Меню

Что такое вихревые токи кратко

Вихревые токи

Детали из металла у автомобиля или разнообразных электрических устройствах, имеют способность двигаться в магнитном поле и пересекаться с силовыми линиями. Благодаря этому образовывается самоиндукция. Предлагаем рассмотреть аномальные вихревые токи фуко, потоки воздуха, их определение, применение, влияние и как уменьшить потери на вихревые токи в трансформаторе.

Из закона Фарадея следует, что изменение магнитного потока производит индуцированное электрическое поле даже в пустом пространстве.

Если металлическая пластина вставляется в это пространство, индуцированное электрическое поле приводит к появлению электрического тока в металле. Эти индуцированные токи называются вихревые токи.

вихревые токи

Фото: Вихревые токи

Токи Фуко – это потоки, индукция которых проводится в проводящих частях разнообразных электрических приборах и машинах, блуждающие токи Фуко особенно опасны для пропуска воды или газов, т.к. их направление невозможно контролировать в принципе.

Если индуцированные встречные токи создаются изменяющимся магнитным полем, то токи вихревые будут перпендикулярны к магнитному полю, и их движение будет производиться по кругу, если данное поле однородно. Эти индуцированные электрические поля очень сильно отличаются от электростатических электрических полей точечных зарядов.

Практическое применение вихревых токов

Вихревые токи полезны в промышленности для рассеивания нежелательной энергии, например у поворотного кронштейна механического баланса, особенно если сила тока очень высокая. Магнит в конце опоры настраивает вихревые токи в металлической пластине, прикрепленной к концу кронштейна, скажем, ansys.

схема вихревые токиСхема: вихревые токи

Вихревые потоки, как учит физика, могут быть также использованы в качестве эффективного тормозного усилия в двигателях транзитного поезда. Электромагнитные приспособления и механизмы на поезде около рельсов специально настроены для создания вихревых токов. Благодаря движению тока, получается плавный спуск системы и поезд останавливается.

Закрученные токи вредны в измерительных трансформаторах и для человека. Металлический сердечник используется в трансформаторе, чтобы увеличить поток. К сожалению, вихревые токи, полученные в якоре или сердечнике, могут увеличить потери энергии. Построив металлическую сердцевину чередующихся слоев из проводящих и не проводящих энергию, материалов, размер индуцированных петель уменьшается, таким образом, уменьшая потери энергии. Шум, который производит трансформатор при работе, является следствием именно такого конструктивного решения.

Видео: вихревые токи Фуко

Еще один интересный использования вихревой волны – применение их в электросчетчиках или медицине. В нижней части каждого счетчика расположен тонкий алюминиевый диск, который всегда вращается. Это диск движется в магнитном поле, так что там всегда есть вихревых токи, цель которых замедлить движения диска. Благодаря этому датчик работает точно и без перепадов.

Вихри и скин-эффект

В том случае, когда возникают очень сильные вихревые токи (при высокочастотном токе), в телах плотность тока становится значительно меньше, чем на их поверхностях. Это так называемый скин эффект, его методы используются для создания специальных покрытий для проводов и в трубах, которые разрабатываются специально для вихре-токов и тестируются в экстремальных условиях.

Это доказал еще ученый Эккерт, который исследовали ЭДС и трансформаторные установки.

схема индукционного нагрева

Схема индукционного нагрева

Принципы вихревых токов

Катушка из медной проволоки является распространенным методом для воспроизведения индукции вихревых токов. Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. Магнитные поля образуют линии вокруг провода и соединяются, образуя более крупные петли. Если ток увеличивается в одной петле, магнитное поле будет расширяться через некоторые или все из петель проволоки, которые находятся в непосредственной близости. Это наводит напряжение в соседних петлях гистерезис, и вызывает поток электронов или вихревые токи, в электропроводящем материале. Любой дефект в материале, включая изменения в толщине стенки, трещин, и прочих разрывов, может изменить поток вихревых токов.

Закон Ома

Закон Ома является одним из самых основных формул для определения электрического потока. Напряжение, деленное на сопротивление, Ом, определяет электрический ток, в амперах. Нужно помнить, что формулы для расчета токов не существует, необходимо пользоваться примерами расчета магнитного поля.

Индуктивность

Переменный ток, проходящий через катушку, создает магнитное поле внутри и вокруг катушки. С увеличением тока, катушка индуцирует циркуляцию (вихревых) потоков в проводящем материале, расположенном рядом с катушкой. Амплитуда и фаза вихревых токов будет меняться в зависимости от загрузки катушки и ее сопротивления. Если поверхность или под поверхностью возникнет разрыв в электропроводном материале, поток вихревых токов будет прерван. Для его налаживания и контроля существуют специальные приборы с разной частотой каналов.

Магнитные поля

На фото показано, как вихревые электрические токи образуют магнитное поле в катушке. Катушки, в свою очередь, образуют вихревые токи в электропроводном материале, а также создавают свои собственные магнитные поля.

Магнитное поле вихревых токов

Дефектоскопия

Изменение напряжения на катушке будет влиять на материал, сканирование и исследование вихревых токов позволяет производить прибор для измерения поверхностных и подповерхностных разрывов. Несколько факторов будут влиять на то, какие недостатки могут быть обнаружены:

  1. Проводимость материала оказывает значительное воздействие на пути следования вихревых токов;
  2. Проницаемость проводящего материала также имеет огромное влияние из-за его способности быть намагниченным. Плоскую поверхность гораздо легче сканировать, чем неровную.
  3. Глубина проникновения имеет очень большое значение в контроле вихретоков. Поверхность трещины гораздо легче обнаружить, чем суб-поверхностного дефекта.
  4. Это же касается и площади поверхности. Чем меньше площадь – тем быстрее происходит образование вихревых токов.

Обнаружение контура дефектоскопом

Существуют сотни стандартных и специальных зондов, которые производятся для конкретных типов поверхностей и контуров. Края, канавки, контуры, и толщина металла вносят свой вклад в успех или провал испытаний. Катушка, которая расположена слишком близко к поверхности проводящего материала будет иметь наилучшие шансы на обнаружение разрывов. Для сложных контуров катушка вставляется в специальной блок и прикрепляется к арматуре, что позволяет пройти ток через неё и проконтролировать его состояние. Многие устройства требуют специальных формованных изделий зонда и катушки, чтобы приспособиться к неправильной форме детали. Катушка также может иметь специальную (универсальную) форму, чтобы соответствовать конструкции детали.

Уменьшаем вихревые токи

Для того чтобы уменьшить вихревые токи катушек индуктивности нужно увеличить сопротивление в этих механизмах. В частности рекомендуется использовать лицендрат и изолированные провода.

Читайте также:  Задачи с решениями законы постоянного тока с мощностью

Источник

Что такое вихревые токи Фуко: природа возникновения и применение

Фото 1

Электромагнитная индукция (ЭИ) — очень важное явление для электротехники.

И почти всегда электромагнитную индукцию сопровождают вихревые токи.

Что они из себя представляют и как используются — вот тема данного разговора.

Природа вихревых токов

Фото 2

Вихревые токи имеют ту же природу, что и ток во вторичной обмотке трансформатора — все это индукционный ток.

Они обусловлены явлением ЭИ, открытым М. Фарадеем: при изменении магнитного потока, пересекающего проводник, в последнем возникает электродвижущая сила (ЭДС).

Если этот проводник — катушка из провода (обмотка трансформатора или электрогенератора), то ток течет по ее виткам.

Что такое токи Фуко?

В массивном теле, например, сердечнике (магнитопроводе) или корпусе агрегата, возникает объемный ток в виде движения заряженных частиц по круговым (вихреобразным) траекториям. Это называют вихревыми токами.

Изменение пересекающего проводник магнитного потока наблюдается в двух случаях:

Фото 3

  1. проводник и поле постоянного магнита двигаются друг относительно друга. Пример: сердечник ротора электрогенератора, в котором статор является магнитом (во многих видах магнит — ротор);
  2. относительное движение отсутствует, но меняются параметры магнитного поля. Для реализации такого варианта применяется электромагнит (смотанный в катушку провод), по которому пропускается переменный ток. Так же как и ток, поле будет периодически менять направленность силовых линий и интенсивность магнитного потока (в противофазе с током). Пример: магнитопровод трансформатора.

Это явление называют «токами Фуко» — в честь ученого Ж. Б. Л. Фуко, проведшего большую работу по их изучению. Первым же обнаружил данное явление французский ученый Д. Ф. Араго, проводивший в 1824-м году опыт с медным диском и вращающейся над ним магнитной стрелкой. Диск тоже начинал совершать аналогичные действия. Этот эффект стали называть в научных кругах «явлением Араго».

Фото 4

Магнитное поле токов Фуко

Исследователь не смог правильно объяснить механизм вращения, это сделал несколькими годами позже М. Фарадей, открыв ЭИ:

  1. плоский круглый предмет помещается в крутящееся магнитное поле;
  2. его воздействие на деталь выражается в наведении в ней вихревых токов;
  3. токи Фуко, в свою очередь, вступают во взаимодействие с магнитным полем;
  4. диск начинает крутиться.

Значение

При воздействии на проводящее тело электромагнитом с переменным током, вихревые токи возрастают с увеличением частоты тока и его амплитуды. Направление вращения «вихря» определяется аналогичным параметром магнитного потока. Если последний возрастает, то есть скорость его изменения положительна (dФ / dt > 0), вихревые токи вращаются по часовой стрелке.

При убывании магнитного потока (dФ / dt Применение

Исследуя вихревые токи, Ж. Б. Л. Фуко обнаружил, что они вызывают нагрев проводника. Это явление широко используют в технике и различных отраслях промышленности.

Вот несколько примеров:

Фото 5

  1. индукционная кухонная плита. Достоинство устройства состоит в экономичности: энергия тратится сугубо на нагрев посуды с пищей, сама плита остается холодной. Требуется посуда из ферромагнитных материалов, то есть таких, к которым пристает магнит. Существуют такие разновидности чугуна и нержавейки, алюминиевую же посуду делают с ферромагнитным дном;
  2. индукционный отопительный котел. Достоинства – в простоте устройства. Теплообменник представляет собой трубу (в некоторых моделях — с сердечником), обмотанную проводом. Целостность его не нарушается, как в ТЭНовых котлах, потому протечки исключены. Поверхность нагрева имеет большую площадь: в этом качестве выступает весь теплообменник (находится в поле электромагнита);
  3. индукционные печи на металлургических и прочих заводах. Сталь и другие металлы загружаются в тигель и помещаются в поле переменного магнита. Выгода в том, что энергия тратится сугубо на нагрев материала, а не тигля;
  4. дегазация металлических частей вакуумных установок. Без данной процедуры достижение полного вакуума невозможно, поскольку в арматуре и других металлических элементах содержится небольшое количество газов, в условиях вакуума понемногу выделяющихся. Для принудительной дегазации требуется нагрев, а нагреть находящийся внутри установки металлический элемент можно только бесконтактным способом. На помощь приходят ЭИ и токи Фуко;
  5. поверхностная закалка металлических изделий. Требуется для упрочнения внешнего слоя при сохранении пластичности основной части детали. Пример — шестерни. Если закалить изделие полностью, оно станет хрупким и при нагрузках сломается.

Фото 6

Вихревые токи в магнитопроводе

Чтобы нагреть только поверхностный слой, токи Фуко используют в сочетании со скин-эффектом. Последний состоит в снижении плотности тока вблизи оси проводящего тела и возрастании ее у поверхности, что проявляется тем сильнее, чем выше частота тока.

Объясняется скин-эффект тем, что вектор напряженности создаваемого вихревыми токами поля направлен:

  • внутри детали — против наведенной (индуцированной) ЭДС;
  • на поверхности — в одну сторону с ней.

Скин-эффект имеет место и при протекании сгенерированного электростанцией высокочастотного тока по проводам. При этом сопротивление последних значительно увеличивается, поскольку работает только поверхностный слой.

Фото 7

Для борьбы используют такие меры:

  • применяют плоские и полые проводники;
  • наносят на поверхность токопроводящих жил металлы с меньшим сопротивлением (серебро, золото);
  • уменьшают шероховатость проводника (сокращается путь тока в поверхностном слое).

Другой способ применения основан на взаимодействии вихревых токов с вызывающим их магнитным полем.

Как уже говорилось, индукционный ток выбирает такой путь, чтобы производимое им магнитное поле максимально противодействовало индуцирующему (правило Ленца). В результате на движущееся в магнитном поле тело с низким электрическим сопротивлением (сила вихревых токов, как и всех остальных, обратно пропорциональна сопротивлению), действует тормозящая сила.

Тормозящая силу используют для:

  • торможения диска электросчетчика (повышается точность показаний);
  • демпфирования подвижных частей сейсмографов, гальванометров и прочих приборов;
  • торможения железнодорожных составов (в некоторых конструкциях).

Фото 8

На взаимодействии индуцирующего электромагнитного поля и создаваемого токами Фуко основан вихретоковый метод контроля деталей из проводящих материалов — металлов и их сплавов, полупроводников, графита. Метод является не только неразрушающим, но и бесконтактным. Это позволяет значительно увеличить скорость продвижения исследуемых изделий.

Суть метода:

  1. деталь помещается в переменное магнитное поле, генерируемое одной или несколькими индукционными обмотками (вихретоковым преобразователем);
  2. создаваемое токами Фуко поле анализируется измерительной катушкой.

Сопротивление материала увеличится, если в изделии имеются:

Фото 9

  • трещины;
  • раковины;
  • утоньшение стенки;
  • коррозия и прочие дефекты, нарушающие однородность.
Читайте также:  Сколько ампер убивает человека при токе 12 вольт

Вихревые токи и создаваемое ими электромагнитное поле будут отличаться от нормы, эта информация, как и данные о положении исследуемого объекта относительно вихретокового преобразователя, определяется путем замеров на выводах катушек:

  • напряжения;
  • сопротивления.

Методом проверяют состояние широкого спектра изделий:

  • крепежных элементов;
  • роликов подшипников;
  • труб;
  • проволоки;
  • рельс;
  • корпусов атомных реакторов и многих других.

Фото 10

Помимо дефектоскопии и дефектометрии метод вихретокового контроля используется в:

  • виброметрии;
  • толщинометрии (контроль вибраций);
  • структуроскопии (определение структурного состояния материала).

Потери на вихревые токи

С целью поспособствовать распространению электромагнитного поля, обмотки трансформаторов и электрических машин наматывают на сердечник (магнитопровод). Это объясняется более высоким коэффициентом магнитопроницаемости металлов в сравнении с воздухом.

К примеру, у стали этот параметр в 100 раз превышает воздушный. В сердечнике также возникают вихревые токи и здесь они нежелательны, поскольку потребляют энергию и приводят к снижению КПД устройства.

Применяют следующие способы минимизации потерь на вихревые токи:

Видео по теме

О том, что такое вихревые токи, в видеоролике:

В массивных телах, попавших под воздействие переменного магнитного поля, происходит тот же процесс, что и в любом проводнике — возникает электрический ток. В некоторых случаях он полезен, в других — нежелателен. Так или иначе, на явлении вихревых токов построена работа многих устройств.

Источник

Что такое вихревые токи и какие меры принимают для их уменьшения

Что такое вихревые токи и почему их еще называют токами Фуко? Причины возникновения данного явления и способы применения.

В электричестве есть целый ряд явлений, которые нужно знать специалистам. Хоть и не вся информация может пригодиться в повседневной практике, но иногда поможет понять причину какой либо проблемы. Вихревые токи послужили причиной становления некоторых технологических ухищрений при изготовлении электрических машин и даже стали основой для принципа работы некоторых изобретений. Давайте разберемся, что такое вихревые токи Фуко и как они возникают. Содержание:

  • Краткое определение
  • История открытия
  • Вред от вихревых токов
  • Как снизить потери
  • Применение на практике

Краткое определение

Вихревые токи — это токи, которые протекают в проводниках под воздействием на них переменного магнитного поля. Не обязательно поле должно изменяться, может и тело двигаться в магнитном поле, все равно в нем начнёт течь ток.

Нельзя найти реальную траекторию движения токов для их учёта, ток протекает там, где находит путь с наименьшим сопротивлением. Вихревые токи всегда протекают по замкнутому контуру. Основные условия для его возникновения — нахождение предмета в переменном магнитном поле или его перемещение относительно поля.

История открытия

В 1824 году учёный Д.Ф. Араго проводил эксперимент. Он на одной оси смонтировал медный диск, над ним расположил магнитную стрелку. При вращении магнитной стрелки диск начинал двигаться. Так впервые наблюдали явление вихревых токов. Диск начинал вращаться из-за того, что из-за протекания токов появлялось магнитное поле, которое взаимодействовало со стрелкой. Это назвали, тогда как явление Араго.

Спустя пару лет М. Фарадей, открывший закон электромагнитной индукции, объяснял это явление таким образом: подвижное магнитное поле наводит в диске ток (как в замкнутом контуре) и он взаимодействует с полем стрелки.

Почему второе название — это токи Фуко? Потому что физик Фуко подробно исследовал явление вихревых токов. В ходе своих исследований он сделал великое открытие. Оно заключалось в том, что тела под воздействием вихревых токов нагреваются. С теорией разобрались, теперь мы расскажем о том, где применяются токи Фуко и какие вызывают проблемы.

На видео ниже предоставлено более подробное определение данного явления:

Вред от вихревых токов

Если вы рассматривали конструкцию сетевого трансформатора 50 Гц, наверняка обратили внимание, что его сердечник набран из тонких листов, хотя может показаться что проще было сделать цельную литую конструкцию.

Дело в том, что так борются с вихревыми токами. Фуко установил нагрев тел, в которых они протекают. Так как работа трансформатора и основана на принципах взаимодействия переменных магнитных полей, то вихревые токи неизбежны.

Любой нагрев тел – это выделение энергии в виде тепла. В таком случае будут возникать потери в сердечнике. Чем это опасно? В электроустановке сильный нагрев приводит к разрушению изоляции обмоток и выходу из строя машины. Вихревые токи зависят от магнитных свойств сердечника.

Как снизить потери

Потери энергии в магнитопроводе не приносят пользы, тогда как с ними бороться? Чтобы снизить их величину сердечник набирают из тонких пластин электротехнической стали — это своеобразные меры профилактики для снижения паразитных токов. Такие потери описывает формула, по которой можно произвести расчет:

Как известно: чем меньше сечение проводника, тем больше его сопротивление, а чем больше его сопротивление, тем меньше ток. Пластины изолируют друг от друга окалиной или слоем лака. Сердечники крупных трансформаторов стягиваются изолированной шпилькой. Так снижают потери сердечника, т.е. это и есть основные способы уменьшения токов Фуко.

Какие последствия от влияния этого явления? Магнитное поле, возникающее из-за протекания токов Фуко ослабляет поле, из-за которого они возникли. То есть вихревые токи уменьшают силу электромагнитов. То же самое касается и конструкции деталей электродвигателей и генератора: ротора и статора.

Применение на практике

Теперь о полезных сферах применения токов Фуко. Огромный вклад был внесен в металлургию изобретением индукционных сталеплавильных печей. Они устроены таким образом, что расплавляемую массу металла помещают внутри катушки, через которую протекает ток высокой частоты. Его магнитное поле наводит большие токи внутри металла до его полного плавления.

Примечание автора! Развитие индукционных печей значительно повысило экологичность производства металла и изменило представление о методах плавки. Я работаю на металлургическом комбинате, где десять лет назад запустили новый высокотехнологичный цех с такими установками, а спустя несколько лет после освоения нового оборудования был закрыт классический мартен. Это говорит о продуктивности такого способа нагрева металлов. Также используются вихревые токи для поверхностной закалки металла.

Наглядное применение на практике:

Кроме металлургии они используются на производстве электровакуумных приборов. Проблемой является полное удаление газов перед герметизацией колбы. С помощью токов Фуко электроды лампы разогревают до высоких температур, таким способом деактивируя газ.

Читайте также:  Опасность поражения электрическим током повышенная особо

В быту вы можете встретить кухонные индукционные плиты, на которых готовят пищу, благодаря как раз применению данного явления. Как видите, вихревые токи имеют свои плюсы и минусы.

Токи Фуко несут и пользу, и вред. В некоторых случаях их влияние влечёт за собой не электрические проблемы. Например, трубопровод, проложенный около кабельных линий, быстрее сгнивает без видимых сторонних причин. В то же время устройства индукционного нагрева довольно показали себя с хорошей стороны, тем более такой прибор для бытового использования можно собрать самому. Надеемся, теперь вы знаете, что такое вихревые токи Фуко, а также какое применение нашлось им на производстве и в быту.

Материалы по теме:

  • Как сделать индукционный котел своими руками
  • Зависимость сопротивления проводника от температуры
  • Правило буравчика простыми словами


Источник



Вихревые токи

Вихревые токи или токи Фуко́ (в честь Ж. Б. Л. Фуко) — вихревые индукционные токи, возникающие в проводниках при изменении пронизывающего их магнитного потока.

Впервые вихревые токи были обнаружены французским учёным Д.Ф Араго (1786—1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции: вращаемое магнитное поле наводит в медном диске токи (вихревые), которые взаимодействуют с магнитной стрелкой. Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем. Он открыл явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.

Токи Фуко возникают под воздействием переменного электромагнитного поля и по физической природе ничем не отличаются от индукционных токов, возникающих в линейных проводах. Они вихревые, то есть замкнуты в кольца. Электрическое сопротивление массивного проводника мало, поэтому токи Фуко достигают очень большой силы. В соответствии с правилом Ленца они выбирают внутри проводника такое направление и путь, чтобы противиться причине, вызывающей их. Поэтому движущиеся в сильном магнитном поле хорошие проводники испытывают сильное торможение, обусловленное взаимодействием токов Фуко с магнитным полем. Это свойство используется для демпфирования подвижных частей гальванометров, сейсмографов и др.

Тепловое действие токов Фуко используется в индукционных печах — в катушку, питаемую высокочастотным генератором большой мощности, помещают проводящее тело, в нем возникают вихревые токи, разогревающие его до плавления.

С помощью токов Фуко осуществляется прогрев металлических частей вакуумных установок для их дегазации.

Во многих случаях токи Фуко могут быть нежелательными. Для борьбы с ними принимаются специальные меры: с целью предотвращения потерь энергии на нагревание сердечников трансформаторов, эти сердечники набирают из тонких пластин, разделённых изолирующими прослойками. Появление ферритов сделало возможным изготовление этих проводников сплошными.

Литература

  1. Сивухин Д. В.: Общий курс физики, том 3. Электричество. 1977
  2. Савельев И. В.: Курс общей физики, том 2. Электричество. 1970
  3. Неразрушающий контроль: справочник: В 7т. Под общ. ред. В. В. Клюева. Т. 2: В 2 кн.- М .:Машиностроение, 2003.-688 с.: ил.

Ссылки

Про вихревые токив «Школе для электрика»

Wiki letter w.svg

  • Викифицировать статью.
  • Добавить иллюстрации.
  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).
  • Переработать оформление в соответствии с правилами написания статей.

Wikimedia Foundation . 2010 .

Смотреть что такое «Вихревые токи» в других словарях:

Вихревые токи — токи Фуко, замкнутые электрические токи в массивном проводнике, которые возникают при изменении пронизывающего его магнитного потока. В. т. являются индукционными токами (см. Индукция электромагнитная) и образуются в проводящем теле либо… … Большая советская энциклопедия

ВИХРЕВЫЕ ТОКИ — (токи Фуко) замкнутые электрич. токи в массивном проводнике, возникающие при изменении пронизывающего его магн. потока. В. т. явл. индукционными токами (см. ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ), они образуются в проводящем теле либо вследствие изменения во … Физическая энциклопедия

ВИХРЕВЫЕ ТОКИ — (Фуко токи), замкнутые индукционные токи в массивных проводниках, которые возникают под действием вихревого электрического поля, порождаемого переменным магнитным полем. Вихревые токи приводят к потерям электроэнергии на нагрев проводника (этот… … Современная энциклопедия

вихревые токи — Электрические токи в проводящем теле, вызванные электромагнитной индукцией, замыкающиеся по контурам, образующим односвязную область. [ГОСТ Р 52002 2003] вихревые токи Электрический ток, индуцированный в проводящем материале переменным магнитным… … Справочник технического переводчика

Вихревые токи — (Фуко токи), замкнутые индукционные токи в массивных проводниках, которые возникают под действием вихревого электрического поля, порождаемого переменным магнитным полем. Вихревые токи приводят к потерям электроэнергии на нагрев проводника (этот… … Иллюстрированный энциклопедический словарь

ВИХРЕВЫЕ ТОКИ — (токи Фуко) замкнутые индукционные токи в массивных проводниках, которые возникают под действием вихревого электрического поля, порождаемого переменным магнитным полем. Вихревые токи приводят к потерям электроэнергии на нагрев проводника, в… … Большой Энциклопедический словарь

ВИХРЕВЫЕ ТОКИ — ВИХРЕВЫЕ ТОКИ, электрический ток, движущийся по кругу; возникает в ПРОВОДНИКЕ под воздействием переменного магнитного поля. Вихревые токи вызывают потерю энергии в ГЕНЕРАТОРАХ и ДВИГАТЕЛЯХ переменного тока, поскольку взаимодействие между… … Научно-технический энциклопедический словарь

вихревые токи — (токи Фуко), замкнутые индукционные токи в массивных проводниках, которые возникают под действием вихревого электрического поля, порождаемого переменным магнитным полем. Вихревые токи приводят к потерям электроэнергии на нагрев проводника, в… … Энциклопедический словарь

Вихревые токи — 54. Вихревые токи Электрические токи в проводящем теле, вызванные электромагнитной индукцией, замыкающиеся по кот уран, образующим односпязиую область Источник: ГОСТ 19880 74: Электротехника. Основные понятия. Термины и определения оригинал… … Словарь-справочник терминов нормативно-технической документации

ВИХРЕВЫЕ ТОКИ — (токи Фуко), замкнутые индукц. токи в массивных проводниках, к рые возникают под действием вихревого электрич. поля, порождаемого переменным магн. полем. В. т. приводят к потерям электроэнергии на нагрев проводника, в к ром они возникли; для… … Естествознание. Энциклопедический словарь

Источник