Меню

Что такое напряжение imc

Intel Coffee Lake: разгон Core i7-8700K

11.11.2017 в 09:34

Страница 2: Основы разгона и напряжения

Стабилизация напряжений и Loadline/LLC

Еще с процессорами Skylake Intel отказалась от интегрированного стабилизатора напряжений (FIVR, Fully Integrated Voltage Regulator). После Kaby Lake2 то же самое верно и для Coffe Lake. Поэтому производителям материнских плат приходится добавлять собственные стабилизаторы напряжений, которые должны обеспечивать достаточные возможности для разгона. В результате разгон вновь существенно зависит от возможностей материнской платы – по сравнению, например, с процессорами Haswell.

Вместе с тем изменение схемы питания означает, что некоторые напряжения и взаимосвязи, которые оказывали существенное влияние на поведение Haswell и ограничивали разгон, теперь остались в прошлом. Можно сказать, что разгон вновь стал несколько проще (сравним со старыми поколениями Sandy Bridge и Ivy Bridge). Также вернулись эффекты Loadline Vdrop или Vdroop. Новичков могут несколько запутать «разные» значения VCore (UEFI и Windows Idle, реальные значения Windows в режиме бездействия и Windows под нагрузкой).

Начнем с эффекта Vdrop. Под Vdrop понимают разницу между напряжением, выставленным в UEFI BIOS, и реальным напряжением под Windows в режиме бездействия. Например, если в UEFI выставлено фиксированное напряжение Vcore (скажем, 1,2 В), под Windows мы получим несколько иное значение, как правило, немного меньше (скажем, 1,176 В вместо 1,2 В, выставленных в BIOS). Данный феномен и называется Vdrop. Что касается Vdroop, то под этим термином понимают падение напряжения VCore в режиме бездействия и под полной нагрузкой. Если взять наш пример, то напряжение 1,176 В в режиме бездействия под нагрузкой может упасть до 1,120 В. Падения Vdrop/Vdroop сделаны намеренно, чтобы «сгладить» пики напряжений при изменении нагрузок, а также продлить срок службы CPU и подсистемы питания.

Данной особенности противодействует технология LLC (Load Line Calibration). Она предотвращает падение напряжений под нагрузкой или даже повышает напряжение в зависимости от выставленного уровня.

Функция LLC довольно полезна, поскольку при активной LLC в UEFI достаточно выставить 1,3 В, чтобы получить реальные 1,3 В, иначе пришлось бы выставлять 1,4 В в UEFI (при нормальном режиме Intel Loadline). Но не следует забывать, что при использовании LLC и изменении нагрузки возможны пики напряжений, которые существенно превышают уровень, выставленный в UEFI. И они могут быть больше, чем в обычном режиме UEFI с завышенным напряжением (с Intel Loadline).

На материнской плате ASUS ROG Maximus X Apex, которая используется в статье, технология ASUS Loadline реализована следующим образом:

В UEFI для тестов Load Line Calibration мы выставляли напряжение VCore 1,30 В.

Мы получили следующие значения:

  • LLC Level 0: 1,312 В в режиме бездействия (-12 мВ «Vdrop») и 1,376 В под нагрузкой (-64 мВ «Vdroop»)
  • LLC Level 1: 1,296 В в режиме бездействия (4 мВ Vdrop) и 1,168 В под нагрузкой (128 мВ Vdroop)
  • LLC Level 2: 1,296 В в режиме бездействия (4 мВ Vdrop) и 1,200 В под нагрузкой (96 мВ Vdroop)
  • LLC Level 3: 1,296 В в режиме бездействия (4 мВ Vdrop) и 1,216 В под нагрузкой (80 мВ Vdroop)
  • LLC Level 4: 1,296 В в режиме бездействия (4 мВ Vdrop) и 1,248 В под нагрузкой (48 мВ Vdroop)
  • LLC Level 5: 1,312 В в режиме бездействия (-12 мВ «Vdrop») и 1,280 В под нагрузкой (32 мВ Vdroop)
  • LLC Level 6: 1,312 В в режиме бездействия (-12 мВ «Vdrop») и 1,344 В под нагрузкой (-32 мВ «Vdroop»)
  • LLC Level 7: 1,312 В в режиме бездействия (-12 мВ «Vdrop») и 1,376 В под нагрузкой (-64 мВ «Vdroop»)
  • LLC Level 8: 1,328 В в режиме бездействия (-28 мВ «Vdrop») и 1,424 В под нагрузкой (-124 мВ «Vdroop»)

Как можно видеть, в режиме LLC Level 1 мы получаем работу Load Line в соответствие со спецификациями Intel. В случае LLC Level 8 мы получаем обратный эффект относительно Intel Load Line (особенно под нагрузкой), напряжение VCore увеличивается, а не падает. Так что уровни LLC от 6 до 8 лучше избегать, особенно на высоких напряжениях VCore.

На материнской плате ASRock Fatal1ty Z370 Gaming K6 технология LLC с процессорами Coffee Lake реализована следующим образом:

В UEFI для тестов Load Line Calibration мы выставляли напряжение Vcore 1,30 В.

Мы получили следующие значения:

  • LLC Level 1: 1,296 В в режиме бездействия (4 мВ Vdrop) и 1,312 В под нагрузкой (-12 мВ «Vdroop»)
  • LLC Level 2: 1,296 В в режиме бездействия (4 мВ Vdrop) и 1,216 В под нагрузкой (80 мВ Vdroop)
  • LLC Level 3: 1,280 В в режиме бездействия (20 мВ Vdrop) и 1,152 В под нагрузкой (128 мВ Vdroop)
  • LLC Level 4: 1,280 В в режиме бездействия (20 мВ Vdrop) и 1,136 В под нагрузкой (144 мВ Vdroop)
  • LLC Level 5: 1,280 В в режиме бездействия (20 мВ Vdrop) и 1,120 В под нагрузкой (160 мВ Vdroop)

Как можно видеть, ASUS и ASRock реализовали LoadLine Calibration по-разному. У ASRock LLC Level 5 соответствует спецификациям Intel Loadline, а в LLC Level 1 напряжение даже увеличивается по сравнению со спецификациями Intel (под нагрузкой). Так что мы рекомендуем избегать LLC Level 1 при выставлении VCore на очень высокие значения.

Важные напряжения

Перейдем к рассмотрению напряжений и их корректного использования.

Конечно, основным напряжением можно назвать VCore, то есть напряжение ядер CPU. Оно обеспечивает питание вычислительных ядер и напрямую влияет на результаты разгона (тактовую частоту CPU). В документации 7-го поколения процессоров Core (она верна и для Coffee Lake) указано максимально допустимое напряжение ядер 1,52 В, однако оно соответствует состоянию без разгона, а также значению в UEFI без LLC. Если учитывать технологию Intel Loadline, то в Windows под нагрузкой напряжение составляет около 1,4 В. Но все же с учетом 14-нм техпроцесса стоит подстраховаться. Для работы в режиме 24/7 лучше не превышать планки VCore 1,35 В (даже если CPU хорошо охлаждается). Кроме того, даже при таком уровне следует помнить о возможном выходе из строя CPU и существенном снижении срока службы.

Следующие значимые напряжения – VCCIO и VCCSA, влияющие на оперативную память и ее частоту, а также встроенный контроллер памяти IMC в CPU. Дополнительного входного напряжения (которое значилось VCCin или Input Voltage), знакомого нам по процессорам Haswell и Haswell Refresh (Devil’s Canyon), больше нет. Отдельного напряжения кэша тоже не предусмотрено – кэш и ядра работают на одном напряжении VCore.

Ниже мы привели краткий обзор отдельных напряжений, а также стандартные и максимальные рекомендованные значения:

Напряжения
VCore (напряжение ядер) Зависит от CPU (макс. рекомендованное

Судя по нашему опыту, напряжения VCCIO и VCCSA можно оставлять на значениях по умолчанию до частоты памяти 3.200 МГц. Только при повышении тактовой частоты памяти напряжения имеет смысл увеличить до уровня 1,1-1,15 В. Вторичные напряжения имеет смысл смотреть, если в тестах нагрузки Prime будут наблюдаться частые «вылеты» или завершения процессов по отдельным ядрам.

Новый уровень свободы – отвязка BCLK и AVX Offset

Ещё одним новшеством платформы Skylake (и всех последующих платформ, в том числе Coffee Lake) стала отвязка базовой эталонной частоты от частоты PCIe. Подобная привязка серьезно ограничивала возможности разгона, в зависимости от CPU и материнской платы можно было рассчитывать на разгон BCLK всего на 3-8%. Сейчас частота PCIe не связана с базовой частотой. В результате BCLK можно выставлять сравнительно свободно, поскольку влияния на другие частоты нет. Возможно, скажем, увеличение BCLK до 300-350 МГц с воздушным или водяным охлаждением.

Самое большое преимущество подобной отвязки заключается в разнообразии способов, с помощью которых можно достичь нужной тактовой частоты. Например, если вы хотите разогнать CPU до 4.500 МГц, то можно выбрать множитель 15 (и частоту 300 МГц BCLK) или множитель 53 (и частоту 85 МГц BCLK). Так что оверклокеры получают больше свободы, чем раньше. Можно выставлять и непривычные тактовые частоты, например, 4.550 МГц.

Разницу по производительности между двумя способами вряд ли стоит ожидать. Но мы получаем интересные возможности для экстремального разгона и тестов, так как можно пытаться выжимать последние мегагерцы. Для обычных пользователей, как мы уже упомянули, мы получаем просто больше степеней свободы.

Еще одной инновацией после процессоров Kaby Lake и материнских плат на чипсете Z270 с кодовым названием Union Point стала функция AVX Offset. Она автоматически снижает тактовую частоту на определенное значение, если приложение задействует инструкции AVX2. В результате можно провести стрессовые тесты без инструкций AVX2, а если приложение задействует AVX2, то частота будет снижена. Дело в том, что требования к стабильности при использовании инструкций AVX2 обычно намного выше, чем в случае приложений, которые эти инструкции не используют.

Источник



Что такое напряжение imc

Так что я играл с разгоном оперативной памяти на 9900k. Кажется, что большинство потоков рекомендуют увеличить как VCCSA, так и VCCIO.

Глядя на таблицу данных Intel, кажется, что VCCIO — это то, что поддерживает IMC, так почему VCCSA имеет отношение к IMC и разгону памяти?

Правильно предположить, что IMC работает на той же частоте, что и частота ОЗУ, поэтому некоторые высокоскоростные комплекты (4000 МГц +) не работают на всех процессорах?

Для безопасного разгона, исходя из того, что я прочитал и понял, напряжение на DRAM подается на процессор, а оперативная память самопроизвольно заедает, так что подняться так далеко может нанести вред оперативной памяти и процессору? (что было проблемой для Skylake и проблемы с более высоким напряжением ddr3).

Память технически не имеет своей собственной частоты. Карты памяти имеют профили, которые читает ваша материнская плата, и устанавливает контроллер памяти в соответствие.

VCCSA и VCCIO оба напряжения контроллера памяти. Системный агент подобен главному напряжению, питающему все, что технически не является частью ядер, включая контроллер памяти, контроллер Thunderbolt, кэш L3 и конвейер когерентности памяти. Если вы знакомы с разгоном старой школы, то это в основном северный мост, но он перенесён на кристалл процессора. Увеличение его обычно просто увеличивает максимально возможную частоту для оперативной памяти.

VCCIO имеет более ограниченную область применения, он просто влияет на выводы ввода-вывода вашего процессора. Откровенно говоря, информация по этому вопросу отсутствует, но она может помочь незначительно при стремлении к сжатым срокам.

Современные контроллеры памяти от Intel вполне способны, все чипы, кроме Skylake, должны поддерживать 4000 МГц на разных уровнях VCCSA. Единственная реальная проблема — это качество материнской платы, как физическая схема трассировки, так и реализация BIOS для тренировки памяти.

Для жестких временных интервалов 4000 МГц на 9900K целесообразно использовать 1.2-1.25 для VCCIO и VCCSA, хотя это будет зависеть от качества чипа. Требование начинает становиться круче с 4133/4266, так что даже если ваша доска способна, она может не стоить идти до 4400.

Очень информативно, спасибо!

Моя путаница возникла из-за этого в техническом описании, в котором конкретно указывалось, что VCCIO работает на L3 и IMC.https://imgur.com/dFCmqHr

редактировать: вы знаете, если напряжение питания драма также подается на процессор? как при высоких напряжениях DRAM может повредить процессор

Язык немного запутанный, документация Intel в основном предполагает, что вы работаете в Intel, чтобы понять его.

VCCIO взаимодействует с выводами ввода / вывода контроллера и кеша, но не питает их. Когда я говорю о выводах контроллера памяти, я имею в виду контакты, которые соединяют ядра процессора и кэш-память L1 + L2 с контроллером. Выводы IO непосредственно для памяти имеют собственное напряжение.

Напряжение ОЗУ не подключено к процессору, единственная известная мне платформа с таким поведением — старая AMD FM2 +.

Достаточно высокие значения VCCIO и VCCSA могут повредить процессор, не превышая 1,35 В для ежедневного использования с любым из них. Даже 1,3 В хорошо проникает в область убывающей отдачи.

Проблема в том, что теперь VCCIO — это напряжение кэш-памяти L3. Это также причина, по которой VCCIO необходимо увеличивать за счет увеличения скорости памяти, а также почему увеличение скорости кэширования также влияет на стабильность ОЗУ.

Вся путаница в отношении VCCSA и VCCIO заключается в том, что эти термины изменились до и после Sandy Bridge. Когда вышел Sandy Bridge, да, VCCIO запитывал контакты, а VCCSA запитывал все остальное, но после Ivy Bridge эти условия в основном изменились. На самом деле было сообщение от Asus (Raja?) О overclock.net, объясняющее, что VCCIO и VCCSA сильно изменились по сравнению с Sandy Bridge, когда вышел Haswell. Я не говорю, что вы не правы, но важно убедиться, что вы не используете старое объяснение. Если вы выполняете поиск по overclock.net, вы должны найти пост, объясняющий, как изменились SA и IO после Ivy.

1.15 В мин. Каждый для 4000+. 1.20 рекомендуется. 1,30 для устойчивого экстремального ок. Когда авто, вы увидите, что они выходят за 1.4v. И у кофейного озера довольно сильный IMC. Не беспокойтесь слишком сильно об убийстве любого компонента с помощью напряжения SA IO. Тем не менее, опасно делать 1.25v + 24/7 для 18-ядерного варианта

VCCSA питает системную шину (IMC, PCIE). VCCIO — это выводы ввода / вывода на ЦПУ, исключая выводы ввода / вывода памяти.

Да, так почему увеличение напряжения на VCCSA предположительно помогает с высокими тактовыми частотами / тактовыми импульсами? Почему VCCIO не единственное, что можно увеличить при работе с быстрым ОЗУ?

Потому что контроллер памяти взаимодействует с драм. Слишком высокая скорость передачи данных без достаточного напряжения для передачи данных, и вы получите несчастный IMC. DRAM получает собственное питание от слота DIMM, а тактовые импульсы, генерируемые системной шиной, затем передаются на IMC, который запитывается отдельно от цепи питания DIMM.

Источник

Как разогнать процессор Intel на примере Intel Core i9-9900K

Разгон процессоров от компании Intel в первую очередь связан с выбором процессора с индексом K или KF (К — означает разблокированный множитель) и материнской платы на Z-чипсете (Z490–170). А также от выбора системы охлаждения.

Чтобы понять весь смыл разгона, нужно определиться, что вы хотите получить от разгона. Стабильной работы и быть уверенным, что не вылезет синий экран смерти? Или же вам нужно перед друзьями пощеголять заветной частотой 5000–5500 MHz?

Сегодня будет рассмотрен именно первый вариант. Стабильный разгон на все случаи жизни, однако и тем, кто выбрал второй вариант, будет полезно к прочтению.

Выбор материнской платы

К разгону нужно подходить очень ответственно и не пытаться разогнать Core i9-9900K на материнских платах, которые не рассчитаны на данный процессор (это, к примеру, ASRock Z390 Phantom Gaming 4, Gigabyte Z390 UD, Asus Prime Z390-P, MSI Z390-A Pro и так далее), так как удел этих материнских плат — процессоры Core i5 и, возможно, Core i7 в умеренном разгоне. Intel Core i9-9900K в результате разгона и при серьезной постоянной нагрузке потребляет от 220 до 300 Ватт, что неминуемо вызовет перегрев цепей питания материнских плат начального уровня и, как следствие, выключение компьютера, либо сброс частоты процессора. И хорошо, если просто к перегреву, а не прогару элементов цепей питания.

Выбор материнской платы для разгона — это одно из самых важных занятий. Ведь именно функционал платы ее настройки и качество элементной базы и отвечают за стабильность и успех в разгоне. Ознакомиться со списком пригодных материнских плат можно по ссылке.

Все материнские платы разделены на 4 группы: от начального уровня до продукта для энтузиастов. По большому счету, материнские платы второй и, с большой натяжкой, третьей группы хорошо справятся с разгоном процессора i9-9900K.

Выбор системы охлаждения

Немаловажным фактором успешного разгона является выбор системы охлаждения. Как я уже говорил, если вы будете разгонять на кулере который для этого не предназначен, у вас ничего хорошего не получится. Нам нужна либо качественная башня, способная реально отводить 220–250 TDP, либо жидкостная система охлаждения подобного уровня. Здесь все зависит только от бюджета.

Из воздушных систем охлаждения обратить внимание стоит на Noctua NH-D15 и be quiet! DARK ROCK PRO 4.

Силиконовая лотерея

И третий элемент, который участвует в разгоне — это сам процессор. Разгон является лотереей, и нельзя со 100% уверенностью сказать, что любой процессор с индексом К получится разогнать до частоты 5000 MHz, не говоря уже о 5300–5500 MHz (имеется в виду именно стабильный разгон). Оценить шансы на выигрыш в лотерее можно, пройдя по ссылке, где собрана статистика по разгону различных процессоров.

Приступаем к разгону

Примером в процессе разгона будет выступать материнская плата ASUS ROG MAXIMUS XI HERO и процессор Intel Core i9-9900K. За охлаждение процессора отвечает топовый воздушный кулер Noctua NH-D15.

Первым делом нам потребуется обновить BIOS материнской платы. Сделать это можно как напрямую, из специального раздела BIOS с подгрузкой из интернета, так и через USB-накопитель, предварительно скачав последнюю версию c сайта производителя. Это необходимо, потому как в новых версиях BIOS уменьшается количество багов. BIOS, что прошит в материнской плате при покупке, скорее всего, имеет одну из самых ранних версий.

Тактовая частота процессора формируется из частоты шины BCLK и коэффициента множителя Core Ratio.

Как уже было сказано, разгон будет осуществляться изменением множителя процессора.

Заходим в BIOS и выбираем вкладку Extreme Tweaker. Именно тут и будет происходить вся магия разгона.

Первым делом меняем значение параметра Ai Overclocker Tuner с Auto в Manual. У нас сразу становятся доступны вкладки, отвечающие за частоту шины BCLK Frequency и CPU Core Ratio, отвечающая за возможность настройки множителя процессора.

ASUS MultiCore Enhancement какой-либо роли, когда Ai Overclocker Tuner в режиме Manual, не играет, можно либо не трогать, либо выключить, чтобы глаза не мозолило. Одна из уникальных функций Asus, расширяет лимиты TDP от Intel.

SVID Behavior — обеспечивает взаимосвязь между процессором и контроллером напряжения материнской платы, данный параметр используется при выставлении адаптивного напряжения или при смещении напряжения (Offset voltages). Начать разгон в любом случае лучше с фиксированного напряжения, чтобы понять, что может конкретно ваш экземпляр процессора, ведь все они уникальны. Если используется фиксация напряжения, значение этого параметра просто игнорируется. Установить Best Case Scenario. Но к этому мы еще вернемся чуть позже.

AVX Instruction Core Ratio Negative Offset — устанавливает отрицательный коэффициент при выполнении AVX-инструкций. Программы, использующие AVX-инструкции, создают сильную нагрузку на процессор, и, чтобы не лишаться заветных мегагерц в более простых задачах, придумана эта настройка. Несмотря на все большее распространение AVX-инструкции, в программах и играх они встречаются все еще редко. Все сугубо индивидуально и зависит от задач пользователя. Я использую значение 1.

Наример, если нужно, чтобы частота процессора при исполнении AVX инструкций была не 5100 MHz, а 5000 MHz, нужно указать 1 (51-1=50).

Далее нас интересует пункт CPU Core Ratio. Для процессоров с индексом K/KF выбираем Sync All Cores (для всех ядер).

1-Core Ratio Limit — именно тут и задается множитель для ядер процессора. Начать лучше с 49–50 для 9 серии и 47–48 для 8 серии процессоров Intel соответственно, с учетом шины BCLK 100 мы как раз получаем 4900–5000 MHz и 4700–4800 MHz.

DRAM Frequency — отвечает за установку частоты оперативной памяти. Но это уже совсем другая история.

CPU SVID Support — данный параметр необходим процессору для взаимодействия с регулятором напряжения материнской платы. Блок управления питанием внутри процессора использует SVID для связи с ШИМ-контроллером, который управляет регулятором напряжения. Это позволяет процессору выбирать оптимальное напряжение в зависимости от текущих условий работы. В адаптивном режиме установить в Auto или Enabled. При отключении пропадет мониторинг значений VID и потребляемой мощности.

CPU Core/Cache Current Limit Max — лимит по току в амперах (A) для процессорных ядер и кэша. Выставляем 210–220 A. Этого должно хватить всем даже для 9900к на частоте 5100MHz. Максимальное значение 255.75.

Min/Max CPU Cache Ratio — множитель кольцевой шины или просто частота кэша. Для установки данного параметра есть неофициальное правило, множитель кольцевой шины примерно на два–три пункта меньше, чем множитель для ядер.

Например, если множитель для ядер 51, то искать стабильность кэша нужно от 47. Все очень индивидуально. Начать лучше с разгона только ядер. Если ядро стабильно, можно постепенно повышать частоту кэша на 1 пункт.

Разгон кольцевой шины в значении 1 к 1 с частотой ядер это идеальный вариант, но встречается такое очень редко на частоте 5000 MHz.

Заходим в раздел Internal CPU Power Management для установки лимитов по энергопотреблению.

SpeedStep — во время разгона, выключаем. На мой взгляд, совершенно бесполезная функция в десктопных компьютерах.

Long Duration Packet Power Limit — задает максимальное энергопотребление процессора в ватах (W) во время долгосрочных нагрузок. Выставляем максимум — 4095/6 в зависимости от версии Bios и производителя.

Short Duration Package Power Limit — задает максимальное возможное энергопотребление процессором в ваттах (W) при очень кратковременных нагрузках. Устанавливаем максимум — 4095/6.

Package Power Time Window — максимальное время, в котором процессору разрешено выходить за установленные лимиты. Устанавливаем максимальное значение 127.

Установка максимальных значений у данных параметров отключает все лимиты.

IA AC Load Line/IA DC Load Line — данные параметры используются в адаптивном режиме установки напряжения, они задают точность работы по VID. Установка этих двух значений на 0,01 приведет ближе к тому напряжению, которое установил пользователь, при этом минимизируются пики. Если компьютер, после установки параметра IA DC Load line в значение 0,01, уходит в «синьку», рекомендуется повысить значение до 0,25. Фиксированное напряжение будет игнорировать значения VID процессора, так что установка IA AC Load Line/IA DC Load Line в значение 0,01 не будет иметь никакого влияния на установку ручного напряжения, только при работе с VID. На материских платах от Gigabyte эти параметры необходимо устанавливать в значение 1.

Возвращаемся в меню Extrime Tweaker для выставления напряжения.

BCLK Aware Adaptive Voltage — если разгоняете с изменением значения шины BCLK, — включить.

CPU Core/Cache Voltage (VCore) — отвечает за установку напряжения для ядер и кэша. В зависимости от того, какой режим установки напряжения вы выберете, дальнейшие настройки могут отличаться.

Существует три варианта установки напряжения: адаптивный, фиксированный и смещение. На эту тему много мнений, однако, в моем случае, адаптивный режим получается холоднее. Зачастую для 9 поколения процессоров Intel оптимальным напряжением для использования 24/7 является 1.350–1.375V. Подобное напряжение имеет место выставлять для 9900К при наличии эффективного охлаждения.

Поднимать напряжение выше 1.4V для 8–9 серии процессоров Intel совершенно нецелесообразно и опасно. Рост потребления и температуры не соразмерен с ростом производительности, которую вы получите в результате такого разгона.

  • Для тех кто выбрал фиксированный режим — установить Manual Mode. Напряжение подбирается индивидуально.
  • Для тех, кто выбрал адаптивный режим — установки напряжения Adaptive mode.

Offset mode Sign — устанавливает, в какую сторону будет происходить смещение напряжения, позволяет добавлять (+) или уменьшать (-) значения к выставленному вольтажу.

Additional Turbo Mode CPU Core Voltage — устанавливает максимальное напряжение для процессора в адаптивном режиме. Я использую 1.350V, данное напряжение является некой золотой серединой по соотношению температура/безопасность.

Offset Voltage — величина смещения напряжения. У меня используется 0.001V, все очень индивидуально и подбирается во время тестирования.

Для тех кто выбрал установку напряжения смещением, установить Offset Mode и выбрать сторону смещения -/+ и указать величину.

DRAM Voltage — устанавливает напряжение для оперативной памяти. Условно безопасное значение при наличии радиаторов на оперативной памяти составляет 1.4–1.45V, без радиаторов до 1.4V.

CPU VCCIO Voltage (VCCIO) — устанавливает напряжение на IMC и IO.

CPU System Agent Voltage (VCCSA) — напряжение кольцевой шины и контроллера кольцевой шины.

Таблица с соотношением частоты оперативной памяти и напряжениями VCCIO и VCCSA:

Однако, по личному опыту, даже для частоты 4000 MHz требуется напряжение примерно 1.15V для VCCIO и 1.2V для VCCSA. На мой взгляд, разумным пределом является для VCCIO 1.20V и VCCSA 1.25V. Все что выше, должно быть оправдано либо частотой разгона оперативной памяти за 4000MHz +, либо желанием получить максимум на свой страх и риск.

Часто при использовании XMP профиля оперативной памяти параметры VCCIO и VCCSA остаются в значении Auto, тем самым могут повыситься до критических показателей, это, в свою очередь, чревато деградацией контроллера памяти с последующим выхода процессора из строя.

Поднимать данные напряжения выше 1.35V не рекомендуется в связи с риском деградации контроллера памяти и полной возможностью убить процессор. Оба эти параметра отвечают за разгон оперативной памяти.

Установка LLC

LLC (Load-Line Calibration) В зависимости от степени нагрузки на процессор, напряжение проседает, это называется Vdroop. LLC компенсирует просадку напряжения (vCore) при высокой нагрузке. Но есть определенные особенности работы с LLC.

Например, мы установили фиксированное напряжение в BIOS для ядер 1.35V. После старта компьютера на рабочем столе мы видим уже не 1.35V, а 1.32V. Но, если запустим более требовательное к ресурсам процессора приложение, например Linx, напряжение может провалиться до 1.15V, и мы получим синий экран или «невязки», ошибки или выпадение ядер.

Чтобы напряжение проседало не так сильно и придумана функция LLC c разным уровнем компенсации просадки. Не стоит сразу гнаться за установкой самого высокого/сильного уровня компенсации. В этом нет никакого смысла. Это может быть даже опасно ввиду чрезвычайно завышенного напряжения (overshoot) в момент запуска и прекращения ресурсоемкой нагрузки перед и после Vdroop. Нужно оптимально подобрать выставленное напряжение с уровнем LLC. Напряжение под нагрузкой и должно проседать, но должна оставаться стабильность. Конкретно у меня в BIOS материнской платы стоит 1.35V c LLC 5. Под нагрузкой напряжение опускается до 1.19–1.21V, при этом процессор остается абсолютно стабильным под длительной и серьезной нагрузкой. Завышенное напряжение выливается в большем потреблении и, как следствие, более высоких температурах.

Например, при установке LCC 6 с напряжением 1.35V во время серьезной нагрузки напряжение проседает до 1.26V, при этом справиться с энергопотреблением и температурой с использованием воздушной системы охлаждения уже нет возможности.

Чтобы наглядно изучить процесс работы LLC и то, какое влияние оказывает завышенный LLC на Overshoot’ы, предлагаю ознакомиться с работами elmora, более подробно здесь.

Идеальным вариантом, с точки зрения Overshoot’ов, является использование LLC в значении 1 (самое слабое на платах Asus), однако добиться стабильности с таким режимом работы LLC во время серьезной нагрузки будет сложно, как выход, существенное завышенное напряжение в BIOS. Что тоже не очень хорошо.

Пример использовании LLC в значении 8 (самое сильно на платах Asus)

При появлении нагрузки на процессоре напряжение просело, но потом в работу включается LLC и компенсирует просадку, причем делая это настолько агрессивно, что напряжение на мгновение стало даже выше установленного в BIOS.

В момент прекращения нагрузки мы видим еще больший скачок напряжения (Overshoot), а потом спад, работа LLC прекратилась. Вот именно эти Overshoot’ы, которые значительно превышают установленное напряжение в BIOS, опасны для процессора. Какого-либо вреда на процессор Undershoot и Vdroop не оказывают, они лишь являются виновниками нестабильности работы процессора при слишком сильных просадках.

CPU Current Capability — увеличивает допустимое значение максимального тока, подаваемого на процессор. Сильно не увлекайтесь, с увеличением растет так же и температура. Оптимально на 130–140%

VRM Spread Spectrum — лучше выключить и кактус у компьютера поставить, незначительное уменьшение излучения за счет ухудшения сигналов да и шина BLCK скакать не будет.

Все остальные настройки нужны исключительно для любителей выжимать максимум из своих систем любой ценой.

Проверка стабильности

После внесения всех изменений, если компьютер не загружается, необходимо повысить напряжение на ядре или понизить частоту. Когда все же удалось загрузить Windows, открываем программу HWinfo или HWMonitor для мониторинга за состоянием температуры процессора и запускаем Linx или любую другую программу для проверки стабильности и проверяем, стабильны ли произведенные настройки. Автор пользуется для проверки стабильности разгона процессора программами Linx с AVX и Prime95 Version 29.8 build 6.

Если вдруг выявилась нестабильность, то повышаем напряжение в пределах разумного и пробуем снова. Если стабильности не удается добиться, понижаем частоту. Все значения частоты и напряжения сугубо индивидуальны, и дать на 100 % верные и подходящие всем значения нельзя. Как уже писалось, разгон — это всегда лотерея, однако, купив более качественный продукт, шанс выиграть всегда будет несколько выше.

Резюмируем все выше сказанное

Максимально допустимое напряжение на процессор составляет до 1.4V. Оптимально в пределах 1.35V, со всем что выше, возникают трудности с температурой под нагрузкой.

Существует 3 способа установки напряжения:

  • Manual mode
  • Adaptive mode
  • Offset mode

Adaptive mode — это предпочтительный способ для установки напряжения.
Он работает с таблицей значений VID вашего процессора и позволяет снижать напряжение в простое .

Оптимально найти стабильное напряжение в фиксированном режиме, потом выставить адаптивный режим и вбить это знание для адаптивного режима, далее выставить величину смещения по необходимости.

При разгоне оперативной памяти и использовании XMP профиля, необходимо контролировать напряжение на CPU VCCIO Voltage (VCCIO) и CPU System Agent Voltage (VCCSA).

Подобрать оптимальный уровень работы LLC, VDROOP ДОЛЖЕН БЫТЬ.

Название и принцип работы LLC у разных производителей

Источник

Читайте также:  Как посчитать выпрямленное напряжение