Меню

Что такое класс по обратному повторяющемуся напряжению для диодов

Виды и классификация диодов

Диод – электронный прибор с двумя (иногда тремя) электродами, обладающий односторонней проводимостью. Электрод, подключенный к положительному полюсу прибора, называют анодом, к отрицательному – катодом. Если к прибору приложено прямое напряжение, то он находится в открытом состоянии, при котором сопротивление мало, а ток протекает беспрепятственно. Если прикладывается обратное напряжение, прибор, благодаря высокому сопротивлению, является закрытым. Обратный ток присутствует, но он настолько мал, что условно принимается равным нулю.

Содержание статьи

  • Общая классификация
    • Неполупроводниковые
    • Полупроводниковые
  • Виды диодов по размеру перехода
  • Виды диодов по материалу изготовления
  • Виды диодов по частотному диапазону
  • Применение диодов
    • Выпрямительные диоды
    • Диодные детекторы
    • Ограничительные устройства
    • Диодные переключатели
    • Диодная искрозащита
    • Параметрические диоды
    • Смесительные диоды
    • Умножительные диоды
    • Настроечные диоды
    • Генераторные диоды
  • Виды диодов по типу конструкции
    • Стабилитроны (диоды Зенера)
    • Стабисторы
    • Диоды Шоттки
    • Варикапы
    • Туннельные диоды
    • Тиристоры
    • Симисторы
    • Динисторы
    • Диодные мосты
    • Фотодиоды
    • Светодиоды
    • Инфракрасные диоды
    • Диоды Ганна
    • Магнитодиоды
    • Лазерные диоды
    • Лавинные и лавинно-пролетные диоды
    • PIN-диоды
    • Триоды
  • Маркировка диодов

Общая классификация

Диоды делятся на большие группы – неполупроводниковые и полупроводниковые.

Неполупроводниковые

Одной из наиболее давних разновидностей являются ламповые (электровакуумные) диоды. Они представляют собой радиолампы с двумя электродами, один из которых нагревается нитью накала. В открытом состоянии с поверхности нагреваемого катода заряды движутся к аноду. При противоположном направлении поля прибор переходит в закрытую позицию и ток практически не пропускает.

Еще одни вид неполупроводниковых приборов – газонаполненные, из которых сегодня используются только модели с дуговым разрядом. Газотроны (приборы с термокатодами) наполняются инертными газами, ртутными парами или парами других металлов. Специальные оксидные аноды, используемые в газонаполненных диодах, способны выдерживать высокие нагрузки по току.

Полупроводниковые

В основе полупроводниковых приборов лежит принцип p-n перехода. Существует два типа полупроводников – p-типа и n-типа. Для полупроводников p-типа характерен избыток положительных зарядов, n-типа – избыток отрицательных зарядов (электронов). Если полупроводники этих двух типов находятся рядом, то возле разделяющей их границы располагаются две узкие заряженные области, которые называются p-n переходом. Такой прибор с двумя типами полупроводников с разной примесной проводимостью (или полупроводника и металла) и p-n-переходом называется полупроводниковым диодом. Именно полупроводниковые диодные устройства наиболее востребованы в современных аппаратах различного назначения. Для разных областей применения разработано множество модификаций таких приборов.

Виды диодов по размеру перехода

По размерам и характеру p-n перехода различают три вида приборов – плоскостные, точечные и микросплавные.

Плоскостные детали представляют одну полупроводниковую пластину, в которой имеются две области с различной примесной проводимостью. Наиболее популярны изделия из германия и кремния. Преимущества таких моделей – возможность эксплуатации при значительных прямых токах, в условиях высокой влажности. Из-за высокой барьерной емкости они могут работать только с низкими частотами. Их главные области применения – выпрямители переменного тока, устанавливаемые в блоках питания. Эти модели называются выпрямительными.

Точечные диоды имеют крайне малую площадь p-n перехода и приспособлены для работы с малыми токами. Называются высокочастотными, поскольку используются в основном для преобразования модулированных колебаний значительной частоты.

Микросплавные модели получают путем сплавления монокристаллов полупроводников p-типа и n-типа. По принципу действия такие приборы – плоскостные, но по характеристикам они аналогичны точечным.

Материалы для изготовления диодов

При производстве диодов используются кремний, германий, арсенид галлия, фосфид индия, селен. Наиболее распространенными являются первые три материала.

Очищенный кремний – относительно недорогой и простой в обработке материал, имеющий наиболее широкое распространение. Кремниевые диоды являются прекрасными моделями общего назначения. Их напряжение смещения – 0,7 В. В германиевых диодах эта величина составляет 0,3 В. Германий – более редкий и дорогой материал. Поэтому германиевые приборы используются в тех случаях, когда кремниевые устройства не могут эффективно справиться с технической задачей, например в маломощных и прецизионных электроцепях.

Виды диодов по частотному диапазону

По рабочей частоте диоды делятся на:

  • Низкочастотные – до 1 кГц.
  • Высокочастотные и сверхвысокочастотные – до 600 мГц. На таких частотах в основном используются устройства точечного исполнения. Емкость перехода должна быть невысокой – не более 1-2 пФ. Эффективны в широком диапазоне частот, в том числе низкочастотном, поэтому являются универсальными.
  • Импульсные диоды используются в цепях, в которых принципиальным фактором является высокое быстродействие. По технологии изготовления такие модели разделяют на точечные, сплавные, сварные, диффузные.

Области применения диодов

Современные производители предлагают широкий ассортимент диодов, адаптированных для конкретных областей применения.

Выпрямительные диоды

Эти устройства служат для выпрямления синусоиды переменного тока. Их принцип действия основывается на свойстве устройства переходить в закрытое состояние при обратном смещении. В результате работы диодного прибора происходит срезание отрицательных полуволн синусоиды тока. По мощности рассеивания, которая зависит от наибольшего разрешенного прямого тока, выпрямительные диоды делят на три типа – маломощные, средней мощности, мощные.

  • Слаботочные диоды могут использоваться в цепях, в которых величина тока не превышает 0,3 А. Изделия отличаются малой массой и компактными габаритами, поскольку их корпус изготавливается из полимерных материалов.
  • Диоды средней мощности могут работать в диапазоне токов 0,3-10,0 А. В большинстве случаев они имеют металлический корпус и жесткие выводы. Производят их в основном из очищенного кремния. Со стороны катода изготавливается резьба для фиксации на теплоотводящем радиаторе.
  • Мощные (силовые) диоды работают в цепях с током более 10 А. Их корпусы изготавливают из металлокерамики и металлостекла. Конструктивное исполнение – штыревое или таблеточное. Производители предлагают модели, рассчитанные на токи до 100 000 А и напряжение до 6 кВ. Изготавливаются в основном из кремния.

Диодные детекторы

Такие устройства получают комбинацией в схеме диодов с конденсаторами. Они предназначены для выделения низких частот из модулированных сигналов. Присутствуют в большинстве аппаратов бытового применения – радиоприемниках и телевизорах. В качестве детекторов излучения используются фотодиоды, преобразующие свет, попадающий на светочувствительную область, в электрический сигнал.

Ограничительные устройства

Защиту от перегруза обеспечивает цепочка из нескольких диодов, которые подключают к питающим шинам в обратном направлении. При соблюдении стандартного рабочего режима все диоды закрыты. Однако при выходе напряжения сверх допустимого назначения срабатывает один из защитных элементов.

Диодные переключатели

Переключатели, представляющие собой комбинацию диодов, которые применяются для мгновенного изменения высокочастотных сигналов. Такая система управляется постоянным электрическим током. Высокочастотный и управляющие сигналы разделяют с помощью конденсаторов и индуктивностей.

Диодная искрозащита

Эффективную искрозащиту создают с помощью комбинирования шунт-диодного барьера, ограничивающего напряжение, с токоограничительными резисторами.

Параметрические диоды

Используются в параметрических усилителях, которые являются подвидом резонансных регенеративных усилителей. Принцип работы основан на физическом эффекте, который заключается в том, что при поступлении на нелинейную емкость разночастотных сигналов часть мощности одного сигнала можно направить на рост мощности другого сигнала. Элементом, предназначенным для содержания нелинейной емкости, и является параметрический диод.

Смесительные диоды

Смесительные устройства используются для трансформации сверхвысокочастотных сигналов в сигналы промежуточной частоты. Трансформация сигналов осуществляется, благодаря нелинейности параметров смесительного диода. В качестве смесительных СВЧ-диодов используются приборы с барьером Шоттки, варикапы, обращенные диоды, диоды Мотта.

Умножительные диоды

Эти СВЧ устройства используются в умножителях частоты. Они могут работать в дециметровом, сантиметровом, миллиметровом диапазонах длин волн. Как правило, в качестве умножительных приборов используются кремниевые и арсенид-галлиевые устройства, часто – с эффектом Шоттки.

Читайте также:  Контрольная лампа для измерения напряжения

Настроечные диоды

Принцип работы настроечных диодов основан на зависимости барьерной емкости p-n перехода от величины обратного напряжения. В качестве настроечных используются приборы кремниевые и арсенид-галлиевые. Эти детали применяют в устройствах перестройки частоты в сверхчастотном диапазоне.

Генераторные диоды

Для генерации сигналов в сверхвысокочастотном диапазоне востребованы устройства двух основных типов – лавинно-пролетные и диоды Ганна. Некоторые генераторные диоды при условии включения в определенном режиме могут выполнять функции умножительных устройств.

Виды диодов по типу конструкции

Стабилитроны (диоды Зенера)

Эти устройства способны сохранять рабочие характеристики в режиме электрического пробоя. В низковольтных устройствах (напряжение до 5,7 В) используется туннельный пробой, в высоковольтных – лавинный. Стабилизацию невысоких напряжений обеспечивают стабисторы.

Стабисторы

Стабиистор, или нормистор, — это полупроводниковый диод, в котором для стабилизации напряжения используется прямая ветвь вольт-амперной характеристики (то есть в области прямого смещения напряжение на стабисторе слабо зависит от тока). Отличительной особенностью стабисторов по сравнению со стабилитронами является меньшее напряжение стабилизации (примерно 0,7-2 V).

Диоды Шоттки

Устройства, применяемые в качестве выпрямительных, умножительных, настроечных, работают на базе контакта металл-полупроводник. Конструктивно они представляют собой пластины из низкоомного кремния, на которые наносится высокоомная пленка с тем же типом проводимости. На пленку вакуумным способом напыляется металлический слой.

Варикапы

Варикапы выполняют функции емкости, величина которой меняется с изменением напряжения. Основная характеристика этого прибора – вольт-фарадная.

Туннельные диоды

Эти полупроводниковые диоды имеют падающий участок на вольтамперной характеристике, возникающий из-за туннельного эффекта. Модификация туннельного устройства – обращенный диод, в котором ветвь отрицательного сопротивления выражена мало или отсутствует. Обратная ветвь обращенного диода соответствует прямой ветви традиционного диодного устройства.

Тиристоры

В отличие от обычного диода, тиристор, кроме анода и катода, имеет третий управляющий электрод. Для этих моделей характерны два устойчивых состояния – открытое и закрытое. По устройству эти детали разделяют на динисторы, тринисторы, симисторы. При производстве этих изделий в основном используется кремний.

Симисторы

Симисторы (симметричные тиристоры) – это разновидность тиристора, используется для коммутации в цепях переменного тока. В отличие от тиристора, имеющего катод и анод, основные (силовые) выводы симистора называть катодом или анодом некорректно, так как в силу структуры симистора они являются тем и другим одновременно. Симистор остаётся открытым, пока протекающий через основные выводы ток превышает некоторую величину, называемую током удержания.

Динисторы

Динистором, или диодным тиристором, называется устройство, не содержащее управляющих электродов. Вместо этого они управляются напряжением, приложенным между основными электродами. Их основное применение – управление мощной нагрузкой при помощи слабых сигналов. Также динисторы используют при изготовлении переключающих устройств.

Диодные мосты

Это 4, 6 или 12 диодов, которые соединяются между собой. Число диодных элементов определяется типом схемы, которая бывает – однофазной, трехфазной, полно- или полумостовой. Мосты выполняют функцию выпрямления тока. Часто используются в автомобильных генераторах.

Фотодиоды

Предназначены для преобразования световой энергии в электрический сигнал. По принципу работы аналогичны солнечным батареям.

Светодиоды

Эти устройства при подключении к электрическому току излучают свет. Светодиоды, имеющие широкую цветовую гамму свечения и мощность, применяются в качестве индикаторов в различных приборах, излучателей света в оптронах, используются в мобильных телефонах для подсветки клавиатуры. Приборы высокой мощности востребованы в качестве современных источников света в фонарях.

Инфракрасные диоды

Это разновидность светодиодов, излучающая свет в инфракрасном диапазоне. Применяется в бескабельных линиях связи, КИП, аппаратах дистанционного управления, в камерах видеонаблюдения для обзора территории в ночное время суток. Инфракрасные излучающие устройства генерируют свет в диапазоне, который не доступен человеческому взгляду. Обнаружить его можно с помощью фотокамеры мобильного телефона.

Диоды Ганна

Эта разновидность сверхчастотных диодов изготавливается из полупроводникового материала со сложной структурой зоны проводимости. Обычно при производстве этих устройств используется арсенид галлия электронной проводимости. В этом приборе нет p-n перехода, то есть характеристики устройства являются собственными, а не возникающими на границе соединения двух разных полупроводников.

Магнитодиоды

В таких приборах ВАХ изменяется под действием магнитного поля. Устройства используются в бесконтактных кнопках, предназначенных для ввода информации, датчиках движения, приборах контроля и измерения неэлектрических величин.

Лазерные диоды

Эти устройства, имеющие сложную структуру кристалла и сложный принцип действия, дают редкую возможность генерировать лазерный луч в бытовых условиях. Благодаря высокой оптической мощности и широким функциональным возможностям, приборы эффективны в высокоточных измерительных приборах бытового, медицинского, научного применения.

Лавинные и лавинно-пролетные диоды

Принцип действия устройств заключается в лавинном размножении носителей заряда при обратном смещении p-n перехода и их преодолении пролетного пространства за определенный временной промежуток. В качестве исходных материалов используются арсенид галлия или кремний. Приборы в основном предназначаются для получения сверхвысокочастотных колебаний.

PIN-диоды

PIN-устройства между p- и n-областями имеют собственный нелегированный полупроводник (i-область). Широкая нелегированная область не позволяет использовать этот прибор в качестве выпрямителя. Однако зато PIN-диоды широко применяются в качестве смесительных, детекторных, параметрических, переключательных, ограничительных, настроечных, генераторных.

Триоды

Триоды – это электронные лампы. Он имеет три электрода: термоэлектронный катод (прямого или косвенного накала), анод и управляющую сетку. Сегодня триоды практически полностью вытеснены полупроводниковыми транзисторами. Исключение составляют области, где требуется преобразование сигналов с частотой порядка сотен МГц — ГГц высокой мощности при маленьком числе активных компонентов, а габариты и масса не имеют большого значения.

Маркировка диодов

Маркировка полупроводниковых диодных устройств включает цифры и буквы:

  • Первая буква характеризует исходный материал. Например, К – кремний, Г – германий, А – арсенид галлия, И – фосфид индия.
  • Вторая буква – класс или группа диода.
  • Третий элемент, обычно цифровой, обозначает применение и электрические свойства модели.
  • Четвертый элемент – буквенный (от А до Я), обозначающий вариант разработки.

Пример: КД202К – кремниевый выпрямительный диффузионный диод.

Источник



Маркировка (обозначение) силовых отечественных диодов Маркировка силовых отечественных диодов

Д 161 200 Х 1 2 УХЛ

2 Конструктивное исполнение

3 Средний прямой ток; А

4 Х — Символ обратной полярности (при необходимотси)

5 Класс по напряжению *

6 Импульсное прямое напряжение, В (при необходимости)

7 Климатическое исполнение klimaticheskoe_ispolnenie_tiristor_diod_UHL_Т

МАРКИРОВКА ЛАВИННОГО ДИОДА

Д Л 1 7 1 2 5 0 12 М4 УХЛ

3 Конструктивное исполнение

4 Средний прямой ток; А

5 Класс по напряжению *

6 Группа по времени обратного восстановления (при необходимости) *

7 Климатическое исполнение klimaticheskoe_ispolnenie_tiristor_diod_UHL_Т

МАРКИРОВКА БЫСТРОВОССТАНАВЛИВАЮЩЕГОСЯ ДИОДА

ДЧ 271 500 Х 10 Е4 УХЛ

1 ДЧ – Диод быстровосстанавливающийся

2 Конструктивное исполнение

3 Средний прямой ток; А

4 Х — Символ обратной полярности (при необходимости)

5 Класс по напряжению

6 Группа по времени обратного восстановления (при необходимости)

7 Климатическое исполнение klimaticheskoe_ispolnenie_tiristor_diod_UHL_Т

МАРКИРОВКА БЫСТРОВОССТАНАВЛИВАЮЩЕГОСЯ ЛАВИННОГО ДИОДА

Д ЧЛ 233 250 12 Н4 УХЛ

2 ЧЛ – быстровосстанавливающийся лавинный

3 Конструктивное исполнение

4 Средний прямой ток; А

5 Класс по напряжению *

6 Группа по времени обратного восстановления (при необходимости) *

7 Климатическое исполнение klimaticheskoe_ispolnenie_tiristor_diod_UHL_Т

класс диодов по напряжению

Условные обозначения классов силовых приборов по напряжению

В зависимости от максимально допустимого значения повторяющегося импульсного напряжения в закрытом состоянии (для тиристоров) и повторяющегося импульсного обратного напряжения (для тиристоров и диодов) силовым приборам присваивается класс по напряжению. Класс обозначается числом от 1 до 60. Классу 1 соответствует максимально допустимое напряжение 100 В, классу 2 – 200 В, классу 3 – 300 В, и так далее до 60 класса, которому соответствует максимально допустимое напряжение 6000 В.

Читайте также:  Холодильник для работы при низком напряжении

Условные обозначения групп диодов по времени обратного восстановления ( trr ).

Быстровосстанавливающиеся диоды, как правило, нормируются по времени обратного восстановления. В соответствии с этим на диод наносится цифровая или буквенно-цифровая маркировка. Зависимость условных обозначений, нанесенных на диоды, от времени обратного восстановления приведена в таблице. Время обратного восстановления имеет размерность мкс.

Расшифровка климатических исполнений klimaticheskoe_ispolnenie_tiristor_diod_UHL_Т

Стандарт по макроклиматическому районированию, условиям эксплуатации, хранения и транспортирования изделий в части воздействия климатических факторов внешней среды, принятый на территории РФ, и определённый в ГОСТ 15150-69.

Изделия маркируются цифрами и буквами, например: д161-160-12 УХЛ4

где УХЛ.4 — предназначено для эксплуатации в районах с умеренным и холодным климатом, в закрытых, отапливаемых или охлаждаемых и вентилируемых производственных и других помещениях.

Буквенные обозначения (обозначает климатическую зону).

[У] — эксплуатация в районах с умеренным климатом.
[УХЛ] — эксплуатация в районах с умеренным и холодным климатом.
[ТВ] — эксплуатация в районах с влажным тропическим климатом.
[ТС] — эксплуатация в районах с сухим тропическим климатом.
[Т] — эксплуатация в районах как с сухим, так и с влажным тропическим климатом.
[О] — эксплуатация во всех макроклиматических районах, кроме района с очень холодным климатом (общеклиматическое исполнение).
[М] — эксплуатация в районах с умеренно-холодным морским климатом.
[ТМ] — эксплуатация в районах с тропическим морским климатом.
[ОМ] — эксплуатация в районах как с умеренно-холодным, так и тропическим морским климатом.
[В] — эксплуатация во всех макроклиматических районах, кроме макроклиматического района с очень холодным климатом (всеклиматическое исполнение).
[ХЛ] — эксплуатация в макроклиматических районах с холодным климатом.

Цифровые обозначения (означает категорию размещения).

[1] — на открытом воздухе (воздействие совокупности климатических факторов, характерных для данного макроклиматического района).
[2] — под навесом или в помещениях, где колебания температуры и влажности воздуха несущественно отличаются от колебаний на открытом воздухе и имеется сравнительно свободный доступ наружного воздуха. Например, в палатках, кузовах, прицепах, металлических помещениях без теплоизоляции, а также в оболочке изделия категории 1.
[3] — в закрытых помещениях с естественной вентиляцией без искусственно регулируемых климатических условий, где колебания температуры и влажности воздуха и воздействие песка и пыли существенно меньше, чем на открытом воздухе, например, в металлических с теплоизоляцией, каменных, бетонных, деревянных помещениях (отсутствие воздействия атмосферных осадков и влаги, прямого солнечного света).
[4] — в помещениях с искусственно регулируемыми климатическими условиями, например, в закрытых отапливаемых или охлаждаемых и вентилируемых производственных и других, в т. ч. хорошо вентилируемых подземных помещениях (отсутствие воздействия прямого или рассеянного солнечного излучения, атмосферных осадков, ветра, песка, пыли наружного воздуха и конденсации влаги).
[5] — в помещениях с повышенной влажностью (например, в не отапливаемых и невентилируемых подземных помещениях, в т. ч. шахтах, подвалах в почве, в корабельных и других помещениях, где возможно длительное наличие воды или присутствует частая конденсация влаги на стенах и потолке).

Источник

Параметры полупроводниковых диодов

Параметры силовых полупроводниковых приборов (СПП) подразделяются на две группы:

– предельно допустимые значения;

Предельно допустимое значение – это значение, которое определяет либо предельную способность, либо предельное условие, при превышении которого прибор может быть поврежден.

Характеризующие параметры – это значения электрической, механической, тепловой, величины, которая характеризует свойства прибора.

Основными параметрами диода являются:

1) Предельный ток Iпр макс(IFAVM).

Предельный ток Iпр макс(IFAVM) – это ток, который может быть длительно пропущен через полупроводниковый диод, определенный при максимально допустимой температурой его структуры (для кремниевых вентилей Тjm@140°С) и условиями охлаждения.

При включении диода в прямом направлении потери мощности (мощность рассеяния) DP определяются

где UF(Uпр) – падение напряжения в структуре вентиля,

Мощность рассеяния выделяется в виде тепла, которое необходимо отводить от диода.

Чем больше Iпр, тем сильнее греется диод. Если ∆P мала, то выделяющееся тепло равномерно рассеивается по всей массе диода и температура p-n- перехода возрастает незначительно. Если ∆P велика, то возникает недопустимый нагрев структуры и диод выходит из строя. Для каждого полупроводникового диода существует Iпр продолжительного режима.

Значение тока IFAV max(Iпр макс) представляет собой максимально допустимое среднее за период значение прямого тока в однофазной однополупериодной схеме при частоте 50 Гц и работе на активную нагрузку R, которая может продолжительно протекать через диод VD, не вызывая его недопустимого нагрева и необратимого изменения характеристик.

Рис. 3.2. Схема включения диода (а) и диаграммы электромагнитных процессов при работе его на активную нагрузку

При нагрузке диода Iпр макс перегрузки недопустимы.

Промышленность выпускает диоды на токи от нескольких миллиампер до нескольких тысяч ампер. На силовые кремниевые полупроводниковые диоды установлена следующая шкала предельных токов: 10; 12,5; 16; 20; 25; 40; 50; 63; 80; 100; 125; 160; 200; 250; 320; 400; 500; 630; 800; 1000; 1250; 1600; 2000; 2500 А.

Предельный ток записывается в маркировке диода. Например, диод ДЛ133–500, В 200, В 320, ВЛ 200, ВК2–200 и т.д.

Ток, который можно безопасно пропустить через диод всегда меньше предельного. Чтобы его повысить, нужно увеличить интенсивность охлаждения. Для этого диоды снабжают охладителями, способствующими отводу тепла в окружающую среду, обдувают потоком воздуха. Ранее применялось охлаждение водой или маслом.

2) Перегрузочная способность.

Нагрев структуры диода при прохождении тока определяется потерями мощности, временем прохождения тока и начальной температурой структуры, предшествующей перегрузке.

Рис. 3.3. Амперсекундная характеристика

При кратковременных перегрузках выделяющаяся в структуре энергия (∆P) быстро распространяется по структуре, и температура не успевает значительно возрасти. При длительных перегрузках энергия быстро рассеяться не может и температура температура сильно повышается. Поэтому, чем больше значение тока перегрузки, тем меньшее время он должен протекать. Например, для диодов В 200 и В 320 можно допустить перегрузку на 25 % в течение 30 с, двойную – в течение 1 с. Перегрузочная способность определяется по амперсекундной характеристике (АСХ), то есть зависимости степени перегрузки от времени протекания максимального тока Iмакс, в течение которого температура структуры Тj достигает допустимого максимального значения.

Перегрузочная способность диодов в аварийном режиме характеризуется одиночным допустимым значением импульса ударного тока синусоидальной формы Iуд (IFSM) продолжительностью 10 мс при заданной начальной температуре структуры, соответствующей предельному току. Обычно IFSM= (15¸20)× IFAVM. Для диода В 320 Iуд = 6000 А при Тjm = 140 ° С.

Значение IFSM используется для проверки допустимости данного вентиля с расчетными значениями аварийных максимальных токов, возникновение которых возможно в процессе эксплуатации.

Поскольку количество тепла, выделяемого при прохождении импульса аварийного тока, согласно закону Джоуля-Ленца, пропорционально квадрату этого тока и времени его прохождения, то в технических данных силовых диодов обычно приводится значение Джоулева интеграла:

Читайте также:  Концентрация напряжений при статических нагрузках

Эта величина характеризует максимальное количество тепла, которое может быть воспринято вентилем без повреждения структуры и в условиях нормального охлаждения.

Для вентиля В200 S= 80000 А 2 ×с, В320 S= 255000 А 2 ×с.

3) Номинальное напряжение.

Напряжение, подводимое на диод, не должно превышать некоторого максимального значения Uобр макс (UBR ), при котором происходит пробой p-n- перехода. Значение UBR соответствует началу изгиба обратной ветви ВАХ. Напряжение UBR прикладывают к диодам только при испытаниях. В реальных сетях питающее напряжение не синусоидально. Не синусоидальное напряжение характеризуется повторяющимися и не повторяющимися напряжениями.

Рис. 3.4. Обратная ветвь вольтамперной характеристики

URWM(Uр) – импульсное рабочее обратное напряжение. Это наибольшее значение мгновенного обратного напряжения, исключая все повторяющиеся напряжения.

URRM(Un) – повторяющееся импульсное обратное напряжение. Это наибольшее мгновенное значение обратного напряжения, включая все повторяющиеся, но исключая все неповторяющиеся напряжения.

Число сотен вольт повторяющегося обратного напряжения определяет класс диода

Значение URRM определяется коммутационными процессами в самом преобразователе.

URSM(Uн,п) – неповторяющееся импульсное обратное напряжение. Наибольшее мгновенное значение любого не повторяющегося обратного напряжения, прикладываемого к диоду.

Значение URSM определяется разовыми перенапряжениями, которые могут возникнуть при грозовом разряде или в момент отключения индуктивных цепей автоматическим выключателем.

Рис. 3.4. Возможные виды перенапряжений

Диод выбирают так, чтобы амплитуда питающего синусоидального напряжения не превышала значения URWM.

4) Повторяющийся импульсный обратный ток (IRRM).

Рис. 3.5. Кривые обратного напряжения и повторяющегося импульсного

Амплитудным значением тока IRRM называют ток, протекающий через диод в обратном (запирающем) направлении при приложении к нему повторяющегося импульсного обратного напряжения URRM.

В соответствие с ГОСТ 24461-90 параметром – критерием является амплитуда IRRM при приложенном URRM. Температура Тj или Тj max. Значение IRRM не должно превышать заданного справочником или каталогом.

Германиевые диоды при прочих равных условиях имеют большие значения тока IRRM. Меньшие значения тока IRRM в кремниевых диодах объясняется тем, что из-за большей энергии, требуемой для образования пары “электрон – дырка”, число основных носителей в кремнии (при одинаковой температуре) меньше, чем в германии. Следовательно, меньше будет и концентрация не основных носителей, определяющая обратный ток. Поэтому кремниевые диоды имеют лучшие вентильные свойства, чем германиевые.

5) Прямое падение напряжения (прямое импульсное напряжение) UFM(DUпр).

За номинальное значение DUпр (UFM) принимают падение напряжения на диоде при прохождении импульса тока равного 3,14(p) значения предельного тока IFAV MAX, при температуре 25 ° C. Для силовых кремниевых диодов это значение составляет DUпр (UFM) = (1,07¸1,8) В, в зависимости от типа вентилей.

Рис. 3.6. Определение прямого падения напряжения по прямой ветви

Статическое и динамическое сопротивление.

Полупроводниковый диод представляет собой нелинейное сопротивление, которое зависит от напряжения и тока.

Статическое сопротивление характеризует сопротивление диода постоянному току (рис. 3.7).

Рис. 3.7. Определение статического сопротивления по прямой ветви вольтамперной характеристики

гдеk – коэффициент, учитывающий единицы величин, входящих в формулу.

Динамическое сопротивление характеризует свойства диода по отношению к малым приращениям или переменным составляющим, наложенным на относительно большие постоянные токи или напряжения (рис. 3.8).

Рис. 3.8. Определение динамического сопротивления по прямой ветви вольтамперной характеристики

7) Температурный режим.

Свойства p-n-перехода существенно зависят от температуры. Проводимость его в прямом направлении высока даже при низких температурах (-60 ° С), так как для отрыва валентных электронов требуется небольшая энергия.

При повышенной температуре сильнее проявляется собственная проводимость полупроводников и тем меньше сказывается примесная проводимость. В результате концентрация электронов и дырок по обе стороны от места контакта двух полупроводников p- и n-типа выравнивается, электрическое поле в этом месте исчезает и p-n-переход при высоких температурах теряет свои вентильные свойства.

Для германиевых диодов Tjmax @ (70¸90) ° C; для кремниевых диодов Tjmax@ (125¸140) ° C. Для отрыва валентного электрона от атома требуется большая энергия. Увеличение обратного тока, при возрастании температуры, объясняется усилением генерации пар носителей. Для германиевых диодов обратный ток возрастает в два раза, при повышении температуры на каждые 10 ° С, так же снижается напряжение электрического пробоя. Кроме того, с увеличением температуры у германиевых диодов снижается напряжение электрического пробоя.

У кремниевых диодов, при нагреве на 10 ° С, обратный ток возрастает примерно в 2,5 раза, а напряжение пробоя, при повышении температуры, сначала несколько возрастает, а затем уменьшается.

Прямой ток при нагреве диода растет не так сильно, как обратный. Это объясняется тем, что прямой ток возникает главным образом за счет примесной проводимости, а концентрация примесей не зависит от температуры.

8) Емкость ЭДП и частотные характеристики.

ЭДП можно рассматривать как эквивалентный конденсатор, состоящий из обкладок, разделенных областью, обедненной носителями зарядов и обладающей повышенным сопротивлением. Емкость этого конденсатора определяется как отношение приращения заряда на переходе к приращению падения напряжения на нем, то есть:

Емкость перехода зависит от значения и полярности внешнего приложенного напряжения. При обратном напряжении на переходе, эта емкость называется барьерной.

где jк – контактная разность потенциалов,

U – обратное напряжение на переходе,

сб(0) – значение сб, при U = 0, которое зависит от площади p-n-перехода и свойств полупроводникового кристалла.

Теоретически барьерная емкость существует и при прямом напряжении на p-n- переходе, однако она шунтируется низким дифференциальным (динамическим) сопротивлением rт. При прямом смещении p-n-переход значительно большее влияние оказывает диффузионная емкость, которая зависит от значения прямого тока и времени жизни не основных носителей tр. Эта емкость не связана с током смещения, но дает такой же сдвиг фазы между напряжением и током, что и обычная емкость. Значение диффузионной емкости определяется по выражению:

где I – прямой ток,

tр – время жизни не основных носителей,

jт – тепловой потенциал.

Рис. 3.9. Зависимость барьерной емкости от приложенного напряжения

Полная емкость ЭДП, при прямом смещении определяется суммой барьерной и диффузионной емкостей:

при обратном смещении ЭДП диффузионная емкость отсутствует и

Барьерная емкость вредно влияет на выпрямление переменного тока, так как шунтирует диод, и через нее на более высоких частотах проходит переменный ток. Это происходит вследствие уменьшения емкостного сопротивления на высоких частотах и возможности протекания обратного тока через емкость ЭДП. Это нарушает нормальную работу прибора, так как ЭДП теряет свои вентильные свойства, поэтому для работы на высоких частотах используют так называемые точечные полупроводниковые приборы, у которых площадь ЭДП незначительна и собственная емкость мала. В паспортных данных обычно указывают наивысшую рабочую частоту диода. Силовые диоды, применяемые на электроподвижном составе и тяговых подстанциях рассчитаны на работу в цепях с частотой до 500 Гц.

Свойства барьерной емкости используют при создании специальных диодов (варикапов и варакторов), которые применяют в качестве конденсаторов переменной емкости для настройки колебательных контуров (электронная настройка).

Источник