Меню

Датчик амперметра переменного тока

Амперметр: назначение, схемы подключения, типы, характеристики

Определение

Васильев Дмитрий Петрович

Амперметр подключается последовательно, с тем участком электроцепи, где предполагается измерять ток. Так как ток, который он измеряет зависит от сопротивления элементов цепи, то сопротивление амперметра должно быть максимально низким (очень маленьким). Это позволяет уменьшить влияние устройства для измерения тока на измеряемую цепь и повысить их точность.

Амперметр: назначение, схемы подключения, типы, характеристики

Шкалу прибора градуируют в мкА, мА, А и кА, и в зависимости от требуемой точности и пределов измерения выбирают подходящий прибор. Увеличение измеряемой силы тока добиваются путем включения в цепь шунтов, трансформаторов тока, магнитных усилителей. Это позволяет увеличить предел измеряемой величины тока.

Схемы подключения амперметра

Амперметр: назначение, схемы подключения, типы, характеристики

Рисунок — Схема прямого включения амперметра

амперметр 5

Рисунок — Схема косвенного включения амперметра через шунт и трансформатор тока

Сфера применения амперметров

Приборы для измерения тока нашли применение в различных сферах. Их активно используют на крупных предприятиях, связанных с генерацией и распределением электрической, тепловой энергии.

Но не только средние и крупные предприятия используют этот прибор: они востребованы и среди обычных людей. Практически любой опытный автоэлектрик имеет в арсенале подобное устройство, позволяющее проводить замеры показателей электропотребления приборов, узлов автомобилей и пр.

Типы амперметров

Исходя из вида отсчетного устройства амперметры делятся на приборы с:

  • со стрелочным указателем
  • со световым указателем;
  • с пишущим устройством;
  • электронные устройства.

По принципу действия амперметры разделяются

  1. Электромагнитные– предназначены для использования в цепях постоянного, переменного тока. Обычно используются в привычных электроустановках переменного тока с частотой 50 Гц.
  2. Магнитоэлектрические— предназначены для фиксации силы тока малых значений постоянного тока. Они имеют магнитоэлектрическое измерительное устройство и шкалу с проградуированными делениями.
  3. Термоэлектрическиеприборы предназначены для измерения силы тока в цепях высоких частот. В состав таких приборов входят магнитоэлектрический механизм, выполненный в виде проводника, к которому приваривается термопара.

Васильев Дмитрий Петрович

Абрамян Евгений Павлович

Рассмотрим несколько амперметров разных производителей и разных типов:

АМ3Амперметры Ам-2 DigiTOP

  1. Количество входов 1
  2. Измеряемый переменный ток 1 …50 А
  3. Погрешность измерения 1%
  4. Дискретность индикации 0,1 А
  5. напряжение питания -100…-400 В, 50 (+1) Гц Габаритные размеры 90x51x64 мм

Орлов Анатолий Владимирович

АМ2Амперметр лабораторный Э537

Данный прибор (амперметр Э537) предназначается для точного измерения силы тока в цепях переменного и постоянного тока.

Класс точности 0,5.

Диапазоны измерения 0,5 / 1 A;

Технические характеристики амперметра Э537

  1. Конечное значение диапазона измерений 0,5 А/1 А
  2. Класс точности 0,5
  3. Область нормальных частот (Гц) 45 — 100 Гц
  4. Область рабочих частот (Гц) 100 — 1500 Гц
  5. Габаритные размеры 140 х 195 х 105 мм

АМ1

Амперметр СА3020

Цифровое устройство амперметр базовой модели выпускается в нескольких типовых модификациях в зависимости от базового значения параметров замеряемого тока. При заказе данной модели цифрового амперметра, требуется заявить, с каким базовым параметром силы тока Вам придётся работать: 1 А, 2 А или 5 А.

Базовые параметры замеряемого тока, Iн-1 Ампер (СА3020-1), 2 Ампер (СА3020-2) или 5 Ампер (СА3020-5);

  1. Границы замеряемых токов от 0,01 Iн до 1,5 Iн;
  2. Диапазон частот по замеряемым токам от 45 до 850 Герц;
  3. Границы базовой допускаемой существующей погрешности ±0,2% к оптимальному значению параметров замеряемой силы тока;
  4. Напряжение по питанию — сеть переменного тока напряжением (85-260) Вольт и частотой (47-65) Герц или постоянное напряжение (120 — 300) Вольт;
  5. Потребляемая устройством мощность не больше чем 4 ВА;
  6. Размерные габариты 144x72x190 мм;
  7. Масса не больше чем 0,55 кг;
  8. Мощность, потребляемая измерительной цепью амперметров серии 3020, не превышает: для СА3020-1 – 0,12 ВA; для СА3020-2 – 0,25 ВA; для СА3020-5 – 0,6 ВA.

Источник

Схемы амперметров с линейной шкалой для измерения переменного тока

Применив синхронное выпрямление переменного тока, автор линеаризовал шкалу шунтового амперметра магнитоэлектрического типа без какого-либо усилителя В статье предлагаются варианты схем с однополупериодным и кольцевым синхронным выпрямителем, применяемым обычно в кольцевых модуляторах.

Шкала амперметра переменного тока, построенного с использованием магнитоэлектрического стрелочного прибора с шунтом и простого выпрямителя, обычно нелинейна. Это связано с тем что при уменьшении напряжения ниже некоторого порога (0,2. 0,6 В) выпрямительные свойства германиевых и кремниевых диодов резко ухудшаются.

В результате требуется увеличивать падение напряжения на шунте либо применять линейные выпрямители на основе усилителей переменного напряжения. Однако повышение падения напряжения на шунте неизбежно приводит к потерям мощности и росту выходного сопротивления источника питания. К тому же этот способ лишь уменьшает нелинейность, но не устраняет ее полностью.

Правда, применение усилителей позволяет практически полностью устранить нелинейность, но сильно усложняет измеритель.

Между тем линейность простых из мерительных выпрямителей на полупроводниковых диодах можно значительно улучшить без особого усложнения, если использовать синхронное выпрямление.

Однополупериодный синхронный выпрямитель для амперметра

На рис 1 приведена схема однополупериодного синхронного выпрямителя для амперметра с линеаризованной шкалой. В положительный полупериод переменного напряжения (плюс на верхних концах обмоток II и III) открываются диоды VD1 и VD2 подключая микроамперметр к шунту Rш. В отрицательный полупериод диоды закрыты.

В открытом состоянии диоды имеют малое дифференциальное сопротивление, и нелинейность этого сопротивления невелика, поэтому шкала получается практически линейной.

Схема амперметра с трасформатором

Рис. 1. Схема амперметра с трасформатором.

При использовании микроампер метров со шкалой 50 .200 мкА с максимальным падением напряжения на рамке не более 150 мВ минимальное напряжение на обмотке III может составлять 1,5. 2 В для германиевых и 2. 2,5 В для кремниевых диодов (при меньшем напряжении его нестабильность заметно сказывается на показаниях амперметра).

Максимальное напряжение ограничивается максимально допустимым обратным напряжением используемых диодов Минимальный ток диодов должен в 10.. 20 раз превышать максимальный ток микроамперметра. Дополнительную обмотку можно изготовить самостоятельно, намотав несколько витков тонкого изолированного про вода на катушку трансформатора, если его конструкция позволяет это сделать.

Читайте также:  Генератор переменного тока виды генераторов

Резисторы R3 и R4 служат для подстройки нуля амперметра, сдвиг которого возникает за счет тока диода VD2, протекающего через шунт, и разброса параметров диодов.

Синфазность подключения обмоток II и III важна при сравнительно низком напряжении обмотки III (менее 2 В), так как при противофазном включении этих обмоток (в этом случае полярность подключения микроамперметра нужно изменить) в приборе появляется нелинейность шкалы (цена деления в конце шкалы плавно увеличивается), что, кстати, иногда может оказаться полезным. Однако при напряжении на обмотке III выше 4 ..5 В эта нелинейность практически не заметна и на фазу включения обмоток можно не обращать внимания

Для защиты микроамперметра от случайных перегрузок параллельно его выводам полезно включить кремниевый диод Д220 КД522 или КД521 в прямом направлении, предварительно убедившись, что он не влияет на показания микроамперметра в конце шкалы.

Двухполупериодный выпрямитель для амперметра

Добавлением еще двух диодов и одного резистора синхронный выпрямитель можно преобразовать в двухполупериодный (рис 2). В качестве источника, открывающего диоды, здесь использована рабочая обмотка трансформатора

Преимущество двухполупериодной схемы выпрямления перед однополупериодной состоит в том, что требуемое падение напряжения на Вш примерно в два раза меньше при одинаковом токе полного отклонения микроамперметра.

Схема двухполупериодного выпрямителя для амперметра

Рис. 2. Схема двухполупериодного выпрямителя для амперметра.

Так, если в однополупериодном выпрямителе с диодами Д220 для полного отклонения стрелки микроамперметра на 200 мкА (с сопротивлением рамки около 670 Ом) требовалось падение напряжения на Rш, около 0,4 В, то в двухполупериодном это напряжение не превышало 0,2 В.

Приведенная схема является модификацией обычного кольцевого модулятора При увеличении напряжения на R„, до 0,4 В (амплитудное значение) для германиевых и 1,2 В для кремниевых диодов через диоды VD1 VD3 и VD2, VD4 начинает протекать сквозной ток нагрузки. Поэтому резисторы R3-R5 служат не только для балансировки моста Они ограничивают ток через диоды при перегрузке.

Исходя из этих соображений, в двухполупериодном выпрямителе лучше использовать кремниевые диоды и рассчитывать амперметр на максимальное падение напряжения на Rш, не более 0,5. 0,6 В.

На случаи перегрузки или КЗ можно принять дополнительные меры по ограничению тока через диоды. Это может быть увеличение сопротивления резисторов R3- R5, гасящего резистора и шунтирующих диодов или стабилитронов.

Получение открывающего напряжения непосредственно от сети 220 В

Для открывания диодов измерительного моста амперметра с линейной шкалой не обязательно использовать трансформатор. На рисунке 3 показан способ получения открывающего напряжения непосредственно от сети 220 В, стабилитрон VD1 ограничивает и стабилизирует это напряжение. Диод VD2 уменьшает нагрев гасящего резистора R5.

Схема - способ получения открывающего напряжения непосредственно от сети 220 В

Рис. 3. Схема — способ получения открывающего напряжения непосредственно от сети 220 В.

Такую схему питания целесообразно использовать и в случае питания от трансформатора, если его выходное напряжение превышает несколько десятков вольт При использовании в подобном случае двухполупериодного выпрямителя диод VD2 необходимо исключить, а последовательно со стабилитроном VD1 включить встречно еще один (того же типа) или использовать двуханодный стабилитрон

При расчете элементов однополупериодного выпрямителя и проведении измерений нужно помнить об особенностях измерения несинусоидального тока или напряжения, учитывая коэффициент формы.

При изготовлении многопредельного амперметра с пределами измеряемого тока менее 0 2 0 4 А необходимо учитывать следующую особенность этих мостовых схем. Ток, открывающий диод VD1 на рис 1 (или VD1, VD2 на рис 2), замыкается непосредственно на источник питания, а ток диода VD2 (или VD3 VD4 на рис. 2) проходит через резистор Rш, и создает на нем падение напряжения, которое, как указывалось выше, компенсируется подстройкой резистора R4

Когда сопротивление резистора Rш не более 0,1. 0 20м, падение напряжения на нем от тока диода VD2 (1 . 2 мА) не превышает 0,1 .0,4 мВ. При максимальном падении напряжения на шунте 100 ..200 мВ его можно не учитывать. Если же на минимальном пределе измерения сопротивление имеет большее значение, то необходимо принимать меры по поддержанию нуля при переключении пределов измерения.

Если питание моста производится от дополнительной обмотки то на минимальном пределе можно составить шунт из двух половин и подключить вывод обмотки питания моста к средней точке шунта Возможно также использовать дополнительную секцию безразрывного переключателя, чтобы при переключении пределов ток в цепи питания отдельных плеч измерительного моста не прерывался.

При изготовлении амперметров по приведенным схемам необходимо принять меры к повышению температурной стабильности показаний прибора, которая в основном определяется равенством температур диодов измерительного моста.

Для этого целесообразно использовать диодные сборки в одном корпусе либо разместить диоды рядом друг с другом и обеспечить хороший тепловой контакт, залив их компаундом.

В. Андреев, г. Тольятти, Самарская обл. Р2001, 1.

Источник

Амперметр переменного тока AD736 и ACS712

В статье рассмотрена схема амперметра действующих (среднеквадратичных) значений переменного тока. Основой схемы является датчик тока (модуль)на основе микросхемы ACS712ELCTR-30A-T. Модуль за недорого можно приобрести на AliExpress. Этот модуль уже был использован в амперметре постоянного тока, схема которого была рассмотрена в статье «Амперметр на микросхеме ACS712». Максимально измеряемый ток амперметром равен тридцати амперам. Схема амперметра приведена на рисунке 1.

Амперметр переменного тока AD736 и ACS712

В качестве индикатора в амперметре применена измерительная головка с током полного отклонения стрелки сто микроампер с гасящим резистором R6.

Работа схемы

При подаче на вывод 1 микросхемы стабилизатора DA2 LM7805 напряжения питания минимум 7,5 В на ее выходе 3 должно появиться напряжение 5 вольт. Это напряжение необходимо для питания микросхем измерительной части устройства – DA3, DA4, DA5. Микросхема DA3 является преобразователем переменного входного напряжения в постоянное напряжение, равное по величине действующему значению переменного на входе. Микросхема DA4 – усилитель выходного сигнала для измерительной головки и он же является масштабирующим усилителем. Микросхема DA5 – конвертор положительного напряжения +5 вольт в отрицательное напряжение -5 вольт. Отрицательное напряжение необходимо для нормальной работы микросхемы DA3. ОУ DA4 в принципе может работать и с однополярным источником питания, но тогда будет большая нелинейность в показаниях при малых измеряемых токах.

Читайте также:  Трансформаторы предназначенные для расширения пределов измерения приборов переменного тока

При прохождении переменного тока нагрузки через датчик на его выходе появляется переменное напряжение пропорциональное этому току. Для датчика с микросхемой ACS712ELCTR-30A-T коэффициент преобразования тока в напряжение равен 66мВ/А. Таким образом, при тридцати амперах тока нагрузки на выходе мы получим 66мВ х 30А = 1980мВ = 1,98В. А максимальное входное напряжение микросхемы AD736 равно 0,2В. Поэтому в схему введен резистивный делитель, состоящий из R1 и R2, с коэффициентом деления 10 : 1. С выхода DA3, вывод 6, сигнал подается на неинвертирующий вход операционного усилителя DA4 – LM358N. На его выходе стоит конденсатор фильтра С9. Коэффициент передачи данного усилителя зависит от соотношения резисторов R3 и R5. Регулируют данный коэффициент с помощью резистора R3. С выхода усилителя сигнал подается на вольтметр, состоящий из измерительной головки и добавочного сопротивления R6. Теперь немного посчитаем. При токе нагрузки, равному 30А, на выходе усилителя у нас должно быть 3 вольта. Шкала прибора в этом случае будет от нуля до тридцати. Значит, рассчитаем гасящий резистор на это напряжение.

Расчет добавочного сопротивления формула

У меня в распоряжении измерительная головка на 100мкА с сопротивление рамки 1200 Ом. Rдоб = (3В – 0,0001А х 1200 Ом) / 0,0001А = 28800 Ом ≈ 30кОм. Для моей головки R6 будет равен 30кОм. Как нарисовать новую шкалу к данному амперметру, можно узнать из статьи «Самодельная шкала приборов».

Настройка прибора

Для настройки данного амперметра нам потребуется контрольный амперметр действующих значений переменного тока или мультиметр, имеющий амперметр переменного тока с функцией RMS. Я пользуюсь UT71D. И так, включаем контрольный амперметр и наш амперметр, например, в цепь чайника скоропостижного разогрева. У них мощность до двух киловатт, для настройки как раз подойдет. Так, сперва прикинем, что у нас будет с уровнями сигнала. С чайником в 2 кВт в цепи протечет ток = 2000Вт/220В ≈ 9А. На выходе ACS712 мы будем иметь = 66мВ/А х 9А = 0,6В. После делителя, на входе DA3, у нас должно быть переменное действующее (RMS)напряжение 0,06В . На выходе DA3 должно быть постоянное напряжение такого же значения – 0,06В. Это входное напряжение для масштабирующего усилителя DA4. На выходе этого усилителя мы должны иметь уже 0,9В. Это будет соответствовать девяти делениям нашей шкалы. Таким образом, коэффициент усиления ОУ должен быть равен 0,9/0,06 = 15. Таким образом, резистор R3 должен иметь значение в районе = 100кОм /15 = 6,66кОм. По уровням у нас все сошлось, теперь резистором R3 точно выставляем значение измеряемого тока в соответствии с показаниями контрольного амперметра.

Вместо модуля с микросхемой ACS712ELCTR-30A-T можно применить другие модули с микросхемами, рассчитанными на тока 5 и 20А при неизменной принципиальной схеме. Соответствующие коэффициенты преобразования для этих микросхем составляют 185 мВ/А, 100 мА/A. Все уровни и соотношения вы уже знаете, поэтому, я думаю, ни каких сложностей возникнуть не должно.

В качестве блока питания можно использовать любой маломощный БП. Можно использовать зарядное от телефона с выходным напряжение не менее 7,5 вольт. Так как измеряемая цепь имеет гальваническую развязку с измерительной частью амперметра, то можно применить и бестрансформаторный блок питания.

Источник



Особенности амперметра переменного тока

26 октября 2019

Время на чтение:

Если взять амперметр переменного тока, можно с легкостью измерить силу тока. Учитываются типы приборов, назначение, маркировка. Важно рассмотреть устройство и схему амперметра.

Амперметр переменного тока

Амперметром постоянного тока называют прибор, который показывает силу тока в цепи. Показатель измеряется в амперах. Из этих данных можно узнать о магнитодвижущей силе, понять электрический потенциал. Изобретателем устройства является И. Швейгер, университетский профессор из Галле. Произошло это еще в XIX веке. И тогда прибор носил название «токовый гальванометр».

Амперметр переменного тока

Что измеряют амперметром

Физическая величина амперметра демонстрирует силу тока в цепи. Ампер привязан к международной системе единиц. Начиная с 1948 года, определена его формула. В ней учитывается магнитодвижущая сила плюс проводимость проводников.

Интересная информация! Есть разделение на кратные и дольные единицы. Опираясь на международное бюро мер и весов, амперметр способен показывать значения в декаамперах, гектоамперах, килоамперах и так далее.

Сфера применения широка, и электрики обязательно держат прибор под рукой. Цифровые, а также аналоговые модификации востребованы в промышленности. Еще встречаются модификации для потребности народного хозяйства. В энергетической области устройства позволяют определить силу тока на выходе у электротехники.

Строители используют приборы на площадках, чтобы провести проводку в домах и сооружениях. Автотранспорт, как известно, также функционирует на электронике. Устанавливая бортовой компьютер, важно знать силу тока. Отдельное направление – научные институты. Работая с радиоэлектроникой, важно подключать электрооборудование. Блоки питания подлежат тестированию, и чтобы проверить регулятор, важно использовать амперметр.

Принципы работы

Принцип работы зависит от типа модификации, а для этого стоит рассмотреть устройство амперметра постоянного тока.

Работа прибора

Основные элементы механической модели:

  • рамка;
  • наконечники;
  • центральная катушка;
  • подключенный сердечник;
  • магнит;
  • пружина.

Если рассматривать магнитоэлектрические модели, они включают следующие элементы:

  • проводник;
  • подпятник;
  • винт;
  • грузики.

Принцип работы механических модификаций построен на полярности подключения к цепи. На стрелку оказывается воздействие магнитного поля. Направление грузика зависит от амплитуды импульсов. При возрастании электричества стрелка отклоняется в левую сторону.

Читайте также:  Типовые схемы соединения трансформатора тока

Амперметр – типы

В зависимости от конструкции различают следующие амперметры:

  • электродинамические;
  • ферродинамические;
  • электромагнитные;
  • электрические.

Ферродинамический измеритель

Классификация по способу вывода информации:

  • аналоговые;
  • цифровые.

Если оценивать рынок, предлагается большое количество электродинамических амперметров. Измерители изготавливаются с катушками, имеется ряд особенностей:

  • широкий диапазон работы;
  • подходит для цепи переменного тока;
  • неподвижная катушка;
  • точный контрольный прибор.

Устройства востребованы в лабораториях, частных предприятиях. Они функционируют при частоте максимум до 200 Гц. К слабым сторонам стоит отнести повышенную чувствительность к перегрузкам. Если взглянуть на схему электродинамического амперметра, учитывается использование проводных конденсаторов.

Проводные конденсаторы

Преобладают рабочие резисторы повышенной проводимости. Если есть потребность в приобретении, стоит обратить внимание на измеряемые величины. Также в расчет берется показатель сопротивления. При подключении амперметра в цепи определяется воздействие силы тока от 1 ампера. Эксперты полагают, что электродинамические приборы обеспечивают наиболее высокую точность.

Класс оборудования должен указываться производителем. Также встречаются модели с экранированным, статическим построением компонентов. Если взглянуть на панель, может встречаться различное разделение по амперам.

Важно! Ферродинамический прибор поставляется с подвижными и неподвижными катушками.

  • частотная погрешность;
  • четкая позиция сердечника;
  • широкий температурный диапазон;
  • проблема с намагничиванием;
  • подходит для щитовых установок.

Электрики выбирают их за счет высокого класса надежности. Амперметры данного типа являются компактными. Они способны использоваться на плоской поверхности или монтироваться на рейку. Конфигурация предоставляется с поворотными механизмами либо рядом подшипников. За основу используется пластик, есть варианты с металлической защитой.

Сердечники с дополнительной обмоткой

Сердечники поставляются с дополнительной обмоткой, крепление осуществляется на винтах. Серийные щитовые приборы производятся с замкнутыми магнитопроводами. Сердечник у таких конструкций выполнен в виде сплошного цилиндра, на котором надето кольцо. Подвижная рамка служит в качестве измерительной обмотки.

Сердечник зафиксирован в горизонтальном положении. Также у амперметров используется подшипник качения, который крепится рядом с фланцем. Электромагнитный тип имеет ряд преимуществ:

  • компактность;
  • высокая точность;
  • подвижный сердечник;
  • учет изменения магнитного поля;
  • простота устройств.

Интересно! Амперметры поставляются с ферримагнитными сердечниками, которые установлены по центру.

Катушка может иметь выпуклую либо плоскую форму. В виде обмотки представлена толстая проволока, которая крепится на каркасе. Между элементами предусмотрен небольшой зазор. Под каркасом используется ферромагнитная пластина, расположенная в вертикальном положении. Пружина закреплена в корпусе и служит противодействующей силой стрелки. К числу особенностей стоит приписать такое:

  • нет проблем с перемагничиванием;
  • минимальный угол отклонения;
  • различные измеряемые величины;
  • дешевизна продукции;
  • подходит для щитовых приборов.

Аналоговый амперметр считается устаревшим, однако такое заявление еще преждевременно. Большинство модификаций работают в широком диапазоне, отличаются повышенной точностью.

Аналоговый измеритель

  • масса от 0.2 кг;
  • класс точности 1.5;
  • средний размер 80 на 80 мм.

Аналоговые модели просты в монтаже, используются в пластиковом корпусе. Особенности цифровых амперметров:

  • разнообразие типов;
  • интересный дизайн;
  • различные способы монтажа;
  • высокая точность.

В цепи переменного тока модели демонстрируют стабильную работу. Модули устанавливаются в источниках питания, используются платы на 4–5 выводов.

  • напряжения от 3.5 вольт;
  • максимальный ток до 20 а;
  • вес от 20 грамм;
  • средний размер 40 на 30 мм;
  • минимальная температура – 15 градусов;
  • точность измерения от 0.5 процента;
  • частота обновления 150 мс за один раз;
  • максимальная температура + 70 градусов.

Цифровые амперметры Emas, Feron, GTM, Hager могут характеризоваться, как профессиональные. Некоторые подходят для лабораторий, другие – востребованы в промышленности.

Амперметры Ам-2 DigiTOP

Прибор данной серии работает в сети переменного тока с частотой не более 50 Гц.

Ам-2 DigiTOP

  • максимальный ток – 50 ампер;
  • электроцепь – однофазная;
  • погрешность не более 1%;
  • максимальная температура эксплуатации 55 градусов;
  • производитель – Украина;
  • минимальная температура – 35 градусов;
  • нижний предел – 1 амперметр.

Установка относится к электронным, есть цифровое табло. Она используется на промышленных предприятиях, где установлено электрооборудование. Прибор может быть монтироваться на рейку шириной в 35 мм. Подключение осуществляется согласно схеме. Для питания конструкции не требуется отдельный аккумулятор, источником энергии выступает сеть.

Амперметр лабораторный Э537

В лабораториях остаются востребованными товары представленной серии. Они служат для измерения силы тока в цепи переменного тока.

Лабораторный измеритель Э537

  • класс точности – 0.5;
  • масса – 1.2 кг;
  • минимальная частота – 45 Гц;
  • длина, ширина –140 на 195 мм.

Прибор выделяется высокой точностью и качеством элементов. В лабораториях его можно подключать к электрооборудованию, значение показывается в миллиамперметрах.

Амперметр СА3020

В среде цифровых приборов выгодно смотрится представленный щитовой вариант. Работает в цепи переменного тока.

Измеритель СА3020

  • минимальная частота – 47 Гц;
  • постоянное напряжение – 120 вольт;
  • потребляемая мощность – 4 В;
  • масса – 0.5 кг;
  • максимальная частота – 65 Гц;
  • напряжение сети – от 85 вольт.

Прибор имеет высокую степень защиты от замыканий, плюс к этому – устройство очень простое в подключении.

Устройство прибора

Цифровой прибор включает в себя плату, дисплей, а также контакт. Если детальнее рассматривать блок управления, предусмотрены следующие компоненты:

  • компаратор;
  • операционный усилитель;
  • регулятор;
  • конденсаторы;
  • резисторная сборка;
  • резонатор.

Шкала и схема амперметра переменного тока

На схеме видны элементы, отвечающие за уровень напряжения. Распространенными считаются варианты с последовательным подключением резисторов. Максимальное падение напряжения происходит на обмотке.

Схема элемента

Интересно! Диоды используются кремниевого типа, они отвечают за стабильность показаний.

Также на схеме показана дополнительная обмотка изоляции. За катушкой трансформатора идут конденсаторы. Кремниевый диод служит для защиты показаний. В сложных схемах амперметр используется с выпрямителями.

Выше описано понятие прибора переменного тока. Рассказана сфера применения, особенности устройств. Показан принцип работы и преимущества конкретных приборов.

Источник