Меню

Что такое диод ограничитель напряжения

Схемы ограничителей напряжения

Схема, которая удаляет пики из формы сигнала, известна как ограничитель. Отрицательный ограничитель показан на рисунке ниже.

Ограничитель: ограничивает отрицательные пики до –0,7В Ограничитель: ограничивает отрицательные пики до –0,7В

Во время положительного полупериода на входе с пиком 5В диод смещен в обратном направлении и не проводит ток. Это как если бы диода там не было вовсе. Положительный полупериод остается неизмененным, переходя на выход V(2) (рисунок ниже). Поскольку выходные положительные пики фактически перекрывают входную синусоиду V(1), то для ясности график входного сигнала на рисунке был сдвинут вверх. Для этого в SPICE была использована команда » plot v(1)+1) «.

V(1)+1 – это на самом деле V(1), синусоида 10Впик-пик, смещенная на 1В для ясности отображения. Выход V(2) ограничен диодом D1 на уровне –0,7В.

В течение отрицательного полупериода входной синусоиды (рисунок выше) диод смещен в прямом направлении и проводит ток. Отрицательная полуволна синусоиды укорачивается. Отрицательный полупериод V(2) будет ограничен напряжением 0В при идеальном диоде. Сигнал обрезается на уровне –0,7В из-за прямого падения напряжения кремниевого диода. Прямое напряжение SPICE модели диода равно 0,7В, если в параметрах объявления модели не указано иное. Германиевые диоды и диоды Шоттки ограничивают сигнал при более низких напряжениях.

Более тщательное изучение отрицательного обрезанного пика (рисунок выше) показывает, что в течение небольшого периода времени, пока сигнал входной синусоиды приближается к уровню –0,7В, на выход сигнал подается неизмененным. Отсечка приводится в действие, только когда уровень входной синусоиды превысит –0,7В. Диод проводит ток не во время всего полупериода, хотя и в большей его части.

Добавление к существующему диоду еще одного диода, подключенного параллельно, но в обратном направлении, дает симметричный ограничитель (рисунок ниже).

Симметричный ограничитель: Параллельно включенные и противоположно направленные диоды отсекают и положительные и отрицательные пики, оставляя на выходе ±0,7В Симметричный ограничитель: Параллельно включенные и противоположно направленные диоды отсекают и положительные и отрицательные пики, оставляя на выходе ±0,7В

Диод D1, как и раньше, отсекает отрицательный пик на уровне –0,7В. Дополнительный диод D2 проводит ток, когда положительная полуволна синусоиды превышает 0,7В, прямое падение напряжение диода. Оставшаяся часть напряжения падает на последовательно включенном резисторе. Таким образом, отсекаются оба пика входной синусоиды, как показано на рисунке ниже. Список соединений приведен выше.

Диод D1 отсекает сигнал на уровне –0,7В, так как он проводит ток во время отрицательных пиков. D2 проводит ток во время положительных пиков, отсекая сигнал на уровне 0,7В. Диод D1 отсекает сигнал на уровне –0,7В, так как он проводит ток во время отрицательных пиков. D2 проводит ток во время положительных пиков, отсекая сигнал на уровне 0,7В.

Наиболее общий вид диодного ограничителя показан на рисунке ниже. Для идеального диода ограничение происходит на уровне напряжения отсечки, V1 и V2. Однако, источники напряжения скорректированы с учетом 0,7В прямого падения напряжения реальных кремниевых диодов. D1 ограничивает сигнал на уровне 1,3В + 0,7В = 2,0В, когда диод начинает проводить ток. D2 ограничивает сигнал на уровне –2,3В – 0,7В = –3,0В, когда начинает проводить ток.

D1 отсекает входную синусоиду на уровне 2В. D2 отсекает на уровне –3В. D1 отсекает входную синусоиду на уровне 2В. D2 отсекает на уровне –3В.

Ограничитель на рисунке выше не должен отсекать уровни обеих полярностей. Чтобы ограничивать уровень только одной полярности с одним диодом и одним источником напряжения, необходимо удалить другие диод и источник.

Список соединений приведен выше.

Диаграмма на рисунке ниже показывает ограничение напряжения V(1) на выходе V(2).

D1 отсекает входную синусоиду на уровне 2В. D2 отсекает на уровне –3В. D1 отсекает входную синусоиду на уровне 2В. D2 отсекает на уровне –3В.

Читайте также:  Трансформаторы напряжения понижающий 100 вольт

Существует также ограничитель на базе стабилитрона, который описывается далее в статье «Стабилитроны». Стабилитрон заменяет собой и диод, и источник постоянного напряжения.

Практическое применение ограничителей заключается в предотвращении перегрузки входа радиопередатчика усиленным речевым сигналом (рисунок ниже). Прегрузка входа передатчика формирует искажения радиосигналов, которые вызывают помехи приему других станций или делают невозможным качественный прием сигнала текущей станции. Ограничитель в данном случае является мерой защиты.

Ограничитель предотвращает перегрузку передатчика по входу пиками в речевом сигнале Ограничитель предотвращает перегрузку передатчика по входу пиками в речевом сигнале

Синусоида может быть преобразована в прямоугольный сигнал путем перегрузки ограничителя. Другим применением ограничителей является защита открытых входов интегральных микросхем. Вход микросхемы соединяется с парой диодов, как показано на втором рисунке в данной статье. Источники напряжения заменяются на шины питания микросхемы. Например, CMOS микросхемы используют 0В и +5В. Аналоговые усилители могут использовать ±12В в качестве источников V1 и V2.

Источник



Диодные ограничители

date image2015-02-27
views image5046

facebook icon vkontakte icon twitter icon odnoklasniki icon

Ограничителями называют устройства, пропускающие на выход часть входного напряжения, расположенную выше или ниже так называемого уровня ограничения.

Под уровнем ограничения понимается определенное значение напряжения (положительное, отрицательное или нулевое), по отношению к которому ограничитель обладает способностью пропускать импульсы соответствующего знака и амплитуды.

Различают ограничение двухстороннее, снизу и сверху.

Простейшими ограничителями являются диодные ограничители последовательного и параллельного типа.

Последовательный ограничитель снизу (см.рис.а) пропускает на выход ту часть входного напряжения, которая способна создать прямой ток в диоде VD (положительный импульс), а параллельный (см.рис.б)- ту часть, при которой диод VD запирается обратным напряжением.

Указанные схемы обеспечивают ограничение напряжения снизу на нулевом уровне, пропуская на выход только импульсы положительной полярности. При импульсах отрицательной полярности на входе выходное напряжение Uвых на выходных зажимах отсутствует, так как в первом случае к диоду приложено обратное напряжение, диод заперт и ток через резистор нагрузки Rнагр не протекает. Во втором случае диод VD шунтирует резистор Rнагр. В обоих случаях не происходит идеального ограничения и при входных отрицательных импульсах на выходе образуются небольшие отрицательные импульсы, что объясняется следующим.

В последовательном ограничителе наличие отрицательного напряжения на входе сопровождается прохождением обратного тока диода и Rнагр, что вызывает некоторое снижение напряжения на величину IобрRнагр на выходе. Эффект ограничения увеличивается с уменьшением обратного тока диода и уменьшением Rнагр.

Однако чрезмерное уменьшение сопротивления недопустимо, так как это увеличивает нагрузку источника Uвх и понижает амплитуду выходного сигнала при положительном импульсе на входе.

В параллельном ограничителе остаточное напряжение на выходе при отрицательном напряжении Uвх будет равно прямому падению напряжения в диоде DUпр и практически не зависит от сопротивления нагрузки. При положительном импульсе на входе часть положительного входного напряжения теряется в резисторе Rогр, предназначенного для защиты диода и источника входного напряжения от чрезмерного тока при отрицательном импульсе на входе.

Во избежание понижения амплитуды выходного напряжения необходимо выполнение условия Rнагр>>Rогр.

Последовательные ограничители применяют при низкоомных нагрузках, а параллельные- при высокоомных.

При необходимости ограничения на уровне, равном нулю, в схему диодного ограничителя вводят источник смещающего напряжения.

Схема обеспечивает ограничение на уровне +Е снизу. Источник смещающего напряжения включен встречно по отношению к направлению проводимости диода VD, поэтому на выход проходит только та часть входного напряжения, которая способна создать прямой ток в диоде выше уровня напряжения смещения. Когда диод заперт отрицательным входным напряжением- выходное напряжение равно нулю.

Читайте также:  Стабилизатор напряжения dvr 10090 prorab

Источник

Супрессор

Обозначение, параметры и применение защитных диодов

Защитный диодЗащитный диод (супрессор) 1.5KE15CA

Среди всего многообразия полупроводниковых приборов, наверное, самая большая семья у диодов. Диоды Шоттки, диоды Ганна, стабилитроны, светодиоды, фотодиоды, туннельные диоды и ещё много разных типов и областей применения.

Один из классов полупроводниковых диодов в нашей литературе называется ПОН (полупроводниковый ограничитель напряжения) или супрессор. В зарубежной технической литературе используется название TVS-диод (Transient Voltage Suppressor). Очень часто TVS-диоды называют по маркам производителей: TRANSIL, INSEL.

В технической литературе и среди радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, трансил, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.

Рассмотрим, что же такое TVS-диод, его принцип действия, в каких схемах и для каких целей используется.

TVS-диоды были созданы в 1968 году в США для защиты промышленной аппаратуры от разрядов атмосферного электричества. В условиях эксплуатации электронных приборов как промышленного, так и бытового назначения большое значение придаётся защите этих приборов именно от природных электрических импульсов.

Очень часто возникают броски напряжения и на силовых трансформаторных подстанциях. В таких случаях бытовая техника выходит из строя сотнями. Поскольку на промышленных предприятиях комплексная защита имеется, а жилые дома в этом случае совершенно не защищены.

По некоторым данным потери связанные с выходом из строя и последующим ремонтом всей электронной аппаратуры в США составляют около $12 млрд. в год. Специалисты посчитали, что и в нашей стране потери соответствуют этой сумме.

Для защиты аппаратуры от воздействия электрических перенапряжений и был разработан класс полупроводниковых приборов называемых TVS-диоды или “супрессоры”. Иногда в разговоре можно услышать: диодный предохранитель.

Обозначение на схеме.

На принципиальных схемах супрессор (ака защитный диод) обозначается так (VD1, VD2 — симметричные; VD3 — однонаправленные).

Обозначение на схеме защитного диода

Принцип работы супрессора (защитного диода).

У TVS-диодов ярко выраженная нелинейная вольт-амперная характеристика. Если амплитуда электрического импульса превысит паспортное напряжение для конкретного типа диода, то он перейдёт в режим лавинного пробоя. То есть TVS-диод ограничит импульс напряжения до нормальной величины, а “излишки” уходят на корпус (землю) через диод. Более наглядно процесс выглядит на рисунке.

Принцип работы супрессора

До тех пор пока не возникает угроза выхода из строя электронного прибора, TVS-диод не оказывает никакого влияния на работу техники. У этого полупроводникового прибора более высокое быстродействие по сравнению с ограничителями, которые использовались раньше.

Предохранительные диоды выпускаются как несимметричные (однонаправленные), так и симметричные (двунаправленные). Симметричные могут работать в цепях с двуполярными напряжениями, а несимметричные только с напряжением одной полярности. Ещё одна типовая схема подключения (для двунаправленного диода).

Схема включения двунаправленного защитного диода

Для однонаправленного супрессора схема выглядит чуть по-другому.

Схема включения однонаправленного супрессора

В случае повышения входного напряжения прибор за очень короткое время уменьшает своё сопротивление. Ток в цепи резко возрастает и происходит перегорание предохранителя. Поскольку супрессор срабатывает очень быстро, то оборудованию не наносится вреда. Отличительной чертой TVS-диодов является очень короткое время реакции на превышение напряжения. Это одна из «фишек» защитных диодов.

Читайте также:  Что лучше повышенное или пониженное напряжение

Основные электрические параметры супрессоров.

U проб. (В) – значение напряжения пробоя. В зарубежной технической документации этот параметр обозначается как VBR (Breakdown Voltage). Это значение напряжения, при котором диод резко открывается и отводит опасный импульс тока на общий провод («на землю»).

I обр. (мкА) – значение постоянного обратного тока. Это значение максимального обратного тока утечки, который есть у всех диодов. Он очень мал и практически не оказывает никого влияния на работу схемы. Иное обозначение – IR (Max. Reverse Leakage Current). Так же может обозначаться как IRM.

U обр. (В) – постоянное обратное напряжение. Соответствует англоязычной аббревиатуре VRWM (Working Peak Reverse Voltage). Может обозначаться как VRM.

U огр. имп. (В) – максимальное импульсное напряжение ограничения. В даташитах обозначается как VCL или VCMax. Clamping Voltage или просто Clamping Voltage.

I огр. мах. (А) – максимальный пиковый импульсный ток. На английский манер обозначается как IPP (Max. Peak Pulse Current). Данное значение показывает, какое максимальное значение импульса тока способен выдержать супрессор без разрушения. Для мощных супрессоров это значение может достигать нескольких сотен ампер!

P имп. (Ватт) – максимальная допустимая импульсная мощность. Этот параметр показывает, какую мощность может подавить супрессор. Напомним, что слово супрессор произошло от английского слова Suppressor, что в переводе означает «подавитель». Зарубежное название параметра Peak Pulse Power (PPP).

Значение максимальной импульсной мощности можно найти перемножением значений U огр. имп. (VCL) и I огр. мах. (IPP).

Вольт-амперные характеристики симметричного и несимметричного TVS-диода выглядят следующим образом.

ВАХ защитного диода

ВАХ однонаправленного защитного диода (супрессора)

ВАХ симметричного супрессора

ВАХ двунаправленного супрессора

Большим минусом этих диодов можно считать большую зависимость максимальной импульсной мощности от длительности импульса. Обычно рассматривается работа TVS-диода при подаче на него импульса с минимальным временем нарастания порядка 10 микросекунд и малой длительностью.

Например, при длительности импульса 50 микросекунд диод типа SMBJ 12A выдерживает импульсный ток, превышающий номинальный почти в четыре раза.

Очень хорошо зарекомендовали себя малогабаритные диоды TRANSZORB TM серии 1.5КЕ6.8 – 1.5КЕ440 (С)A. Они выпускаются как в симметричном, так и в несимметричном исполнении. Для симметричного диода к обозначению добавляется буква С или СА. У этой серии большой диапазон рабочих напряжений от 5,0 до 376 вольт, малое время срабатывания 1*10-9 сек, способность к подавлению импульсов большой мощности до 1500 Вт. Они прекрасно зарекомендовали себя в схемах защиты телевизионного, цифрового и другого современного оборудования.

Диоды выпускаются в корпусе DO-201.

Размеры корпуса

Размеры указаны в дюймах и миллиметрах (в скобках). Несимметричные супрессоры имеют на корпусе цветное маркировочное кольцо, которое расположено ближе к катодному выводу.

На корпусе указана маркировка защитного диода, в которой зашифрованы его основные параметры.

Маркировка супрессоров серии 1.5KExx

Диоды TRANSIL TM фирмы THOMSON широко используются для защиты автомобильной электроники от перенапряжений. Самым сильным источником электрических импульсов является система зажигания. Для защиты автомобильного музыкального центра достаточно одного диода TRANSIL TM .

Двунаправленные диоды TRANSIL TM 1.5КЕ440СА с успехом применяются для защиты бытовой электронной аппаратуры в сетях 220 вольт. Их применение наиболее эффективно для защиты объектов, которые подключены к воздушным линиям. В этом случае будет защита и от атмосферных электрических импульсов и от импульсных перенапряжений по цепям питания.

Источник