Меню

Что такое ток коммутации контроллера

Силовые контроллеры: назначение, устройство, технические характеристики

Контроллер — аппарат управления, предназначенный для пуска, останова, регулирования скорости вращения и реверсирования электродвигателей. Контакты контроллера включаются непосредственно в цепи питания электродвигателей с напряжением не свыше 600 В.

По устройству контактных частей различают контроллеры со скользящими контактами и кулачкового типа. Контроллеры со скользящими контактами в свою очередь разделяются на барабанные и плоские (последние применяются редко).

Вал контроллера может поворачиваться вручную или от приводимого в движение механизма или от отдельного электродвигателя. Неподвижные контакты (пальцы) располагаются в корпусе аппарата вокруг вала с контактами и изолированы от него. Контроллеры изготовляются только в защищенном исполнении. Для фиксации коммутационных положений служат храповые рычажно-пружинные механизмы.

Заданная программа переключений контроллера осуществляется соответствующей расстановкой подвижных контактов (сегментов). Для улучшения условий коммутации контроллеров постоянного тока снабжаются магнитным гашением. Количество коммутационных положений обычно от 1 до 8 (иногда до 12—20), величина коммутируемого тока не превышает 200 А.

Контроллеры могут работать в повторно-кратковременном режиме с относит, продолжительностью включения (25—60%) или в продолжит, режиме. Допустимая частота включений контроллеров барабанного типа не превышает 300, а кулачкового типа — до 600 включений в час. Наибольшее распространение контроллеры получили в электроприводе подъемно-транспортных машин и механизмов.

Силовые контроллеры являются комплектными устройствами для обеспечения включения цепей обмоток электродвигателей по заранее заданной программе, заложенной в конструкции контроллера. Простота конструкции, безотказность в работе и малые габариты — основные преимущества силовых контроллеров.

При правильном выборе и использовании силовых контроллеров в соответствии с их коммутационными возможностями контроллеры являются надежными и удобными в эксплуатации комплектными устройствами управления крановыми электроприводами, так как в этих устройствах полностью исключены нарушения заданной программы, а включение и отключение, зависящие от действий машиниста, обеспечивают 100 %-ную готовность привода к работе. Однако к недостаткам этих комплектных устройств можно отнести низкую износостойкость и коммутационную способность, а также отсутствие автоматизированного пуска и торможения.

На рис.1 показан контактный элемент барабанного контроллера. На валу 1 укреплён сегментодержатель 2 с подвижным контактом в виде сегмента 3. Сегментодержатель изолирован от вала изоляцией 4. Неподвижный контакт 5 расположен на изолированной рейке 6. При вращении вала 1 сегмент 3 набегает на неподвижный контакт 5, чем осуществляется замыкание цепи. Необходимое контактное нажатие обеспечивается пружиной 7. Вдоль вала расположено большое число контактных элементов. На одном валу устанавливается ряд таких контактных элементов. Сегментодержатели соседних контактных элементов можно соединять между собой в различных необходимых комбинациях. Определенная последовательность замыкания различных контактных элементов обеспечивается различной длиной их сегментов.

Рис.1. Контактный элемент барабанного контроллера.

У кулачковых контроллеров размыкание и замыкание контактов обеспечивается смонтированными на барабане кулачками, поворот которых осуществляется с помощью рукоятки маховика или педали и могут коммутировать от 2 до 24 электрических цепей. Кулачковые контроллеры разделяются по количеству коммутируемых цепей, виду привода, диаграммам замыкания контактов.

В кулачковом контроллере переменного тока (рис.2) перекатывающийся подвижный контакт 1 имеет возможность вращаться относительно центра О2, расположенного на контактном рычаге 2. Контактный рычаг 2 поворачивается относительно центра O1. Контакт 1 замыкается с неподвижным контактом 3 и соединяется с выходным контактом с помощью гибкой связи 4. Замыкание контактов 1,3 и необходимое контактное нажатие создаются пружиной 5, воздействующей на контактный рычаг через шток 6. При размыкании контактов кулачок 7 действует через ролик 5 на контактный рычаг. При этом сжимается пружина 5 и контакты 1, 3 размыкаются. Момент включения и отключения контактов зависит от профиля кулачковой шайбы 9, приводящей в действие контактные элементы. Малый износ контактов позволяет увеличить число включений в час до 600 при ПВ-60 %.

В контроллер входят два комплекта контактных элементов / и //, расположенных по обе стороны кулачковой шайбы 9, что позволяет резко сократить осевую длину устройства. Как в барабанном, так и в кулачковом контроллере имеется механизм для фиксации положения вала.

Контроллеры переменного тока в виду облегченного гашения дуги могут не иметь дугогасительных устройств. В них устанавливаются только дугостойкие асбестоцементные перегородки 10. Контроллеры постоянного тока имеют дугогасительное устройство, аналогичное применяемому в контакторах.

Выключение рассмотренного контроллера происходит при воздействии на рукоятку и передаче этого воздействия через кулачковую шайбу, включение происходит с помощью силы пружины 5 при соответствующем положении рукоятки. Поэтому контакты удается развести даже в случае их сваривания. Недостаток конструкции заключается в большом моменте на валу за счет включающих пружин при значительном числе контактных элементов. Надо отметить, что возможны и другие конструктивные решения привода контактов контроллера. Рис.2. Кулачковый контроллер.

Для плавного регулирования поля возбуждения крупных генераторов и для пуска в ход и регулирования частоты вращения больших двигателей необходимо иметь большое число ступеней. Применение кулачковых контроллеров здесь нецелесообразно, так как большое число ступеней ведет к резкому возрастанию габаритов аппарата. Число операций в час при регулировании и пуске невелико (10—12). Поэтому особых требований к контроллеру с точки зрения износостойкости не предъявляется. В этом случае широкое распространение получили плоские контроллеры.

На рис.3 показан общий вид плоского контроллера для регулирования возбуждения. Неподвижные контакты 1, имеющие форму призмы, укреплены на изоляционной плите 2, являющейся основанием контроллера. Расположение неподвижных контактов по линии дает возможность иметь большое число ступеней. При той же длине контроллера число ступеней может быть увеличено путем применения параллельного ряда контактов, сдвинутого относительно первого ряда. При сдвиге на полшага число ступеней удваивается.

Подвижный контакт выполнен в виде медной щетки. Щетка располагается в траверсе 3 и изолируется от нее. Нажатие создается цилиндрической пружиной. Передача тока с контактной щетки 4 на выходной зажим осуществляется с помощью токосъемной щетки и токосъемной шипы 5. Контроллер рис.3 может одновременно производить переключения в трех независимых цепях. Траверса перемещается с помощью двух винтов 6, приводимых в движение вспомогательным двигателем 7. При наладочных работах перемещение траверсы вручную производится рукояткой 8. В конечных положениях траверса воздействует на конечные выключатели 9, которые останавливают двигатель.

Для того чтобы иметь возможность точной остановки контактов на желаемой позиции, скорость движения контактов берется малой: (5—7)10-3 м/с, а двигатель должен иметь торможение. Плоский контроллер может иметь и ручной привод.

Рис.3. Плоский контроллер.

Преимущества и недостатки разных типов контроллеров

Преимущества и недостатки разных типов контроллеровВследствие малой износостойкости контактов допустимое число включений контроллера в час превышает 240. При этом мощность запускаемого двигателя приходится снижать до 60% номинальной, из-за чего такие контроллеры применяются при редких включениях.

В контроллере используется перекатывающийся линейный контакт. Благодаря перекатыванию контактов дуга, загорающаяся при размыкании, не воздействует на поверхность контакта, участвующую в проведении тока в полностью включенном состоянии.

Малый износ контактов позволяет увеличить число включений в час до 600 при продолжительности включения 60%.

Конструкция контроллера имеет следующую особенность: выключение происходит за счет выступа кулачка, а включение за счет силы пружины. Благодаря этому контакты удается развести даже в случае их сваривания.

Недостатком этой системы является большой момент на валу, создаваемый включающими пружинами при значительном числе контактных элементов. Возможны и другие конструктивные оформления привода контактов. В одном из них контакты замыкаются под действием кулачка и размыкаются под действием пружины, в другом и включение и отключение совершается кулачком. Однако они применяются редко.

Плоские контроллеры получили широкое распространение для плавного регулирования поля возбуждения крупных генераторов и для пуска в ход и регулирования частоты вращения больших двигателей. Так как необходимо иметь большое число ступеней, то применение кулачковых контроллеров здесь нецелесообразно, потому что большое число ступеней ведет к резкому возрастанию габаритов аппарата.

При размыкании между подвижным и неподвижным контактом появляется напряжение, равное падению напряжения на ступени. Для того чтобы не появлялась дуга, допустимое падение напряжения на ступени берется от 10 В (при токе 200 А) до 20 В (при токе 100 А). Допустимое число включений в час определяется износом контактов и не превосходит обычно 10—12. Если напряжение на ступени равно 40—50 В, то применяется специальный контактор, который перемыкает соседние контакты во время перемещения щетки.

В случае, когда необходимо производить коммутацию цепи при токах 100 А и более с частотой включений в час 600 и выше, применяется система, состоящая из контактора и командоаппарата.

Применение силовых контроллеров в крановом электроприводе

Для управления электродвигателями крановых механизмов применяют контроллеры следующих серий: ККТ-60А на переменном токе и контроллеры пультов DVP15 и UP35/I. Контроллеры этих серий изготовляют в защищенных корпусах с крышками и степенью защиты от внешней среды 1Р44.

Контроллеры ККТ-60А

Механическая износостойкость силовых контроллеров составляет (3,2 -5) х 10 млн. циклов ВО. Коммутационная износостойкость зависит от силы коммутируемого тока. При номинальной силе тока она составляет около 0,5 х 10 млн. циклов ВО, а при силе тока 50 % номинальной можно получить износостойкость 1 х 10 млн. циклов ВО.

Читайте также:  Ток в нулевой точке звезда

Контроллеры ККТ-60А имеют номинальную силу тока 63 А при режиме работы ПВ = 40 %, но их коммутационная способность весьма невысокая, что ограничивает использование этих контроллеров в тяжелых условиях коммутации. Номинальное напряжение контроллеров переменного тока 38G В, частота 50 Гц.

Источник

Коммутация тока

При вращении якоря каждая секция обмотки переключается коллектором из одной параллельной ветви в другую, оставаясь некоторое время замкнутой накоротко. Переключение секции и совокупность всех явлений, происходящих в ней при этом, называется коммутацией. Время Т, в течение которого секция остается замкнутой накоротко, называется периодом коммутации.

Коммутатор что это такое и для чего

Если при коммутации обнаруживается искрение на коллекторе, то это может привести в негодность щетки и коллектор, и машина может выйти из строя. Рассмотрим упрощенно причины плохой коммутации и способы ее улучшения.

Представим себе секцию () (рис 8-9 и 8-10) отдельно на рис. 8-14 и допустим, что секция вращается очень медленно (Т ≈ ∞), ширина щетки равна ширине коллекторной пластины и что всеми сопротивлениями, кроме сопротивления переходного слоя между щеткой и коллектором, можно пренебречь. Ток Iя переходит из щетки через сопротивление переходного слоя rп = R в коллекторную пластину 1, а затем разделится на два равных тока I = 0,5Iя, идущих: один в параллельную ветвь с проводами Зн—6в—1в и т. д., а другой — с проводами И Т. Д.

Как только щетка коснется коллекторной пластины 6, начнется коммутация, и ток в секции начнет уменьшаться.

Действительно, если при t = (Т/10)0,9 контактной поверхности щетки касается коллекторной пластины 1, а 0,1 — касается пластины 6, то ток, проходящий через коллекторную пластину 1, равен 0,9 Iя, а через пластину 6 — 0,1 Iя. Токи в параллельных ветвях при неизменном Iя по-прежнему должны быть равны по 0,5 Iя, а следовательно, ток в короткозамкнутой секции ic имеет прежнее направление и величина его равна 0,9 Iя — 0,5 Iя = 0,4 Iя. Ток другой параллельной ветви складывается из тока короткозамкнутой

Рис. 8-14. Начало коммутации (t = 0 ).

секции 0,4 Iя и тока 0,1 Iя, идущего от щетки в коллекторную пластину 6, т. е. тоже равен 0,4 Iя + 0,1 Iя = 0,5 Iя

Таким образом, ток в короткозамкнутой секции уменьшается пропорционально времени t и в положении, показанном на рис. 8-15, т. е. при t = T/2 равен нулю. Дальше ток в секции начинает нарастать, но уже в обратном направлении и к моменту t = Т, представленному на рис. 8-16, опять равен 0,5 Iя, так как секция разомкнулась и переключена в правую параллельную ветвь. Зависимость ic = f (t) показана на рис. 8-17, а и представляет прямую линию. Такой должна быть коммутация в каждой хорошо построенной ма шине.

Средина времени коммутации, конец коммутации

Рис. 8-15. Средина времени коммутации t = T/2.

Рис. 8-16. Конец коммутации t = T.

Так происходит коммутация при Т ≈ ∞, т.е. когда скорость вращения ничтожна и в секции, замкнутой накоротко, э. д. с, не возникает. На самом деле время коммутации длится. тысячные доли секунды и, значит, ток ic в секции изменяется очень быстро. При этом, как известно, b секции возникает э. д. с. самоиндукции. Поскольку зависимость ic = f (t) — прямая линия, т. е. dic/dt = tg α = const, то величина еs = — Lc(dic/dt)постоянна. Разделив величину еs на сопротивление короткозамкнутой секции, можно получить значение добавочного тока is вызванного э. д. c. самоиндукции es:

где r6 и r1 — сопротивления переходного слоя части щетки, набегающей на шестую коллекторную пластину, и остальной части щетки, сбегающей с первой пластины, Сопротивление самой секции ничтожно мало по сравнению с r6 и r1 .

Коммутация при естественных условиях

Рис. 8-17. Коммутация при естественных условиях.

Для момента t = T/2 (рис. 8-15) r6 + r1 = 2R + 2R = 4R, а для t = 0 и t = Т r6 + r1 = ∞. Вычисленные на основании этих соображений значения тока is = f(t) показаны на рис. 8-17, б. Сумма токов секции ic + is при наличии э. д. с. самоиндукции, т. е. в реальных условиях, показана на рис. 8-17, а пунктиром. Коммутация в этом случае называется замедленной, ибо э. д. с. e s затягивает процесс изменения тока в секции, поддерживая его, когда он убывает, и препятствуя его нарастанию в конце периода коммутации. На рис. 8-18 показано распределение токов для момента t = T/2 при наличии э. д. с. es. При этом оказывается, что плотность тока на набегающем краю щетки уменьшается, а на сбегающем — увеличивается, вызывая дополнительный нагрев и износ щетки сверх расчетного.

Но главная опасность, вызываемая замедленной коммутацией, это, искрение между щеткой и коллектором на сбегающем краю щетки; Вызывается оно эффектом размыкания короткозамкнутой секции в конце коммутации. В. это время запасенная секцией электромагнитная энергия 1/2 Lci 2 s вы деляется в электрической дуге у сбегающего края щетки. Работа машины допустима, если при номинальном режиме работы искрение, определяемое на глаз, не превосходит следующих степеней:

Степень 1 — отсутствие искр (темная коммутация).

Степень 1 1 /4 — слабое точечное искрение под небольшой частью щетки. В этих случаях нет почернения коллектора и нагара на щетках.

Рис. 8-18. Распределение токов при замедленной коммутации.

Степень I 1 / 2 — слабое искрение под большой частью щетки. При этом появляются следы почернения на коллекторе, легко устраняемые протиранием поверхности коллектора тряпкой, смоченной в бензине, а также следы нагара на щетках.

Для улучшения коммутации принимается ряд мер. Чтобы уменьшить ток is, переходное сопротивление делают большим, применяя графитные щетки в машинах нормального типа и угольно-графитные или электрографитированные—в тяговых, крановых машинах и двигателях прокатных станов. В низковольтных машинах (автотракторные, электролизные и др.) применяют медно-графитные щетки. Щетки подбираются опытным путем на испытательном стенде завода и поэтому заменять изношенную щетку можно только щеткой той же марки.

Радикальной мерой улучшения коммутации является применение дополнительных полюсов (рис. 8-19). При этом уничтожается э. д. с. самоиндукции, а значит и дополнительный ток is. Они располагаются на геометрической нейтрали и в случае работы машины гене ратором чередуются с главными полюсами в направлении вращения якоря, как указано на рис. 8-19 а. Действие их включается в следующем. Когда секция, попадая на гео метрическую нейтраль, замыкается щеткой накоротко, э. д. с. машины Е в убывающий ток секции ic (pиc. 8 -I7, б) имеют одно направление. Электродвижущая сила самоиндукции поддерживает убывающий ток, а значит направлена так же. как э. д. с. Е. Поэтому, для компенсации еs в секции должна дополнительно наводиться э. д. с. коммутации ек встречная э. д. с. самоиндукции. Условно это показано на рис. 8-19, б. Это и выполняется, если для генератора, вслед за главным полюсом N , установить в направлении вращения дополнительный s (рис. 8-19, а). Если установить ек = eS то дополнительный ток секции is будет равен нулю и коммутация станет прямолинейной.

Дополнительные полюсы

Рис. 8-19. Дополнительные полюсы.

При работе машины двигателем, при том же направлении тока в якоре и той же полярности главных полюсов направление вращения якоря будет обратным и э. д. с. Е встречная току. Следовательно, э. д. с. ек должна совпадать с э. д. с. Е (рис. 8-19, б) и чередование полюсов для этого случая будет NnSs.

Для того чтобы компенсация э. д. с. самоиндукции происходила автоматически, при всех нагрузках, обмотка дополнительных полюсов соединяется последовательно с обмоткой якоря (рис. 8- 19, а) и полюсы делаются ненасыщенными. В этом случае ек ≡ ФдпIя. Так как esIя то она компенсируется э. д. с. ек при любой нагрузке. В действительности процесс коммутации значительно сложнее, чем был описан.

При эксплуатации машин постоянного тока необходимо считаться с возможностью возникновения «кругового огня по коллектору», который приводит к тяжелой аварии машины. Сущность явления в следующем.

Если магнитная индукция в воздушном зазоре В؏ постоянна, то, разделив напряжение машины на число коллекторных пластин, лежащих между двумя разноименными щетками, находят среднее напряжение между двумя лежащими рядом коллекторными пластинами (Uср) или, что то же, напряжение, создаваемое одной секцией (рис. 8-9). Это напряжение должно быть меньше того, которое способно поддержать электрическую дугу между пластинами, если она по каким-либо причинам возникнет.

Практически напряжение между некоторыми пластинами оказывается выше, чем Uср, особенно благодаря поперечной реакции якоря, увеличивающей индукцию под краем полюса на 30—50%. Тогда в секции, а значит и между коллекторными пластинами, к которым она при паяна, получается повышенное напряжение. Это особенно наблюдается у мощных машин, работающих с большой толчкообразной перегрузкой.

При перегрузке под сбегающим краем щетки образуется сильное искрение, ионизирующее воздух вокруг коллектора. Если напряжение между двумя коллекторными пластинами способно поддержать электрическую дугу, то она возникает, растягивается по коллекторным пластинам, может перекрыть разноименные щетки и переброситься на корпус машины. Против этого явления в машинах постоянного тока принимаются специальные конструктивные меры.

Читайте также:  Характеристика цепей переменного тока векторные диаграммы

Статья на тему Коммутация тока

Источник

Процесс коммутации

Дата публикации: 20 августа 2014 .
Категория: Статьи.

Период коммутации

Период коммутации Tк представляет собой время, в течение которого секция замкнута накоротко щеткой и коммутируется.

В случае простой петлевой обмотки секция, изображенная на рисунке 1, а в виде петли, присоединяется к соседним коллекторным пластинам. При этом значение Tк равно времени перемещения коллектора, вращающегося с окружной скоростью vк, на ширину щетки bщ:

Определение периода коммутации

Рисунок 1. Определение периода коммутации

Обозначим: Dк – диаметр коллектора,

– коллекторное деление и

– коэффициент перекрытия (обычно βк = 2,0 – 4,0, а при сложных петлевых обмотках βк достигает 7,0). Тогда

(n – число оборотов якоря; K – число пластин коллектора) и для простой петлевой обмотки, согласно выражению (1),

(5)

При сложной, m-ходовой петлевой обмотке (рисунок 1, б) между началом и концом секции располагается m – 1 коллекторных пластин. При этом секция замкнута накоротко в течение времени перемещения коллектора на длину дуги bщ – (m – 1) × bк, и, следовательно,

Подставив сюда bщ = βк × bк, число ходов обмотки m = a / p (где а – число пар параллельных ветвей обмотки; p – число пар полюсов) и значение vк из формулы (4), получим

(6)

Выражение (6) действительно также для простой петлевой обмотки (a / p = 1) и, кроме того, как можно показать, для простой и сложной волновых обмоток.

Пусть, например, мы имеем машину с простой петлевой обмоткой и n = 1500 об/мин = 25 об/с, K = 100, βк = 2,5. Тогда по формуле (5) или (6)

Таким образом, процесс коммутации протекает быстро и по отношению к внешней цепи машины является периодическим процессом с частотой порядка 1000 – 3000 Гц.

Уравнения коммутации

Исследуем закономерности коммутации секции для простой петлевой обмотки и примем сначала для простоты, что ширина щетки равна коллекторному делению (рисунок 2).

Последовательные моменты коммутации секции

Рисунок 2. Последовательные моменты коммутации секции

Составим второе уравнение Кирхгофа для коммутируемой секции (рисунок 2):

i × rс + i1 × (rп + rщ1) – i2 × (rп + rщ2) = ∑e , (7)

где i – ток в коммутируемой секции, принимаемый положительным для начального момента коммутации (рисунок 2, а); i1, i2 – токи, протекающие через соединительные проводники («петушки») и коллекторные пластины 1 и 2 к щетке; rс – сопротивление секции; rп – сопротивление «петушка»; rщ1, rщ2 – сопротивление щеточного контакта между пластинами 1 и 2 и щеткой; ∑e – сумма электродвижущих сил, индуктируемых в коммутируемой секции в результате процесса самоиндукции в короткозамкнутой секции и других явлений.

Кроме того, для узловых точек а и б на рисунке 2 можно составить два первых уравнения Кирхгофа:

Процесс коммутации определяется изменением во времени токов i, i1, i2. Эти токи могут быть определены из уравнений (7) и (8), если известны все другие величины. Однако в общем случае решение этих уравнений весьма затруднительно. Действительно, iа, rс и rп можно считать постоянными и заданными величинами. Однако rщ1 и rщ2 являются весьма сложными математическими трудно определимыми функциями токов i1, i2 и времени t. То же можно сказать и о сумме электродвижущих сил ∑e. Поэтому ниже, следуя так называемой классической теории коммутации, находим приближенное решение, которое позволяет выявить основные закономерности процесса коммутации и определить способы ее улучшения.

Подставим i1 и i2 из уравнений (8) и (7). Тогда получим

(9)

Первый член этого выражения представляет собой так называемый основной ток коммутации секции, а второй член – добавочный ток коммутации. Очевидно, что знаменатели в выражении (9) определяют сопротивление короткозамкнутого контура коммутируемой секции. Добавочный ток коммутации поэтому можно рассматривать как ток короткого замыкания секции, определяемый электродвижущей силой ∑e.

Коммутация сопротивлением, прямолинейная коммутация

Рассмотрим сначала случай, когда ∑e = 0. При этом в секции существует только основной ток коммутации. Изменение тока секции i определяется только изменением rщ1 и rщ2, вследствие чего этот случай называется коммутацией сопротивлением.

(10)

В классической теории коммутации принимается, что rщ1 и rщ2 обратно пропорциональны контактным площадям S1 и S2 пластин 1 и 2 со щетками (рисунок 2). При этом предполагается также, что токи i1 и i2 распределяются равномерно по этим площадям.

Пусть начало коммутации соответствует времени t = 0 (рисунок 2, а), а конец t = Tк (рисунок 2, в). Тогда при bщ = bк

(11)

где S – полная контактная площадь коллекторной пластины со щеткой в положении, показанном на рисунке 2, а и в.

Пусть, далее, переходное сопротивление между щеткой и пластиной в предельных положениях в соответствии с рисунком 2, а и в равно rщ. Тогда при указанных выше предположениях

(12)

Подставим теперь значения rщ1 и rщ2 из (12) в (10). Тогда найдем, что

(13)

Зависимость i от t, согласно выражению (13), является линейной (рисунок 3, а). Такую коммутацию поэтому называют прямолинейной.

Прямолинейная и криволинейная коммутация сопротивлением

Рисунок 3. Прямолинейная (а) и криволинейная (б) коммутация сопротивлением

Установим распределение плотности тока под щеткой для этого случая коммутации. Плотности тока под сбегающим и набегающим краями щетки соответственно равны:

На рисунке 3, а для некоторого момента времени t в соответствии с уравнениями (8) показаны также значения токов i1 и i2. При этом из рисунка 3, а следует, что

(14)

Очевидно, что при прямолинейной коммутации (рисунок 3, а) α1 = α2 = const. Поэтому в течение всего периода коммутации также jщ1 = jщ2 = const.

Таким образом, при прямолинейной коммутации плотность тока под всей щеткой на протяжении всего времени коммутации неизменна, как если бы щетки находились на сплошном вращающемся контактном кольце, а не на коллекторе. Такой случай коммутации поэтому является теоретически идеальным.

Можно показать, что и при bщ > bк коммутация простой петлевой обмотки является прямолинейной, если только ∑e = 0 и rс = rп = 0.

Если rс ≠ 0 и rп ≠ 0, то по равенствам (9) и (12) можно установить, что при ∑e = 0 ток i изменяется так, как показано на рисунке 3, б. Следовательно, в общем случае коммутация сопротивлением не является прямолинейной. Однако в обычных условиях отклонение кривой на рисунке 3, б от прямой линии мало, и им можно пренебречь.

Замедленная и ускоренная коммутация

В общем случае, при ∑e ≠ 0, на основной ток коммутации накладывается добавочный ток, определяемый последним членом равенства (9):

или в соответствии с равенствами (12)

(16)
Добавочный ток коммутации
Рисунок 4. Добавочный ток коммутации

Зависимость сопротивления короткозамкнутого контура секции rк от времени согласно выражению (16) изображена на рисунке 4. Если предположить, что ∑e по абсолютной величине постоянна, то характер зависимости iк.д от t при ∑e > 0 и ∑e 0 ток iк.д складывается с основным током коммутации, который можно принять линейным. При этом получается случай так называемой замедленной коммутации (рисунок 5, а), когда изменение тока i в начале коммутации происходит медленно и ускоряется к концу.

Значение тока на сбегающем краю щетки i1 в этом случае сохраняется большим вплоть до конца коммутации, вследствие чего и плотность тока jщ1 под этим краем щетки к концу коммутации становится большой. Размыкание контура короткозамкнутой секции сбегающим краем щетки при этом аналогично выключению или разрыву цепи тока с r и L при помощи рубильника.

По изложенным причинам при замедленной коммутации возникают благоприятные условия для искрения под сбегающим краем щетки.

Замедленная и ускоренная коммутация

Рисунок 5. Замедленная (а) и ускоренная (б) коммутация

Этому способствует также то обстоятельство, что контакт на краях щетки менее устойчив (из-за наличия зазора между щеткодержателем и щеткой, последняя качается, и края щетки стираются больше и так далее).

При ∑e div > .uk-panel’>» data-uk-grid-margin>

Источник



Особенности коммутации сетей постоянного тока

В конце XIX-начале XX века между специалистами-электротехниками развернулась самая настоящая «война токов». Основная конкуренция проходила между двумя направлениями систем генерации, электроснабжения и электропотребления: постоянным током (англ. DirectCurrent – DC) и переменным (англ. AlternatingCurrent – AC). В итоге предпочтение было отдано трёхфазным цепям переменного тока. Подсчитав объёмы капитальных затрат на создание систем электроснабжения, промышленники выбрали, казалось бы, самый оптимальный вариант. Но удастся ли переменному току удержать лидерство в современных условиях? Сегодня в ряде областей наблюдается развитие технологий и продвижение проектов на постоянном токе.

Области применения постоянного тока
Линии электропередачи низкого напряжения

В рамках финской программы «Интеллектуальные сети и рынок энергии» в Технологическом университете Лаппеенранты разработан проект системы электроснабжения и связи LVDC (англ. Low voltage direct current). Он предназначается для загородных посёлков с малым числом потребителей и линиями электроснабжения большой протяжённости.

Проект предусматривает замену дорогих традиционных трёхфазных распределительных сетей переменного напряжения 20/0,4 кВ на кабельные подземные линии LVDC (±0,75 кВ). Прокладка кабеля на глубине более 1,5 м минимизирует зоны отчуждения и не создаёт ограничений для ведения сельскохозяйственных работ. Такое решение существенно уменьшает стоимость сети и её зависимость от погодных катаклизмов. Каждое здание и сооружение будет подключаться к сети постоянного тока через преобразователи, согласующие напряжение LVDC с напряжением, необходимым потребителю.

Читайте также:  Подключение датчика тока датчика холла

Энергоснабжение локальных объектов, микро- и минисети постоянного напряжения

Сегодня для обеспечения повышения энергоэффективности всё чаще предлагаются проекты микросетей постоянного напряжения внутри здания (или нескольких зданий) и на локальной территории. На входе таких сетей установлен высокоэффективный преобразователь, превращающий переменное напряжение распределительных линий в постоянное.

Современные локальные сети постоянного напряжения имеют ряд преимуществ, среди которых необходимо отметить следующие:

  • общее преобразование из переменного напряжения в постоянное для всех нагрузок уменьшает потери на 10-20%;
  • эффективное интегрирование возобновляемых источников электроэнергии, являющихся также источниками постоянного напряжения (солнечные батареи, небольшие ветряные турбины, топливные элементы и др.);
  • простое согласование перечисленных источников постоянного напряжения, не требующих взаимной синхронизации;
  • эффективное управление графиками нагрузки (включая накопление электрической энергии в периоды избыточной генерации и выдачу в периоды дефицита);
  • повышенная электробезопасность сетей постоянного тока.

Транспорт

Не так давно была разработана энергосистема постоянного тока для крупного морского судна гражданского назначения – многоцелевого танкера для обслуживания нефтяных платформ, построенного в Норвегии. Традиционно в судах с электротягой происходит многократное преобразование переменного тока в постоянный для питания винто-рулевых колонок и гребных винтов, на которые приходится более 80% всего электропотребления. Это приводит к большим потерям энергии, снижению общего КПД, а также негативному влиянию на окружающую среду. Компания АББ, лидер в производстве силового оборудования и технологий для электроэнергетики и автоматизации, разработала проект, в котором электроэнергия распределяется через единую цепь постоянного тока. «С помощью нашего решения суда смогут максимально эффективно использовать свои возможности по энергосбережению с применением дополнительных источников постоянного тока, таких как солнечные батареи, топливные ячейки или аккумуляторы, подключенные напрямую к судовой сети постоянного тока», — рассказывает Вели-Матти Рейникала, руководитель подразделения «Автоматизация процессов» компании АББ.

В сравнении с системами на переменном токе спроектированная энергосистема имеет следующие преимущества:

  • расход топлива на 20% ниже;
  • за счёт отсутствия силовых низкочастотных трансформаторов суммарный вес и объём электрооборудования уменьшен на 30%;
  • высвобождается место для размещения оборудования, груза и экипажа, то есть улучшена компоновочная схема танкера.

Управляемый электропривод

Постоянное напряжение широко применяется для обеспечения эффективного регулирования скорости электродвигателей.
С каждым годом управляемый электропривод всё больше проникает в те сферы, в которых раньше считалось достаточным применение обычного неуправляемого привода. Специалисты уверены, что сочетание инвертор плюс асинхронный (или вентильный) электродвигатель в ближайшем будущем будет всё больше теснить традиционные типы приводов. А для такого инверторного привода питание постоянным напряжением является естественным и наиболее эффективным.

Бытовая электротехника и электроника

Практически вся современная бытовая техника питается переменным напряжением. Однако почти в каждом современном электроприборе происходит преобразование переменного входного напряжения в постоянное. И именно последнее используется электронными схемами.

Очевидно, что у постоянного тока множество преимуществ перед переменным. Но всё же у такого способа питания оборудования есть целый ряд особенностей, которые необходимо учитывать при разработке топологии электрических цепей и при выборе защитных и коммутационных устройств.

Особенности цепей постоянного тока

1. Направление тока

Электрический ток, называемый «постоянным», имеет неизменные во времени значение и направление. Если рассматривать постоянный ток как прохождение элементарных электрических зарядов через определённую точку, то значение заряда (Q), протекающего через эту точку (а вернее, через поперечное сечение проводника) за единицу времени, будет неизменным.

В системах постоянного тока относительное направление тока имеет особую важность, поэтому необходимо присоединение нагрузки со строгим соблюдением полярности. Ошибки неотвратимо приводят к тяжёлым аварийным процессам. Например, если аккумуляторная батарея будет подключена к источнику с неправильной полярностью, произойдет её перегрев с дальнейшим закипанием электролита и последующим возможным разрушением ее корпуса, которое обычно носит взрывной характер. При питании обратной полярностью серьёзные повреждения могут так же возникнуть и во многих электронных цепях.

К полярности чувствительно не только электротехническое оборудование, но и аппараты защиты и коммутации, устанавливающиеся в распределительных щитах. Обычно для того, чтобы избежать ошибок при монтаже электросети, производители наносят на переднюю панель аппаратов специальную маркировку. «Надо понимать, что работа монтажника достаточно однообразна: в день они собирают десятки однотипных схем. Так что от неточностей, связанных с невнимательностью, не застрахованы даже профессионалы. Случается, что коммутационные аппараты подключают неправильно. В итоге подача напряжения на распределительный щит может закончиться возгоранием», — рассказывает Илья Лёшин, начальник измерительной лаборатории компании «Центроэлектромонтаж».

Описанная специалистом проблема была актуальна для постоянного тока в течение многих десятилетий. Но в последнее время на рынке появились устройства, не чувствительные к полярности приложенного напряжения благодаря особым конструкторским решениям. «Использование подобных аппаратов избавляет от множества проблем, – комментирует Алексей Кокорин, менеджер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации. — Так, например, за счёт симметричной конструкции полюса выключатели-разъединители серии OTDC производства АББ не чувствительны к полярности приложенного напряжения. Их можно монтировать внутри щита как вертикально, так и горизонтально, подвод питания осуществляется сверху либо снизу».

2. Электрическая дуга

Одной из проблем, связанных с использованием аппаратов и переменного, и постоянного тока, является электрическая дуга. Она возникает между размыкающимися контактами из-за ионизации воздушного пространства между ними.

В выключателе переменного тока гашение дуги происходит при переходе значения переменного тока через ноль. После исчезновения разряда, во избежание его повторного появления, необходимо восстановить электрическую прочность воздушного дугового промежутка. Сделать это можно либо за счёт «принудительной» рекомбинации ионов и электронов, либо с помощью вывода из контактного промежутка заряженных частиц.

В цепях постоянного тока процесс происходит несколько иначе. В общем случае параметры дуги зависят от характеристик цепи, значения тока, а также параметров самой среды: температуры, давления, состава воздуха и т.п. Существует набор условий, при которых электрическая дуга при размыкании контактов в цепи постоянного тока может устойчиво гореть длительное время. Таким образом, для её гашения необходимо так изменить параметры процесса, чтобы не существовало точки устойчивого горения.

В аппаратах низкого напряжения применяется два решения: открытый разрыв и щелевые дугогасительные камеры. В первом случае дуга растягивается, допустим, с помощью электродинамических сил, одновременно охлаждаясь воздухом (способ применяется для токов до 5 кА и напряжений до 500 В). Во втором – дуга при помощи магнитного поля растягивается и попадает в узкую камеру, где охлаждается (применяется для токов до 90 кА).

«Часто эффективность работы дугогасительных механизмов, в которых задействованы магнитные или электродинамические силы, зависит от величины самого тока. При высоких значениях они справляются со своей задачей, но в некоторых случаях магнитных сил недостаточно, чтобы растянуть дугу до требуемой длины. Поэтому иногда аппараты дополняются, к примеру, постоянными магнитами, позволяющими расширить рабочий диапазон токов», — поясняет Алексей Кокорин (АББ). Схема, описанная специалистом, используется в аппаратах серии OTDC, где установлена дугогасительная решётка новой конструкции с удлинёнными пластинами специальной формы. В процессе гашения дуга изгибается в пространстве и растягивается. В то же время для увеличения падения напряжения на ней применяется принцип деионной решётки. Чтобы такой дугогасительный механизм эффективно работал как при низком, так и при высоком напряжении, в него были интегрированы дополнительные постоянные магниты. Их силы поля достаточно, чтобы перемещать дугу к решётке, даже если значения тока малы.

3. Размер защитных аппаратов должен быть минимальным

Цепи постоянного тока чаще всего применяются именно там, где важна компактность оборудования. «Габариты важны практически во всех отраслях, поскольку любое оборудование занимает дефицитные площади. Кроме того, есть сферы, где важен каждый кубический сантиметр: например, транспорт. При разработке оборудования наша компания уделяет его размерам особое внимание. Например, выключатели нагрузки серии OTDC работают с током 100-250 А при напряжении до 1000 В, имея при этом всего два полюса. Обычно для таких цепей применяются четырёхполюсные автоматические выключатели, имеющие почти в три раза большие габариты. Так как аппараты не чувствительны к полярности, дополнительную экономию места можно обеспечить за счёт удобного варианта размещения модулей в монтажном блоке (вертикально или горизонтально) как на шине, так и без нее, или благодаря более эргономичной подводке питания», — говорит Алексей Кокорин (АББ).

Хотя ещё полвека назад считалось, что постоянный ток окончательно сдал свои позиции, сегодня в рамках разговоров о повышении энергоэффективности систем электроснабжения всё чаще на повестке дня появляются проекты по строительству сетей DC. Переход промышленности на потребление постоянного тока потребует в первую очередь обновления оборудования и перестройки сложившейся культуры использования энергии. А правильный подбор коммутационной и защитной аппаратуры для цепей постоянного тока – первый шаг к использованию всех преимуществ подобных сетей.

Источник