Меню

Что такое двойной ток

Измерительный мост

Измерительный мост – электрическая схема, усовершенствованная английским физиком Чарльзом Уинстоном. Она источник постоянного тока и базовая мостовая схема, которую применяют в конструкциях многих измерительных приборов. Например, в устройствах контроля и измерения температур – термометрах.

Что такое измерительный мост?

Как пример, объясняющий электросхему моста, возьмём терморезистор или термометр. В таких системах механизм ставят в одной ветви схемы. Можно провести аналогию с аптечными весами. Разница только в том, что мост — электрическое устройство.

Рычажные весы и приборы с мостовой схемой действуют компенсационным способом. Величина тока в по Уинстону есть разница между сопротивлениями — чем она выше, тем обширнее протекает электрический ток. При изменении разности меняется и количество электрических зарядов.

Это свойство применяют в различных системах и приборах контроля. Точность замеров достигается за счет изменения сопротивления. Во время измерения электричества, проходящего через измерительный мост постоянного тока, обнаруживаются любые изменения физической величины сопротивления.

Принцип работы моста Уитстона

Мостовая схема Ч. Уинстона состоит из 2-х плеч. В каждом 2 резистора. Соединяет 2 параллельные ветви еще одна. Ее название – мостик. Ток проходит от клеммы с минусом к верхнему пику мостовой схемы.

Разделившись по 2 параллельным ветвям, ток идёт к положительной клемме. Величина сопротивления в каждой ветви непосредственно влияет на количество тока. Равное сопротивление на обеих ветвях говорит о том, что в них течет аналогичное количество тока. В таких условиях мостовой элемент уравновешен.

Если в ветвях неравное сопротивление, ток в электросхеме начинает движение от ветви с высоким уровнем сопротивления к ветви с наименьшим. Так продолжается, пока 2 верхних элемента цепей остаются равны по своей величине. Аналогичное положение резисторы имеют в схемах, которые используют в системах контроля и измерения.

Типы и модификации измерительных мостов

Основная схема измерительного моста – Уинстона. Одинарный мост меряет сопротивление от 1 Ом до 100 Мом. Но есть и модификации, позволяющие измерять разные типы сопротивлений — те, для которых базовая схема не годится.

Разновидности

  1. Небольшие сопротивления измеряются посредством прибора Кери Фотера. Можно узнать разницу между противодействиями больших значений.
  2. Еще один тип – делитель Кельвина-Варлея. Применяется в приборах лабораторного оборудования. Максимальная измеряющая способность, зафиксированная этим делителем напряжения, достигает 1,0*10-7.
  3. Мост Кельвина, который в некоторых странах называют именем Томсона, предназначен для замера неизвестных сопротивлений небольших величин (меньше 1 Ом). По принципу работы похож на одинарный мост Уинстона. Разница лишь в наличии дополнительного сопротивления, снижающего погрешности в измерении, которые появляются в результате падения напряжения в одном из плеч.
  4. Еще один тип – мост Максвелла. Измеряет низкодобротную индуктивность неизвестной величины.

Схемы измерительных мостов

Измерительные мосты переменного тока делят на 2 группы: двойные и одинарные. Одинарные имеют 4 плеча. В них 3 ветви создают цепь с 4 точками подключения.

В диагонали моста есть электромагнитный гальванометр, показывающий равновесие. В другой диагонали моста действует источник постоянного питания. Измерения могут происходить с погрешностями, которые зависят от их диапазона. По мере роста сопротивления чувствительность прибора уменьшается.

Двойной мост называют шестиплечим. Его плечи – измеряемое сопротивление (Rx), резистор (Ro) и 2 пары дополнительных резисторов (Rl, R2, R3, R4).

Двойные измерительные мосты

Небольшие сопротивления измеряются двойными мостами, состоящими из таких компонентов:

  • резисторы R (4);
  • гальванометр;
  • резистор образцовый;
  • источник питания;
  • амперметр;
  • резистор, устанавливающий рабочий ток.

Чтобы узнать условия, при которых возникает равновесие, для замкнутых контуров применяют уравнение Кирхгофа. Соблюдается условие: по гальванометру должен идти нулевой ток.

Где используют измерительный мост Уитстона?

Измерительные элементы применяют в работе с кабельными линиями из металла. Они позволяют нейтрализовать постороннее влияние для более эффективной локализации дефектов. Гарантированы высокоточные результаты в рамках диапазона измеряемых величин.

С помощью мостовой схемы Уитстона можно вычислить сопротивление изменяющегося элемента. Схемы используют в конструкциях электронных весов, электронных термометров и терморезисторов.

Среди промышленных образцов широко известны приборы с ручной калибровкой равновесия:

  • ММВ – измеряет сопротивление проводника постоянного напряжения;
  • Р333 – схема одинарного моста, с помощью которой выявляется поврежденный участок кабеля.

Заключение

С помощью прибора Уинстона можно мерить индуктивность, содержание газа в воздухе или другом веществе, емкость и иные физические величины. Подробно о данных схемах можно прочитать в учебнике «Измерительные соединения». В книге представлены основные понятия, базовые методики, примеры, иллюстрирующие принцип действия.

Читайте также:  Сила тока остановка дыхания

Источник

Что такое двойное напряжение?

Что такое двойное напряжение?

Двойное напряжение

Двойное напряжение — это термин, используемый для описания любого типа электронного устройства, которое изготовлено для распознавания и использования как американских, так и европейских токов без необходимости использования дополнительного трансформатора. Преобразование завершено внутри объекта, поэтому потребителям устройств с двойным напряжением не нужно беспокоиться о том, где они будут или не будут работать, однако для использования изделия за пределами страны происхождения может потребоваться подключаемый адаптер обеспечить надлежащую безопасность. Этот тип технологии особенно популярен в портативных устройствах, таких как сотовые телефоны, электрические бритвы и музыкальные проигрыватели, поскольку позволяет своим производителям продавать свою продукцию всемирной аудитории, а не только определенному региону. В конце концов, лидеры отрасли говорят, что все электронные элементы будут созданы по стандарту двойного напряжения.

Существует несколько способов проверить, был ли сконструирован определенный элемент для соответствия стандартам двойного напряжения. Обычно на штепсельной вилке есть штамп или ламинированный лист бумаги, прикрепленный к шнуру, который будет обеспечивать допустимый уровень напряжения. Если тег содержит только 110 или 240 вольт, тогда элемент не является двойным напряжением, но если он указан как «110 В-240 В», тогда он должен работать с различными источниками питания по всему миру. Эта информация также должна быть помечена где-то на самом элементе электронного устройства, иногда под крышкой аккумулятора или рядом с нижней частью устройства. Фраза «Wide Range Input» также указывает, что устройство обеспечивает двойное напряжение и будет работать в любом месте.

Некоторые электронные элементы также поставляются с переключателем, который позволит устройству работать с любым из двух напряжений, в то время как большинство более современного оборудования автоматически преобразует его, внедряя встроенный трансформатор. Если переключатель установлен в неправильном положении, это может привести к постоянному повреждению элемента или кратковременному использованию гнезда, поэтому важно убедиться, что эти типы элементов используются правильно. Многие из наиболее распространенных элементов двойного напряжения, например, фены, плоские утюги и телевизоры, доступны в обоих форматах, поэтому людям рекомендуется проверить метод перед покупкой.

Существуют десятки различных адаптеров и типов розетки, используемых по всему миру, а также для каждого из них требуется специальный вилка. Пользователи не должны пытаться подключить вилку к розетке независимо от того, является ли электронный элемент двойным напряжением или нет, поскольку это может привести к серьезной травме. Конвертеры, как правило, недороги и могут быть приобретены практически везде, где продается электроника.

Источник

Двухфазный ток

H

Упрощённая схема двухфазного генератора переменного тока и график двухфазного напряжения.
H <\displaystyle H> — внешнее постоянное магнитное поле.

Двухфа́зные электри́ческие се́ти применялись в начале XX века в электрических распределительных сетях переменного тока.

В них применялись два контура, напряжения в которых были сдвинуты по фазе друг относительно друга на π 2 <\displaystyle <\frac <\pi ><2>>> <\frac <\pi data-lazy-src=

Вращающееся магнитное поле, создаваемое в двухфазных системах, позволяло электромоторам создавать вращающий момент при остановленном роторе электродвигателя, что невозможно в однофазных асинхронных электромоторах (без применения специальных пусковых средств). Асинхронные двигатели, применяемые в двухфазных системах, имеют ту же конфигурацию обмоток, что и однофазные двигатели с пусковым конденсатором.

Для трёхфазной электрической сети требуются линии с меньшей массой проводящих материалов (как правило, металлов) при том же самом напряжении и большей передаваемой мощности, в сравнении с двухфазной четырёхпроводной системой [3] . Двухфазные линии в большинстве применений впоследствии были вытеснены трёхфазными в электрических распределительных сетях, однако они до сих пор используются в некоторых системах управления, в сервоприводах.

Передаваемая мгновенная активная мощность в трёхфазных и двухфазных электрических сетях постоянна при симметричной нагрузке. Однако в однофазных сетях мгновенная активная мощность колеблется с частотой, в два раза большей частоты напряжения в линии. Эти пульсации мощности приводят к повышенному шуму и механическим вибрациям в электрооборудовании с намагничивающимися материалами из-за магнитострикционного эффекта, а также к вращательным вибрациям валов электродвигателей.

Двухфазные контуры обычно используют две отдельные пары электрических проводников. Но могут использоваться и три проводника, однако по общему проводу двух фазных контуров течёт векторная сумма фазных токов, и поэтому общий провод должен иметь больший диаметр. В отличие от этого, в трёхфазных сетях при симметричной нагрузке векторная сумма фазных токов равна нулю, и поэтому в этих сетях возможно использовать три линии одинакового диаметра. Для электрических распределительных сетей использование трёх проводников удобнее, чем использование четырёх, поскольку это даёт экономию в стоимости проводящих линий и в расходах по их установке.

Двухфазное напряжение может быть получено от трёхфазного источника путём соединения однофазных трансформаторов по так называемой схеме Скотта. Симметричная нагрузка в такой трёхфазной системе в точности эквивалентна симметричной трёхфазной нагрузке.

В некоторых странах (например, в Японии) схему Скотта используют для питания железных дорог, электрифицированных по системе однофазного переменного тока промышленной частоты. В этом случае в контактной сети чередуются только две фазы, а не три. На двухпутных дорогах пути разных направлений могут на всём протяжении питаться каждый от своей фазы двухфазной сети, что позволяет избавиться от чередования фаз по ходу следования поезда и устройства нейтральных вставок (хотя это усложняет работу станций). В России такая система не получила распространения.

Двухфазный электрический ток

Двухфазным электрическим током называется совокупность двух однофазных токов, сдвинутых по фазе относительно друг друга на угол π 2 <\displaystyle <\frac <\pi ><2>>> <\frac <\pi data-lazy-src=

См. также

Примечания

  1. Ржонсницкий Б. Н. Никола Тесла — 1959. — 224 с., — 40 000 экз.
  2. ↑ Thomas J. Blalock The first polyphase system — a look back at two-phase power for ac distribution, in IEEE Power and Energy Magazine, March-April 2004, ISSN 1540-7977 pg. 63
  3. ↑ Terrell Croft and Wilford Summers (ed), American Electricans’ Handbook, Eleventh Edition, McGraw Hill, New York (1987) ISBN 0-07-013932-6 page 3-10, figure 3-23

Ссылки

  • Donald G. Fink and H. Wayne Beaty, Standard Handbook for Electrical Engineers, Eleventh Edition,McGraw-Hill, New York, 1978, ISBN 0-07-020974-X
  • Edwin J. Houston and Arthur Kennelly, Recent Types of Dynamo-Electric Machinery, copyright American Technical Book Company 1897, published by P.F. Collier and Sons New York, 1902

Источник



ИБП и стабилизаторы с двойным преобразованием

ИБП и стабилизаторы с двойным преобразованием картинка

Сегодня построенные на основе двойного преобразования энергии онлайн ИБП и инверторные стабилизаторы напряжения являются самыми востребованными изделиями в своих сегментах рынка электрооборудования. Высокий спрос на данные устройства объясняется их отличными техническими характеристиками, позволяющими обеспечивать качественным электропитанием даже самые требовательные нагрузки.

Содержание

  • Двойное преобразование
  • Конструктивные особенности
  • Преимущества
  • Онлайн ИБП
  • Инверторные стабилизаторы напряжения

Что же представляет собой технология двойного преобразования энергии, как она влияет на функционирование систем электропитания и почему на сегодняшний день считается одной из самых прогрессивных? Расскажем об этом в нашей статье.

Двойное преобразование

«С двойным преобразованием энергии» – такую фразу можно увидеть в описаниях, соответствующих многим источникам бесперебойного питания и всем инверторным стабилизаторам напряжения «Штиль». Что же она означает?

Технология двойного преобразования – один из способов повышения качества электроэнергии, заключающийся в двух последовательных трансформациях входного переменного напряжения: вначале оно переводится в постоянное (DC), а затем инвертируется обратно в переменное (AC). При этом вновь сформированное АС-напряжение имеет эталонные характеристики и избавлено от сетевых искажений.

Основное отличие данного способа от других, схожих по назначению, заключается в том, что преобразование (следовательно, и коррекция напряжения) осуществляется непрерывно, а не только в момент отклонения сетевых параметров от нормы. Это исключает влияние входных возмущений на выходное напряжение, которое абсолютно не зависит от состояния внешнего источника питания и имеет неизменно точное значение и синусоидальную форму. Иными словами, ни одна помеха или скачок напряжения не достигает нагрузки, подключенной к ИБП или стабилизатору с двойным преобразованием энергии. Такие устройства гарантируют надежную защиту любой, даже самой требовательной к качеству электропитания техники.

Отметим, что двойное преобразование энергии вошло в электротехнику сравнительно недавно – первые ИБП на его основе появились в конце XX века. Несколько позже – в начале XXI века данная технология нашла своё применение и в стабилизаторах напряжения. Номером один стали выпускаемые с 2015 года инверторные стабилизаторы «Штиль» серии «ИнСтаб». Они являются полностью отечественной разработкой (г. Тула), которая, выйдя на рынок, отлично зарекомендовала себя в практическом применении и быстро завоевала популярность у потребителей.

Конструктивные особенности

Изделия, использующие двойное преобразование энергии, имеют ряд специфических конструктивных особенностей. Разберем их на примере ИБП и стабилизаторов от бренда «Штиль», являющегося одним из лидеров среди российских производителей и поставщиков систем электропитания.

Главное отличие указанных приборов от устройств других типов – отсутствие автотрансформатора и каких-либо подвижных (электромеханических) частей в силовой цепи. Вместо них в состав онлайн ИБП и инверторного стабилизатора входят следующие компоненты:

Компонент Описание
Входной и выходной фильтры Сглаживают электромагнитные помехи и обеспечивают выполнение требований ЭМС (электромагнитной совместимости).
Входной фильтр также защищает нагрузку от перенапряжений.
Выпрямитель со встроенным корректором коэффициента мощности (ККМ) Работает на основе выпрямительных диодов, благодаря которым подаваемое на вход переменное напряжение преобразуется в постоянное (назовем его – промежуточным).
Благодаря наличию ККМ компенсирует реактивную составляющую мощности подключенных приборов и обеспечивает синусоидальную форму потребляемого электрического тока при любом типе нагрузки.
Зарядное устройство
(используется только в ИБП)
Работает параллельно выпрямителю и преобразует входное переменное напряжение в постоянное напряжение необходимое для заряда аккумуляторов.

Ниже представлены структурные схемы инверторного стабилизатора и онлайн ИБП:

Источник