все равно за направление тока принимается противоположное направление — от плюса к минусу.

Прсотейшая электрическая цепь

Спустя уже более века с момента открытия электрона, несмотря на представления еще Фарадея об ионах, даже с появлением электронных ламп и транзисторов, хотя и появились трудности в описаниях, все равно привычное положение дел сохраняется. Так просто удобнее оперировать с токами, ориентироваться в их магнитных полях, и никаких реальных трудностей это, похоже, ни у кого не вызывает.

Источник

Электрическая цепь. Направление электрического тока

Конспект по физике для 8 класса «Электрическая цепь. Направление электрического тока». Из каких элементов состоит электрическая цепь. Какое направление принимают за направление электрического тока в цепи.

Электрическая цепь.
Направление электрического тока

В отсутствие электрического поля свободные электроны в проводниках движутся беспорядочно. Если концы проводника (или провода) подсоединить к полюсам источника тока, то в проводнике возникнет электрический ток.

ПРОСТЕЙШИЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ

Чтобы заставить работать различные электрические приборы — электродвигатели, лампы, плитки и т. д., необходимо создать в них электрический ток. Электрические приборы называют приёмниками или потребителями энергии. Для того чтобы электрическую энергию доставить от источника тока к приёмнику, используют соединительные провода.

Чтобы регулировать процессы протекания электрического тока, включать и выключать потребители электрической энергии, применяются различные приборы управления током: ключи, рубильники, выключатели и другие замыкающие и размыкающие устройства.

Источник тока, потребители электрической энергии и приборы управления током, соединённые между собой проводами, составляют электрическую цепь. Для того чтобы в цепи существовал ток, она должна быть замкнута. Обрыв цепи или замена проводящего участка цепи изолятором приводит к прекращению прохождения тока.

Немецкий профессор Г. К. Лихтенберг из Гёттингена первый предложил ввести символы, обозначающие отдельные элементы электрических цепей. Он обосновал их практическое применение и использовал в своих работах. Благодаря ему математические знаки «+» и «-» стали использовать для обозначения электрических зарядов.

НАПРАВЛЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА

До открытия электрона учёные предполагали, что по цепи движутся только положительные заряды. Поэтому общепринятым направлением электрического тока в цепи считается направление, в котором движутся (или могли бы двигаться) в проводнике положительные заряды, т. е. направление от положительного полюса источника тока к отрицательному. Но это не означает, что во всех проводниках движутся положительные заряды. В одних случаях в проводнике движутся только отрицательные заряды, в других случаях происходит движение зарядов обоих знаков в противоположных направлениях. Но определение направления тока было сделано в те времена, когда природа электрического тока не была до конца изучена.

При направленном движении заряженные частицы могут участвовать и в тепловом хаотическом движении. Характер движения частиц при протекании электрического тока можно сравнить с явлением конвекции в жидкостях и газах, при котором в направленных конвекционных потоках происходит беспорядочное движение молекул.

Читайте также:  Меркурий 230 три трансформатора тока

В металлических проводниках ток создаётся отрицательно заряженными частицами — электронами, которые движутся по цепи от отрицательного полюса источника тока к положительному. Направление тока и направление движения носителей заряда в этом случае противоположны.

Понятия «электрический ток» и «направление электрического тока» были введены французским физиком Андре Мари Ампером. Именно он предложил принять за направление электрического тока то, в котором перемещается «положительное электричество».

Благодаря работам Ампера шаг за шагом выросла новая наука — электродинамика, основанная на экспериментах математической теории. В 1826 г. Ампер опубликовал труд, который назывался «Теория электродинамических явлений, выведенная исключительно из опыта».

Ампер также ввёл в науку такие термины, как «электростатика», «электродинамика», «соленоид», «электродвижущая сила», «напряжение», «гальванометр» и даже «кибернетика». Он высказал предположение о том, что, вероятно, возникнет новая наука об общих закономерностях процессов управления, и предложил назвать её кибернетикой.

Вы смотрели Конспект по физике для 8 класса «Электрическая цепь. Направление электрического тока».

Источник

Направление электрического тока

Программирование микроконтроллеров Курсы

Направление электрического тока принято считать от плюса к минусу генератора или источника питания, и принимается, что он протекает в металлических проводниках. Однако I образуется не только в проводниках, но и в газах и жидкостях. Атомы металлов связаны в прочную кристаллическую решетку, поэтому свободно перемещаться могут только свободные электроны; ионы остаться неподвижными. Атомы газов и жидкостей могут свободно перемещаться, поскольку не имеют прочных связей. Следовательно, носителями зарядов служат ионы и эл-ны.

Кристаллическая решетка металла, газ и жидкость

Направление движения электронов и ионов

Поэтому при определении силы тока I в газах и жидкостях, необходимо учитывать сумму положительных и отрицательных зарядов, прошедших через площадь поперечного сечения за единицу времени. Например, в металлическом проводнике I = 1 А, если через проводник за одну секунду проходят 6,28 18 эл-нов ( 1 Кл ).

Один ампер в газе или жидкости могут образовать 3,14 18 эл-нов (0,5 Кл) и столько же положительных ионов (еще 0,5 Кл). Если заряд иона вдвое превышает заряд эл-на, то потребуется в два раза меньше ионов для создания одного ампера.

Направление электрического тока в проводниках

Исторически сложилось так, что направление протекание электрического тока принято от «плюса» к «минусу», то есть от положительного к отрицательному электроду источника питания. На самом деле, если рассматривать металлический проводник, то электроны, являющиеся единственными носителями заряда, движутся от отрицательного электрода к положительном. Следовательно действительное направления тока противоположно принятому.

Направление электрического тока

Такое направление предложил Бенджамин Франклин ввиду отсутствия знаний того времени о природе носителей электрического заряда в проводниках. Портрет Бенджамина Франклина изображен на сто долларовой купюре.

Направление электрического тока в газах и жидкостях

Электроника для начинающих

В газах и жидкостях электрический ток может протекать от плюса к минусу, согласно традиционному представлению, поскольку в них может преобладать количество положительных ионов. Направление не стали изменять на «правильное», поскольку оно слишком плотно вошло в обиход.

Источник



Направление электрического тока — условия и причины возникновения

Однако ток может возникнуть и в других средах, например, в газах. Как только физики открыли это явление, им предстояло определить, каково направление электрического тока.

Причины появления

Заряженные частицы начинают перемещаться благодаря действию различных источников питания. К их числу принадлежат батареи, аккумуляторы, генераторы и другие устройства, способные превращать всевозможные виды энергии в электрическую. Во время этих преобразований наглядно проявляется закон сохранения энергии. Частицы начинают движение в тот момент, когда электрическая цепь замыкается, что приводит к появлению в проводнике электрополя.

Именно оно и оказывает определенное воздействие на свободные частицы. Во время исследований ученые установили, что каждый источник электротока обладает электродвижущей силой (ЭДС). Следует помнить, что электроны не появляются благодаря источнику питания, а присутствуют в материале проводника. Они начинают двигаться под прямым воздействием электрополя, так как не связаны атомными связями и являются свободными.

Читайте также:  Защита электроустановок от токов короткого замыкания осуществляется

В качестве примера можно привести замкнутую систему труб, воду в которых перекачивает насос. В зависимости от размеров труб и числа ответвлений, жидкость будет перемещаться в них с разной скоростью.

Все эти свойства присущи и течению электротока, которое изменяется в зависимости от сечения проводников.

Направление электротока

Необходимо понимать, что электроток вызывает не каждое перемещение заряженных частиц. Под воздействием тепла электроны также начинают двигаться, но их движение является хаотичным и не имеет конкретного направления. Если к тепловому воздействию на проводник добавить электрополе, то электроны начнут двигаться с определенной направленностью.

Направление перемещения частиц, образующих электроток, зависит от их заряда:

  • положительные движутся от «плюса» к «минусу»;
  • отрицательные — от «минуса» к «плюсу».

Встречное перемещение частиц наблюдается в электролитических растворах и газах. Поэтому крайне важно точно установить, каково настоящее направление тока в цепи. В результате было принято решение, что движение положительных частиц является направлением электротока. Однако это утверждение не совпадает с действительностью, когда разговор идет о металлических проводниках.

Дело в том, что в них перенос заряда происходит из-за перемещения электронов, заряженных отрицательно. При этом точно известно, что они двигаются от минуса к положительному полюсу. В данном случае приходится считать направление тока противоположным перемещению заряженных частиц.

Несмотря на определенное неудобство, это правило четко говорит, что принимают за направление электрического тока и куда он течет.

Движение частиц в различных проводниках

Электроток способен возникнуть не только в металлах, но и других веществах. При этом они могут находиться в различных агрегатных состояниях. Чтобы лучше понять тему, стоит указать и движение тока в жидкостях, газах и твердых веществах:

  • Металлы обладают большим количеством свободных электронов, которые и являются основным источником электротока.
  • Электролиты представляют собой жидкости, которые способны проводить электроток. К этой группе проводников принадлежат растворы солей, кислот, щелочей. Оказавшись в воде, молекулы всех этих веществ расщепляются на ионы — заряженные отдельные атомы либо их группы. Ионы могут иметь положительный (катионы) либо отрицательный (анионы) заряд. Именно вследствие их направленного движения в растворах возникает электроток.
  • В плазме и газах электроток вызывает перемещение положительных ионов и электронов, имеющих отрицательный заряд.
  • В вакууме ток появляется благодаря вылетающим с поверхности металла электронам.

Ток, возникающий вследствие передвижения заряженных частиц внутри тел относительно определенной среды, называется электротоком проводимости.

Также существует определение конвекционного электротока, представляющего собой движение макроскопических частиц. Примером конвекционного тока являются дождевые капли во время молнии.

Действие тока

Зная, что принимается за направление тока, стоит выяснить и его действие. О появлении силы электротока можно узнать по показаниям специальных приборов. Однако они не всегда есть под рукой. В такой ситуации о наличии электротока можно судить по следующим явлениям:

  • Тепловое. Движение заряженных частиц приводит к нагреву материала проводника. Именно это явление используется в работе ламп освещения либо нагревательных приборов.
  • Магнитное. Если в цепи есть ток, то он создаст магнитное поле. Проверить этот факт можно с помощью компаса: если поднести его к проводу, то стрелка повернется перпендикулярно проводнику. Созданное током магнитное поле можно усилить, обмотав железный стержень проволокой. В результате получится электромагнит.
  • Химическое. Если ток протекает в электролитах, то химический состав раствора изменится. Например, в растворе CuSO4 электроток возникает благодаря движению положительных ионов Cu. Они перемещаются к отрицательному электроду, который со временем покроется слоем меди.

Сегодня сложно представить человеческую цивилизацию без электричества. Природу этих явления пытались установить многие ученые еще до открытия электронов. Первым физиком, выдвинувшим гипотезу о наличии двух типов зарядов, стал Бенджамин Франклин.

После открытия электронов не состыковка гипотезы Франклина была обнаружена, но ученые решили, что определяться направление электротока будет по-прежнему.

Источник