Меню

Что такое удельный заряд носителя тока

Определение удельного заряда электрона

Лабораторная работа № 5

ОПРЕДЕЛЕНИЕ УДЕЛЬНОГО ЗАРЯДА ЭЛЕКТРОНА

Ознакомление с одним из методов определения отношения заряда электрона к его массе, основанном на законах движения электрона в электрическом и магнитном полях.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ РАБОТЫ

Удельным зарядом частицы называется отношение заряда к массе этой частицы.

Удельный заряд можно определить, исследуя движение частицы в электрическом и магнитном полях. Такие исследования проводились в конце XIX века английским ученым Дж. Дж. Томсоном и привели к открытию электрона.

При движении электрона в поперечных электрическом или магнитном полях возможно определение удельного заряда по отклонению его траектории от первоначального направления.

Электрическое поле с напряженностью Е действует на электрон, находящийся в этом поле с силой

где е=–1.6 10–19 Кл – заряд электрона.

Направление этой силы противоположно направлению вектора напряженности электрического поля. Работа, совершаемая этой силой при движении электрона в поле, будет сопровождаться изменением кинетической энергии электрона.

Магнитное поле с индукцией В действует на электрон, движущийся в этом поле с силой , силой Лоренца, которая зависит от величины и направления скорости движения электрона (рис. 1).

Сила магнитного поля – сила Лоренца – равна

где е – заряд электрона;

V – скорость электрона;

В – индукция магнитного поля.

Если движение электрона происходит в вакууме (воздухе), то эту силу можно выразить через напряженность магнитного поля Н:

где a – угол между вектором напряженности поля и вектором скорости электрона;

m=12,5×10-7 Гн/м – магнитная постоянная;

m – магнитная проницаемость среды (для вакуума равна 1).

Сила Лоренца перпендикулярна плоскости, в которой лежат векторы и . Направление ее можно определить по известному правилу правого винта (буравчика). На рис. 1 направление силы показано точкой от плоскости чертежа на нас.

Так как сила Лоренца перпендикулярна вектору скорости частицы, то она может изменить не величину, а только направление скорости электрона.

В случае движения электрона по направлению линий индукции маг-нитного поля (sina=0) cила , а при движении перпендикулярно к ним (sina=1) эта сила имеет макси-мальное значение и вызывает движение электрона по окружности (рис. 2).

Если в пространстве, где движется электрон, имеются одновременно электрическое и магнитное поля, то в общем случае будет происходить изменение скорос-ти электрона как по величине, так и по направлению.

Представим себе находящиеся в вакууме металлический цилиндр и металлическую накаливаемую нить, натянутую вдоль оси цилиндра (рис. 3). Если между нитью и цилиндром приложить разность потенциалов так, чтобы нить являлась катодом, а цилиндр положительным анодом, то электроны, вылетающие из нити, будут под действием электрического поля притягиваться к цилиндрическому аноду. Их движение будет прямолинейным и ускоренным. Если дополнительно создать внутри цилиндра однородное магнитное поле, напряженность которого параллельна оси цилиндра, то вылетающие из нити электроны, пересекая магнитное поле, будут двигаться не по радиальным, а по криволинейным траекториям.

Очевидно, что искривление траекторий электронов будет тем больше, чем больше будет действующая на них сила Лоренца, пропорциональная напряженности магнитного поля.

Практически такую установку можно осуществить, поместив электронную лампу с цилиндрическим анодом в соленоид с током.

Нагревая катод и создавая некоторую разность потенциалов U между катодом и анодом, будем пропускать через соленоид постоянный ток, получая тем самым постоянное магнитное поле внутри цилиндра-анода. Тогда на электрон, вылетевший из катода, одновременно будут действовать силы со стороны электрического и магнитного полей.

Электрическая сила направлена по радиусу от катода к аноду. Напряженность электрического поля в некоторой точке х пространства между двумя коаксиальными цилиндрами (катодом и анодом) определяется следующим выражением:

где U – разность потенциалов между цилиндрами;

х – расстояние от оси цилиндра до точки, где, определяется напряженность;

r – радиус нити катода;

R – внутренний радиус цилиндрического анода.

Электрон, пролетевший от катода к аноду, приобретает кинетическую энергию, равную работе электрической силы независимо от того, движется ли он по прямой или по любой другой траектории:

Сила, действующая со стороны магнитного поля, зависит от напряженности магнитного поля Н внутри соленоида с током. Если соленоид достаточно длинный, то напряженность рассчитывается следующим образом:

где I – сила тока в соленоиде;

N – число витков в соленоиде;

1 – длина соленоида.

Получить полный текст Подготовиться к ЕГЭ Найти работу Пройти курс Упражнения и тренировки для детей

Магнитное поле искривляет траекторию движения электрона в плоскости, перпендикулярной оси катода и анода (предполагаем, что вылетающие из катода электроны не имеют скорости в направлении оси, в противном случае, траектории электронов будут спиральными). Очевидно, если Н мало, то траектории частиц будут слабо искривлены, и все электроны будут попадать на внутреннюю поверхность анода.

Однако можно создать поле с такой напряженностью, что траектории электронов не пересекут поверхности анода, все электроны вернутся на катод (рис. 4).

Предельное значение напря-женности магнитного поля, при котором прекращается попада-ние электронов на анод, назы-вается критическим .

При напряженности траектория электрона будет круговой с радиусом , который и будет определять нормальное (центростремительное) ускорение, приобретенное электроном под действием электрической и магнитной сил:

Тогда на основании (2) и (3) можно записать

Учитывая, что величина скорости определяется только электрическим полем (3), получим

откуда и получаем удельный заряд электрона:

Источник

Лекции и задачи по физике Примеры решений контрольной работы

Электрические токи в металлах, вакууме и газах

Элементарная классическая теория электропроводности металлов

Носителями тока в металлах являются свободные электроны, т. е. электроны, слабо связанные с ионами кристаллической решетки металла. Это представление о природе носителей тока в металлах основывается на электронной теории проводимости металлов, созданной немецким физиком П. Друде (1863—1906) и разработанной впоследствии нидерландским физиком X. Лоренцем, а также на ряде классических опытов, подтверждающих положения электронной теории.

Первый из таких опытов — опыт Рикке* (1901), в котором в течение года электрический ток пропускался через три последовательно соединенных с тщательно отшлифованными торцами металлических цилиндра (Сu, Аl, Сu) одинакового радиуса. Несмотря на то что общий заряд, прошедший через эти цилиндры, достигал огромного значения (»3,5 × 106 Кл), никаких, даже микроскопических, следов переноса вещества не обнаружилось. Это явилось экспериментальным доказательством того, что ионы в металлах не участвуют в переносе электричества, а перенос заряда в металлах осуществляется частицами, которые являются общими для всех металлов. Такими частицами могли быть открытые в 1897 г. английским физиком Д. Томсоном (1856—1940) электроны.

*К. Рикке (1845—1915) — немецкий физик.

Для доказательства этого предположения необходимо было определить знак и величину удельного заряда носителей (отношение заряда носителя к его массе). Идея подобных опытов заключалась в следующем: если в металле имеются подвижные, слабо связанные с решеткой носители тока, то при резком торможении проводника эти частицы должны по инерции смещаться вперед, как смещаются вперед пассажиры, стоящие в вагоне при его торможении. Результатом смещения зарядов должен быть импульс тока; по направлению тока можно определить знак носителей тока, а зная размеры и сопротивление проводника, можно вычислить удельный заряд носителей. Идея этих опытов (1913) и их качественное воплощение принадлежат российским физикам С. Л. Мандельштаму (1879—1944) и Н. Д. Папалекси (1880—1947). Эти опыты в 1916 г. были усовершенствованы и проведены американским физиком Р. Толменом (1881—1948) и ранее шотландским физиком Б. Стюартом (1828—1887). Ими экспериментально доказано, что носители тока в металлах имеют отрицательный заряд, а их удельный заряд приблизительно одинаков для всех исследованных металлов. По значению удельного заряда носителей электрического тока и по определенному ранее Р. Милликеном элементарному электрическому заряду была определена их масса. Оказалось, что значения удельного заряда и массы носителей тока и электронов, движущихся в вакууме, совпадали. Таким образом, было окончательно доказано, что носителями электрического тока в металлах являются свободные электроны.

Существование свободных электронов в металлах можно объяснить следующим образом: при образовании кристаллической решетки металла (в результате сближения изолированных атомов) валентные электроны, сравнительно слабо связанные с атомными ядрами, отрываются от атомов металла, становятся «свободными» и могут перемещаться по всему объему. Таким образом, в узлах кристаллической решетки располагаются ионы металла, а между ними хаотически движутся свободные электроны, образуя своеобразный электронный газ, обладающий, согласно электронной теории металлов, свойствами идеального газа.

Электроны проводимости при своем движении сталкиваются с ионами решетки, в результате чего устанавливается термодинамическое равновесие между электронным газом и решеткой. По теории Друде—Лоренца, электроны обладают такой же энергией теплового движения, как и молекулы одноатомного газа. Поэтому, применяя выводы молекулярно-кинетической теории (см. (44.3)), можно найти среднюю скорость теплового движения электронов

которая для T=300 К равна 1,1×105 м/с. Тепловое движение электронов, являясь хаотическим, не может привести к возникновению тока.

При наложении внешнего электрического поля на металлический проводник кроме теплового движения электронов возникает их упорядоченное движение, т. е. возникает электрический ток. Среднюю скорость á vñ упорядоченного движения электронов можно оценить согласно формуле (96.1) для плотности тока: j=пeáv ñ . Выбрав допустимую плотность тока, например для медных проводов 107 А/м2, получим, что при концентрации носителей тока n = 8×1028м–3 средняя скорость áv ñ упорядоченного движения электронов равна 7,8×10–4 м/с. Следовательно, áv ñ á uñ, т. е. даже при очень больших плотностях тока средняя скорость упорядоченного движения электронов, обусловливающего электрический ток, значительно меньше их скорости теплового движения. Поэтому при вычислениях результирующую скорость á vñ + áu ñ можно заменять скоростью теплового движения á uñ.

Казалось бы, полученный результат противоречит факту практически мгновенной передачи электрических сигналов на большие расстояния. Дело в том, что замыкание электрической цепи влечет за собой распространение электрического поля со скоростью с (c=3×108м/с). Через время t=l/c (l — длина цепи) вдоль цепи установится стационарное электрическое поле и в ней начнется упорядоченное движение электронов. Поэтому электрический ток возникает в цепи практически одновременно с ее замыканием.

Вывод основных законов электрического тока в классической теории электропроводности металлов

1. Закон Ома. Пусть в металлическом проводнике существует электрическое поле напряженностью E=const. Co стороны поля заряд е испытывает действие силы F = eE и приобретает ускорение a=F/m=eE/m. Таким образом, во время свободного пробега электроны движутся равноускоренно, приобретая к концу свободного пробега скорость

где át ñ — среднее время между двумя последовательными соударениями электрона с ионами решетки.

Согласно теории Друде, в конце свободного пробега электрон, сталкиваясь с ионами решетки, отдает им накопленную в поле энергию, поэтому скорость его упорядоченного движения становится равной нулю. Следовательно, средняя скорость направленного движения электрона

(103.1)

Классическая теория металлов не учитывает распределения электронов по скоростям, поэтому среднее время át ñ свободного пробега определяется средней длиной свободного пробега ál ñ и средней скоростью движения электронов относительно кристаллической решетки проводника, равной á uñ + áv ñ (áu ñ — средняя скорость теплового движения электронов). В § 102 было показано, что áv ñ á uñ, поэтому

Подставив значение át ñ в формулу (103.1), получим

Плотность тока в металлическом проводнике, по (96.1),

откуда видно, что плотность тока пропорциональна напряженности поля, т. е. получили закон Ома в дифференциальной форме (ср. с (98.4)). Коэффициент пропорциональности между j и E есть не что иное, как удельная проводимость материала

(103.2)

которая тем больше, чем больше концентрация свободных электронов и средняя длина их свободного пробега.

2. Закон Джоуля — Ленца. К концу свободного пробега электрон под действием поля приобретает дополнительную кинетическую энергию

(103.3)

При соударении электрона с ионом эта энергия полностью передается решетке и идет на увеличение внутренней энергии металла, т. е. на его нагревание.

За единицу времени электрон испытывает с узлами решетки в среднем áz ñ столкновений:

(103.4)

Если n — концентрация электронов, то в единицу времени происходит пáz ñ столкновений и решетке передается энергия

(103.5)

которая идет на нагревание проводника. Подставив (103.3) и (103.4) в (103.5), получим таким образом энергию, передаваемую решетке в единице объема проводника за единицу времени,

(103.6)

Величина w является удельной тепловой мощностью тока (см. § 99). Коэффициент пропорциональности между w и E2 по (103.2) есть удельная проводимость g; следовательно, выражение (103.6)—закон Джоуля—Ленца в дифференциальной форме (ср. с (99.7)).

3. Закон Видемана — Франца. Металлы обладают как большой электропроводностью, так и высокой теплопроводностью. Это объясняется тем, что носителями тока и теплоты в металлах являются одни и те же частицы—свободные электроны, которые, перемещаясь в металле, переносят не только электрический заряд, но и присущую им энергию хаотического (теплового) движения, т. е. осуществляют перенос теплоты.

Видеманом и Францем в 1853 г. экспериментально установлен закон, согласно которому отношение теплопроводности (l) к удельной проводимости (g) для всех металлов при одной и той же температуре одинаково и увеличивается пропорционально термодинамической температуре:

где b — постоянная, не зависящая от рода металла.

Элементарная классическая теория электропроводности металлов позволила найти значение b: b =3(k/e)2, где k—постоянная Больцмана. Это значение хорошо согласуется с опытными данными. Однако, как оказалось впоследствии, это согласие теоретического значения с опытным случайно. Лоренц, применив к электронному газу статистику Максвелла — Больцмана, учтя тем самым распределение электронов по скоростям, получил b=2(k/e)2, что привело к резкому расхождению теории с опытом.

Таким образом, классическая теория электропроводности металлов объяснила законы Ома и Джоуля — Ленца, а также дала качественное объяснение закона Видемана — Франца. Однако она помимо рассмотренных противоречий в законе Видемана — Франца столкнулась еще с рядом трудностей при объяснении различных опытных данных. Рассмотрим некоторые из них.

Температурная зависимость сопротивления. Из формулы удельной проводимости (103.2) следует, что сопротивление металлов, т. е. величина, обратно пропорциональная g, должна возрастать пропорционально (в (103.2) п и ál ñ от температуры не зависят, а á uñ

). Этот вывод электронной теории противоречит опытным данным, согласно которым R

Читайте также:  Значения переменного тока напряжения эдс в любой момент времени

Источник

Электрический ток в металлах

Электрический ток в металлах – это упорядоченное движение электронов под действием электрического поля. Опыты показывают, что при протекании тока по металлическому проводнику переноса вещества не происходит, следовательно, ионы металла не принимают участия в переносе электрического заряда.

Наиболее убедительное доказательство электронной природы тока в металлах было получено в опытах с инерцией электронов. Идея таких опытов и первые качественные результаты (1913 г.) принадлежат русским физикам Л.И. Мандельштаму и Н.Д. Папалекси В 1916 году американский физик Р. Толмен и шотландский физик Б. Стюарт усовершенствовали методику этих опытов и выполнили количественные измерения, неопровержимо доказавшие, что ток в металлических проводниках обусловлен движением электронов.

Схема опыта Толмена и Стюарта показана на рис. 1.12.1. Катушка с большим числом витков тонкой проволоки приводилась в быстрое вращение вокруг своей оси. Концы катушки с помощью гибких проводов были присоединены к чувствительному баллистическому гальванометру Г. Раскрученная катушка резко тормозилась, и в цепи возникал кратковременных ток, обусловленный инерцией носителей заряда. Полный заряд, протекающий по цепи, измерялся по отбросу стрелки гальванометра.

Схема опыта Толмена и Стюарта

При торможении вращающейся катушки на каждый носитель заряда e действует тормозящая сила которая играет роль сторонней силы, то есть силы неэлектрического происхождения. Сторонняя сила, отнесенная к единице заряда, по определению является напряженностью Eст поля сторонних сил:

Следовательно, в цепи при торможении катушки возникает электродвижущая сила , равная

где l – длина проволоки катушки. За время торможения катушки по цепи протечет заряд q, равный

Здесь I – мгновенное значение силы тока в катушке, R – полное сопротивление цепи, υ – начальная линейная скорость проволоки.

Отсюда удельный заряд e / m свободных носителей тока в металлах равен:

Читайте также:  Сила тока идущего по проводнику равна 2 а 10 секунд

Все величины, входящие в правую часть этого соотношения, можно измерить. На основании результатов опытов Толмена и Стюарта было установлено, что носители свободного заряда в металлах имеют отрицательный знак, а отношение заряда носителя к его массе близко к удельному заряду электрона, полученному из других опытов. Так было установлено, что носителями свободных зарядов в металлах являются электроны.

По современным данным модуль заряда электрона (элементарный заряд) равен

а его удельный заряд есть

Хорошая электропроводность металлов объясняется высокой концентрацией свободных электронов, равной по порядку величины числу атомов в единице объема.

Предположение о том, что за электрический ток в металлах ответственны электроны, возникло значительно раньше опытов Толмена и Стюарта. Еще в 1900 году немецкий ученый П. Друде на основании гипотезы о существовании свободных электронов в металлах создал электронную теорию проводимости металлов. Эта теория получила развитие в работах голландского физика Х. Лоренца и носит название классической электронной теории. Согласно этой теории, электроны в металлах ведут себя как электронный газ, во многом похожий на идеальный газ. Электронный газ заполняет пространство между ионами, образующими кристаллическую решетку металла (рис. 1.12.2).

Газ свободных электронов в кристаллической решетке металла. Показана траектория одного из электронов

Из-за взаимодействия с ионами электроны могут покинуть металл, лишь преодолев так называемый потенциальный барьер. Высота этого барьера называется работой выхода. При обычных (комнатных) температурах у электронов не хватает энергии для преодоления потенциального барьера.

Из-за взаимодействия с кристаллической решеткой потенциальная энергия выхода электрона внутри проводника оказывается меньше, чем при удалении электрона из проводника. Электроны в проводнике находятся в своеобразной «потенциальной яме», глубина которой и называется потенциальным барьером.

Как ионы, образующие решетку, так и электроны участвуют в тепловом движении. Ионы совершают тепловые колебания вблизи положений равновесия – узлов кристаллической решетки. Свободные электроны движутся хаотично и при своем движении сталкиваются с ионами решетки. В результате таких столкновений устанавливается термодинамическое равновесие между электронным газом и решеткой. Согласно теории Друде–Лоренца, электроны обладают такой же средней энергией теплового движения, как и молекулы одноатомного идеального газа. Это позволяет оценить среднюю скорость теплового движения электронов по формулам молекулярно-кинетической теории. При комнатной температуре она оказывается примерно равной 10 5 м/с.

При наложении внешнего электрического поля в металлическом проводнике кроме теплового движения электронов возникает их упорядоченное движение (дрейф), то есть электрический ток. Среднюю скорость дрейфа можно оценить из следующих соображений. За интервал времени Δt через поперечное сечение S проводника пройдут все электроны, находившиеся в объеме

Число таких электронов равно , где n – средняя концентрация свободных электронов, примерно равная числу атомов в единице объема металлического проводника. Через сечение проводника за время Δt пройдет заряд Отсюда следует:

или

Концентрация n атомов в металлах составляет 10 28 –10 29 м –3 .

Оценка по этой формуле для металлического проводника сечением 1 мм 2 , по которому течет ток 10 А, дает для средней скорости упорядоченного движения электронов значение в пределах 0,6–6 мм/c. Таким образом,

средняя скорость упорядоченного движения электронов в металлических проводниках на много порядков меньше средней скорости их теплового движения

Рис. 1.12.3 дает представление о характере движения свободного электрона в кристаллической решетке.

Движение свободного электрона в кристаллической решетке: а – хаотическое движение электрона в кристаллической решетке металла; b – хаотическое движение с дрейфом, обусловленным электрическим полем. Масштабы дрейфа сильно преувеличены

Малая скорость дрейфа на противоречит опытному факту, что ток во всей цепи постоянного тока устанавливается практически мгновенно. Замыкание цепи вызывает распространение электрического поля со скоростью c = 3·10 8 м/с. Через время порядка l / c (l – длина цепи) вдоль цепи устанавливается стационарное распределение электрического поля и в ней начинается упорядоченное движение электронов.

В классической электронной теории металлов предполагается, что движение электронов подчиняется законам механики Ньютона. В этой теории пренебрегают взаимодействием электронов между собой, а их взаимодействие с положительными ионами сводят только к соударениям. Предполагается также, что при каждом соударении электрон передает решетке всю накопленную в электрическом поле энергию и поэтому после соударения он начинает движение с нулевой дрейфовой скоростью.

Несмотря на то, что все эти допущения являются весьма приближенными, классическая электронная теория качественно объясняет законы электрического тока в металлических проводниках.

Закон Ома. В промежутке между соударениями на электрон действует сила, равная по модулю eE, в результате чего он приобретает ускорение . Поэтому к концу свободного пробега дрейфовая скорость электрона равна

где τ – время свободного пробега, которое для упрощения расчетов предполагается одинаковым для всех электронов. Среднее значение скорости дрейфа равно половине максимального значения:

Рассмотрим проводник длины l и сечением S с концентрацией электронов n. Ток в проводнике может быть записан в виде:

Читайте также:  Опасность поражения электрическим током от частоты

где U = El – напряжение на концах проводника. Полученная формула выражает закон Ома для металлического проводника. Электрическое сопротивление проводника равно:

а удельное сопротивление ρ и удельная проводимость ν выражаются соотношениями:

Закон Джоуля-Ленца.

К концу свободного пробега электроны под действием поля приобретают кинетическую энергию

Согласно сделанным предположениям вся эта энергия при соударениях передается решетке и переходит в тепло.

За время Δt каждый электрон испытывает Δt / τ соударений. В проводнике сечением S и длины l имеется nSl электронов. Отсюда следует, что выделяемое в проводнике за время Δt тепло равно:

Это соотношение выражает закон Джоуля-Ленца.

Таким образом, классическая электронная теория объясняет существование электрического сопротивления металлов, законы Ома и Джоуля–Ленца. Однако в ряде вопросов классическая электронная теория приводит к выводам, находящимся в противоречии с опытом.

Эта теория не может, например, объяснить, почему молярная теплоемкость металлов, также как и молярная теплоемкость диэлектрических кристаллов, равна 3R, где R – универсальная газовая постоянная (закон Дюлонга и Пти, см. ч. I, § 3.10). Наличие свободных электронов на сказывается на величине теплоемкости металлов.

Классическая электронная теория не может также объяснить температурную зависимость удельного сопротивления металлов. Теория дает соотношение , в то время как из эксперимента получается зависимость ρ

T. Однако наиболее ярким примером расхождения теории и опытов является сверхпроводимость.

Согласно классической электронной теории, удельное сопротивление металлов должно монотонно уменьшаться при охлаждении, оставаясь конечным при всех температурах. Такая зависимость действительно наблюдается на опыте при сравнительно высоких температурах. При более низких температурах порядка нескольких кельвинов удельное сопротивление многих металлов перестает зависеть от температуры и достигает некоторого предельного значения. Однако наибольший интерес представляет удивительное явление сверхпроводимости, открытое датским физиком Х.Каммерлинг-Онесом в 1911 году. При некоторой определенной температуре Tкр, различной для разных веществ, удельное сопротивление скачком уменьшается до нуля (рис. 1.12.4). Критическая температура у ртути равна 4,1 К, у аллюминия 1,2 К, у олова 3,7 К. Сверхпроводимость наблюдается не только у элементов, но и у многих химических соединений и сплавов. Например, соединение ниобия с оловом (Ni3Sn) имеет критическую температуру 18 К. Некоторые вещества, переходящие при низких температурах в сверхпроводящее состояние, не являются проводниками при обычных температурах. В то же время такие «хорошие» проводники, как медь и серебро, не становятся сверхпроводниками при низких температурах.

Зависимость удельного сопротивления ρ от абсолютной температуры T при низких температурах: a – нормальный металл; b – сверхпроводник

Вещества в сверхпроводящем состоянии обладают исключительными свойствами. Практически наиболее важным их них является способность длительное время (многие годы) поддерживать без затухания электрический ток, возбужденный в сверхпроводящей цепи.

Классическая электронная теория не способна объяснить явление сверхпроводимости. Объяснение механизма этого явления было дано только через 60 лет после его открытия на основе квантово-механических представлений.

Научный интерес к сверхпроводимости возрастал по мере открытия новых материалов с более высокими критическими температурами. Значительный шаг в этом направлении был сделан в 1986 году, когда было обнаружено, что у одного сложного керамического соединения Tкр = 35 K. Уже в следующем 1987 году физики сумели создать новую керамику с критической температурой 98 К, превышающей температуру жидкого азота (77 К). Явление перехода веществ в сверхпроводящее состояние при температурах, превышающих температуру кипения жидкого азота, было названо высокотемпературной сверхпроводимостью. В 1988 году было создано керамическое соединение на основе элементов Tl–Ca–Ba–Cu–O с критической температурой 125 К.

В настоящее время ведутся интенсивные работы по поиску новых веществ с еще более высокими значениями Tкр. Ученые надеятся получить вещество в сверхпроводящем состоянии при комнатной температуре. Если это произойдет, это будет настоящей революцией в науке, технике и вообще в жизни людей.

Следует отметить, что до настоящего времени механизм высокотемпературной сверхпроводимости керамических материалов до конца не выяснен.

Источник



Что такое удельный заряд носителя тока

Для выяснения природы носителей тока в металлах был поставлен ряд опытов. Опыт Рикке. В 1901 г. Рикке взял три цилиндра два медных и один алюминиевый с тщательно отшлифованными торцами. После взвешивания цилиндры были сложены вместе в последовательности медь — алюминий — медь. Через такой составной проводник непрерывно в течение года пропускался ток одного и того же направления.

За все время через цилиндры прошел заряд, равный . Взвешивание показало, что пропускание тока не оказало на массу цилиндров никакого влияния. При исследовании соприкасавшихся торцов под микроскопом не было обнаружено проникновение одного металла в другой.

Результаты опыта свидетельствовали о том, что перенос заряда в металлах осуществляется не атомами, а какими-то частицами, входящими в состав всех металлов. Чтобы отождествить носители тока в металлах с электронами, нужно было определить знак и числовое значение удельного заряда носителей.

Если в металлах имеются способные перемещаться заряженные частицы, то при торможении металлического проводника эти частицы должны некоторое время продолжать двигаться по инерции, в результате чего в проводнике возникает импульс тока и будет перенесен некоторый заряд.
Пусть проводник движется вначале со скоростью v (рис. 4.7).

Начнем тормозить его с ускорением w. Продолжая двигаться по инерции, носители тока приобретают относительно проводника ускорение.

Такое же ускорение можно сообщить носителям в неподвижном проводнике, если создать в нем электрическое поле напряженностью , т. е. приложить к концам проводника разность потенциалов

.

где m и — масса и заряд носителя; l — длина проводника. В этом случае по проводнику потечет ток силы , где R — сопротивление проводника (I считается положительным, если ток течет в направлении движения проводника).

Следовательно, за время dt через каждое сечение проводника пройдет заряд

.

Заряд, прошедший за все время торможения, равен

.

(заряд положителен, если он переносится в направлении движения проводника).

Таким образом, измерив l, v и R, а также заряд q, проходящий по цепи при торможении проводника, можно найти удельный заряд носителей. Направление импульса тока даст знак носителей.

Количественный результат был получен Толменом и Стюартом в 1916 г. Катушка из провода длиной 500 м приводилась во вращение, при котором линейная скорость витков составляла . Затем катушка резко тормозилась, и с помощью баллистического гальванометра измерялся заряд, протекавший в цепи за время торможения. Вычисленное значение удельного заряда носителей получалось очень близким к для электронов. Таким образом, было экспериментально доказано, что носителями тока в металлах являются электроны.

Существование в металлах свободных электронов можно объяснить тем, что при образовании кристаллической решетки от атомов металла отщепляются слабее всего связанные (валентные) электроны, которые становятся «коллективной» собственностью всего объема металла. Число атомов в единице объема равно , где — плотность металла; М — масса моля; — число Авогадро. Для металлов значения заключены в пределах от до . Следовательно, для концентрации свободных электронов получаются значения порядка .

Источник