Меню

Датчик сигналы по напряжению или току

Датчики электрического тока

Глобальные тренды — спрос на снижение выбросов CO2, повышение интенсивности энергосбережения — приводят к необходимости сбалансированного потребления энергии, для чего большую помощь могут оказать электронные схемы управления процессами. Наиболее распространённые случаи — это оптимизация эксплуатационных характеристик аккумуляторов, контроль скорости вращения двигателей и переходных процессов в серверах, управление солнечными батареями. Для операторов таких систем важно, в частности, знать, какой ток протекает в цепи. Неоценимую помощь в этом могут оказать датчики тока.

практика применения датчиков тока

Почему необходимы датчики тока

Датчиками называют блоки, задача которых измерить некоторый параметр, а потом, сравнив его с эталонным для данной технической системы значением, подать соответствующий сигнал на исполнительный элемент схемы. Поскольку большинство систем используют электродвигатели, то наиболее распространёнными типами являются датчики тока и напряжения (общий вид последнего представлен на следующем рисунке).

Широкое внедрение таких устройств обусловлено развитием сенсорных методов управления, когда исходный сигнал — электрический или оптический — преобразуется в необходимые параметры управления.

По сравнению в другими управляющими технологиями (например, контакторного контроля) датчики обеспечивают следующие преимущества:

  1. Компактность.
  2. Безопасность в применении.
  3. Высокую точность.
  4. Экологичность.

датчик напряжения в сборе

Малые размеры и вес часто позволяют изготавливать многофункциональные датчики, например, такие, которые могут контролировать несколько параметров цепи. Таковыми являются современные датчики тока и напряжения.

В состав таких детекторов входят:

  • Контактные группы входа;
  • Контактные группы выхода;
  • Шунтирующий резистор;
  • Усилитель сигнала;
  • Несущая плата;
  • Блок питания.

Идея того, что устройства можно подключать к уже имеющейся сети, не выдерживает проверку временем, ибо часто в экстремальных ситуациях (пожар, взрыв, землетрясение) именно системы встроенного электроснабжения первыми выходят из строя.

Детекторы подразделяют на активные и пассивные. Первые не только передают конечный сигнал на управляющий элемент, но и управляют его действием.

Классификация и схемы подключения

Датчики тока предназначаются для оценки параметров постоянного и/или переменного тока. Сравнение выполняется двумя методами. В первом случае используется закон Ома. При установке шунтирующего резистора в соответствии с нагрузкой системы на нём создаётся напряжение, пропорциональное нагрузке системы. Напряжение на шунте может быть измерено дифференциальными усилителями, например, токовыми шунтирующими, операционными или разностными. Такие устройства используются для нагрузок, которые не превышают 100 А.

Измерение переменного тока выполняется в соответствии с законами Ампера и Фарадея. При установке петли вокруг проводника с током там индуцируется напряжение. Этот метод измерения используется для нагрузок от 100 А до 1000 А.

Схема описанных измерений представлена на рисунке:

слева – измерение малых токов; справа - измерение больших токов

Измерение обычно производится при низком входном значении синфазного напряжения. При помощи чувствительного резистора датчик тока соединяется между нагрузкой и землей. Это необходимо, поскольку синфазное напряжение всегда учитывает наличие операционных усилителей. Нагрузка обеспечивает питание прибора, а выходное сопротивление заземляется. Недостатками данного способа считаются наличие помех, связанных с потенциалом нагрузки системы на землю, а также невозможность обнаружения коротких замыканий.

Для слежения работой мощных систем детектор присоединяют к усилителю между источником питания и нагрузкой. В результате непосредственно контролируются значения параметров, подаваемых источником питания. Это позволяет идентифицировать возможные короткие замыкания. Особенность подключения заключается в том, что диапазон синфазного напряжения на входе усилителя должен соответствовать напряжению питания нагрузки. Перед измерением выходного сигнала контролируемого устройства нагрузка заземляется.

Как функционирует датчик тока

Работа данного элемента включает следующие этапы:

  1. Измерение нагрузки в контролируемой схеме.
  2. Сравнение полученного значения с эталонным, которое программируется в процессе настройки.
  3. Фиксация полученного результата (может быть выполнена в цифровом или аналогом виде).
  4. Передача данных на панель управления.

Для выполнения указанных функций (в частности, реализации высокой точности измерений) к элементам детектора предъявляются следующие требования:

  • Допустимое падение напряжения на шунтирующем резисторе должно быть не более 120…130 мВ;
  • Температурная погрешность не может быть выше 0.05 %/°С и не изменяться во времени работы;
  • В функциональном диапазоне значений характеристики сопротивления резисторов должны быть линейными;
  • Способ пайки токочувствительных резисторов на плату не может увеличивать общее сопротивление схемы подключения.

Монтажные схемы устройств, которые предназначены для контроля цепей постоянного и переменного тока представлены соответственно на рисунках.

Подключение датчика постоянного тока

подключение датчика переменного тока

Практика применения

Чаще всего данные изделия используются как измерители в схемах токовых реле, которые управляют режимами работы различного электроприводного оборудования и предохраняют его от экстремальных ситуаций.

Токовые реле способны защитить любое механическое устройство от заклинивания или других условий перегрузки, которые приводят к ощутимому увеличению нагрузки на двигатель. Функционально они определяют уровни тока и выдают выходной сигнал при достижении указанного значения. Такие реле используются для:

  • Сигнала сильноточных условий, например, забитая зёрнами доверху кофемолка;
  • Некоторых слаботочных условий, например, работающий насос при низком уровне воды.

Чтобы удовлетворить требования разнообразного набора приложений, в настоящее время используется блочный принцип компоновки датчиков, включая применение USB-разъёмов, монтаж на DIN-рейку и кольцевые исполнения устройств. Это обеспечивает выполнение следующих функций:

  • Надёжную работу на любых режимах эксплуатации;
  • Возможность применения трансформаторов;
  • Регулировка текущих параметров, которые могут быть фиксированными или регулируемыми;
  • Аналоговый или цифровой выход, включая и вариант с коротким замыканием;
  • Различные исполнения блоков питания.

В качестве примера рассмотрим схему датчика тока для управления работой водяного насоса, обеспечивающего подачу воды в дом.

отключение питающего насоса датчиком тока при низком уроне воды в резервуаре

Кавитация — это разрушительное состояние, вызванное присутствием пузырьков, которые образуются, когда центробежный насос или вертикальный турбинный насос работает с низким уровнем жидкости. Образующиеся пузырьки затем лопаются, что приводит к точечной коррозии и разрушению исполнительного узла насоса. Подобную ситуацию предотвращает токовое реле.

Когда насос работает в нормальном режиме, и жидкость полностью перекрывает его впускное отверстие, двигатель насоса потребляет номинальный рабочий ток. В случае снижения уровня воды потребляемый ток уменьшается. Если кнопка запуска нажата, одновременно включаются стартёр M и таймер TD. Реле CD настроено на максимальный ток, поэтому его контакт при первоначальном запуске двигателя не будет замкнут. При падении силы тока ниже установленного минимума реле включается, а, после истечения времени ожидания TD, включается в его нормально замкнутый контакт. Соответственно контакты CR размыкаются и обесточивают двигатель насоса.

Применение такого детектора исключает автоматический перезапуск насоса, поскольку оператору необходимо убедиться в том, что уровень жидкости перед впускным отверстием достаточен.

Датчик тока своими руками

Если приобрести стандартный датчик (наиболее известны конструкции от торговой марки Arduino) по каким-то соображениям невозможно, устройство можно изготовить и самостоятельно.

датчик тока фирмы Arduino. Стрелкой указан USB-разъём

  1. Операционный усилитель LM741, или любой другой, который мог бы действовать как компаратор напряжения.
  2. Резистор 1 кОм.
  3. Резистор 470 Ом.
  4. Светодиод.

Общий вид устройства в сборе, сделанного своими руками, представлен на следующем рисунке. В данной схеме используется эффект Холла, когда разность управляющих потенциалов может изменяться при изменении месторасположения проводника в электромагнитном поле.

самодельный датчик тока

Видео по теме

Источник

Индуктивные датчики. Разновидности, принцип работы

Индуктивный датчик положения

Индуктивный датчик приближения. Внешний вид

В промышленной электронике индуктивные, оптические и другие датчики применяются очень широко.

Долго и постоянно имею с ними дело, и вот решил написать статью, поделиться знаниями.

Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.

Виды датчиков

Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) — понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.

Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.

Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.

Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик освещённости”

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления. Давления воздуха или масла нет – сигнал на контроллер или рвёт аварийную цепь. Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами.

Пока хватит, перейдём к теме статьи.

Принцип работы индуктивного датчика

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

Читайте также:  Светодиод сгорает от напряжения или тока

принцип работы индуктивного датчика

Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

И схема, содержащая компаратор, выдаёт сигнал на ключевой транзистор или реле. Нет металла – нет сигнала.

Схема индуктивного датчика

Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды

Большинство картинок в статье – не мои, в конце можно будет скачать источники.

Применение индуктивного датчика

Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.

Работа индуктивного датчика

Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.

Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – ток при включении лампы значительно превышает номинальный.

СамЭлектрик.ру в социальных сетях

Подписывайтесь! Там тоже интересно!

Характеристики индуктивных датчиков

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам.

Конструкция, вид корпуса

Тут два основных варианта – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Диаметр цилиндрического датчика

Основные размеры – 12 и 18 мм. Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Расстояние переключения (рабочий зазор)

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Количество проводов для подключения

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

Виды выходов датчиков по полярности

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

Виды датчиков по состоянию выхода (НЗ и НО)

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.

Кстати, если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Положительная и отрицательная логика работы

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

Скачать инструкции и руководства на некоторые типы индуктивных датчиков:

• Autonics_proximity_sensor / Каталог датчиков приближения Autonics, pdf, 1.73 MB, скачан: 1574 раз./

• Omron_E2A / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан: 2070 раз./

• ТЕКО_Таблица взаимозаменяемости выключателей зарубежных производителей / Чем можно заменить датчики ТЕКО, pdf, 179.92 kB, скачан: 1575 раз./

• Turck_InduktivSens / Датчики фирмы Turck, pdf, 4.13 MB, скачан: 2129 раз./

• pnp npn / Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан: 3235 раз./

Источник

Выбор носителя сигнала: напряжение или ток

Выбор носителя сигнала для передачи измерительных данных от датчика к электронным блокам зависит от нескольких факторов. Наиболее существенное соображение, ко­торое следует принимать во внимание, — сигнал должен быть по возможности мало­чувствительным к электрическим возмущениям.

Передача сигнала напряжением

Каждый кабель обладает определенным погонным сопротивлением. Если входной импеданс последнего элемента в цепи — устройства обработки сигна­ла — не бесконечность, то по кабелю будет протекать ток и в результате про­изойдет падение напряжения. Если изменяется амплитуда сигнала, то некото­рый ток потечет между проводами из-за распределенных емкостей. Следовательно, разумно всегда считаться с некоторым падением напряжения на линии передачи. Требование, чтобы устройства обработки имели высокий вход­ной импеданс, приводит к тому, что они очень чувствительны к помехам. Следо­вательно, напряжение не слишком пригодно для передачи данных в случаях, когда могут быть заметные помехи.

Одним из способов передачи сигнала напряжением является организация трехпроводной системы (рис.7). По одному проводу течет постоянный ток для пита­ния датчика, по другому поступают сигналы от датчика к согласующим и обраба­тывающим устройствам, а третий провод является общим для обоих контуров. По двум проводам течет постоянный ток; по сигнальному проводу ток не течет, следо­вательно, нет падения напряжения. Преимущество этого решения в том, что изменения сопротивления сигнального провода, например из-за колебаний температуры, не сказываются на сигнале: по этому проводу не протекает ток и, следовательно, на нем нет падения напряжения. Чувствительность к внешним помехам остается, однако, неизменной.

Рис. 7. Подключение датчика в трехпроводной цепи

Главная причина популярности напряжения для передачи сигналов — это, с од­ной стороны, присущая этому методу простота, а с другой — широкая доступность устройств для усиления, фильтрации и других видов обработки. Например, если необходимо, чтобы один и тот же сигнал поступил на вход нескольких схем, доста­точно соединить эти схемы параллельно (с учетом входного импеданса).

Передача сигнала током

Для передачи сигнала на значительное расстояние лучше использовать не напря­жение, а ток, потому что он остается постоянным по длине кабеля, а напряжение па­дает из-за сопротивления кабеля. На конце кабеля токовый сигнал можно преобразо­вать в напряжение с помощью высокоточного шунтирующего резистора (рис. 8).

Рис.8. Передача аналогового сигнала по токовой петле.

При передаче токовых сигналов выходное напряжение датчика преобразуется операционным усилителем в ток. Приемник — операционный усилитель на конце цепи — в идеале должен иметь нулевой входной импеданс. Преобразователь напряжения в ток — стандартный элемент цепи. Сигнал передается по витой паре, длина которой может достигать нескольких сот метров. Шунтирующий резис­тор для преобразования тока в напряжение в диапазоне до 10 В должен иметь вели­чину порядка 500 Ом.

Читайте также:  Защита от удара током в воде

В действительности, им­педанс определяется шунтом и обычно имеет порядок нескольких сотен Ом. Для тока 20 мА при сопротивлении шунта 250 Ом падение напряжения будет составлять 5 В. Если источник сигнала, т. е. преобразователь напряжения в ток, имеет высокий выходной импеданс, тогда любая помеха при передаче приведет к небольшому, обыч­но допустимому падению напряжения на шунте.

Токовые сигналы, как правило, используются на низких частотах до 10 Гц. При постоянном токе и идеальной изоляции сопротивление кабеля не влияет на сиг­нал, т. е. величина тока на входе приемника — обрабатывающей схемы — такая же, как на выходе источника сигнала. При переменном токе влияние емкостного эф­фекта становится заметным и часть тока будет теряться по длине кабеля, уходя либо в обратный провод, либо в заземленный экран. Международный стандарт IEC 381 рекомендует для передачи сигналов диапазон токов 4-20 мА. Минималь­ный уровень сигнала определен как 4 мА, чтобы можно было обнаружить разрыв цепи (0 мА).

Питание и датчика, и преобразователя и передача выходного сигнала могут осу­ществляться по одной и той же паре проводов. Это можно сделать при условии, что ток, потребляемый датчиком и преобразователем, не меняется, тогда любое измене­ние тока в цепи, очевидно, отражает работу датчика. Напротив, как было сказано ра­нее, передача сигнала напряжением требует трех кабелей.

Измерительная система, использующая ток для передачи сигнала и датчик, гальванически изолированный от выходного сигнала, имеет несколько преимуществ:

— удовлетворительно работает на протяженных линиях;

-допускает простую проверку, поскольку величина тока 0 мА означает, что датчик отключен или линия разомкнута;

— обеспечивает хорошую защиту от помех;

— для системы достаточно только два провода, что позволяет снизить затраты.

Источник



Аналоговые датчики: применение, способы подключения к контроллеру

Аналоговые датчикиВ процессе автоматизации технологических процессов для управления механизмами и агрегатами приходится сталкиваться с измерениями различных физических величин. Это может быть температура, давление и расход жидкости или газа, частота вращения, сила света информация о положении частей механизмов и многое другое. Эта информация получается с помощью датчиков. Вот, сначала о положении частей механизмов.

Дискретные датчики

Самый простой датчик – обычный механический контакт: дверь открыли – контакт разомкнулся, закрыли – замкнулся. Такой нехитрый датчик, равно как и приведенный алгоритм работы, часто применяется в охранных сигнализациях. Для механизма с поступательным движением, который имеет два положения, например водопроводная задвижка, понадобится уже два контакта: замкнулся один контакт – задвижка закрыта, замкнулся другой – закрыта.

Более сложный алгоритм поступательного движения имеет механизм закрытия прессформы термопласт автомата. Изначально прессформа открыта, это исходное положение. В этом положении из прессформы извлекаются готовые изделия. Далее рабочий закрывает защитное ограждение и прессформа начинает закрываться, начинается новый рабочий цикл.

Расстояние между половинами прессформы достаточно велико. Поэтому сначала прессформа движется быстро, а на некотором расстоянии до смыкания половин, срабатывает концевик, скорость движения значительно уменьшается и прессформа плавно закрывается.

Такой алгоритм позволяет избежать удара при смыкании прессформы, иначе ее просто можно расколотить на мелкие кусочки. Такое же изменение скорости происходит и при открывании прессформы. Здесь уже двумя контактными датчиками не обойтись.

Таким образом, датчики на основе контакта являются дискретными или бинарными, имеют два положения, замкнут – разомкнут или 1 и 0. Другими словами можно сказать, что событие произошло или нет. В приведенном выше примере, контактами «улавливаются» несколько точек: начало движения, точка снижения скорости, конец движения.

В геометрии точка не имеет никаких размеров, просто точка и все. Она может либо быть (на листе бумаги, в траектории движения, как в нашем случае) или ее попросту нет. Поэтому для обнаружения точек применяются именно дискретные датчики. Может быть сравнение с точкой здесь не очень уместно, ведь в практических целях пользуются величиной точности срабатывания дискретного датчика, а точность эта намного больше геометрической точки.

Но сам по себе механический контакт вещь ненадежная. Поэтому везде, где это возможно, механические контакты заменяются бесконтактными датчиками. Самый простой вариант это герконы: магнит приблизился, контакт замкнулся. Точность срабатывания геркона оставляет желать лучшего, применять такие датчики как раз только для определения положения дверей.

Более сложным и точным вариантом следует считать различные бесконтактные датчики. Если металлический флажок вошел в прорезь, то датчик сработал. В качестве примера таких датчиков можно привести датчики БВК (Бесконтактный Выключатель Конечный) различных серий. Точность срабатывания (дифференциал хода) таких датчиков 3 миллиметра.

Датчик серии БВК

Рисунок 1. Датчик серии БВК

Напряжение питания датчиков БВК 24В, ток нагрузки 200мА, что вполне достаточно для подключения промежуточных реле для дальнейшего согласования со схемой управления. Именно так используются датчики БВК в различном оборудовании.

Кроме датчиков БВК применяются также датчики типов БТП, КВП, ПИП, КВД, ПИЩ. Каждая серия имеет несколько типов датчиков, обозначаемых цифрами, например, БТП-101, БТП-102, БТП-103, БТП-211.

Все упомянутые датчики являются бесконтактными дискретными, их основное назначение определение положения частей механизмов и агрегатов. Естественно, что этих датчиков намного больше, обо всех в одной статье не написать. Еще более распространены и до сих пор находят широкое применение различные контактные датчики.

Применение аналоговых датчиков

Кроме дискретных датчиков в системах автоматизации широкое применение находят аналоговые датчики. Их назначение – получение информации о различных физических величинах, причем не, просто так вообще, а в реальном масштабе времени. Точнее преобразование физической величины (давление, температура, освещенность, расход, напряжение, ток) в электрический сигнал пригодный для передачи по линиям связи в контроллер и дальнейшая его обработка.

Аналоговые датчики располагаются, как правило, достаточно далеко от контроллера, отчего часто их называют полевыми устройствами. Этот термин часто применяется в технической литературе.

Аналоговый датчик, как правило, состоит из нескольких частей. Самая главная часть это чувствительный элемент – сенсор. Его назначение перевести измеряемую величину в электрический сигнал. Но сигнал, получаемый от сенсора, как правило, невелик. Для получения сигнала, пригодного для усиления, сенсор чаще всего включается в мостовую схему – мостик Уитстона.

Мостик Уитстона

Рисунок 2. Мостик Уитстона

Изначальное назначение мостовой схемы — точное измерение сопротивления. К диагонали моста AD подключается источник постоянного тока. В другую диагональ подключен чувствительный гальванометр со средней точкой, с нулем в середине шкалы. Для измерения сопротивления резистора Rx вращением подстроечного резистора R2 следует добиться равновесия моста, установить стрелку гальванометра на нулевое значение.

Отклонение стрелки прибора в ту или иную сторону позволяет определить направление вращения резистора R2. Величина измеряемого сопротивления определяется по шкале, совмещенной с ручкой резистора R2. Условием равновесия моста является равенство соотношений R1/R2 и Rx/R3. В этом случае между точками BC получается нулевая разность потенциалов, и ток через гальванометр V не протекает.

Сопротивление резисторов R1 и R3 подобрано очень точно, их разброс должен быть минимален. Только в этом случае даже небольшой разбаланс моста вызывает достаточно заметное изменение напряжения диагонали BC. Именно это свойство моста используется для подключения чувствительных элементов (сенсоров) различных аналоговых датчиков. Ну, а дальше все просто, дело техники.

Для использования сигнала, полученного с сенсора, требуется его дальнейшая обработка, — усиление и преобразование в выходной сигнал, пригодный для передачи и обработки схемой управления — контроллером. Чаще всего выходным сигналом аналоговых датчиков является ток (аналоговая токовая петля), реже напряжение.

Почему именно ток? Дело в том, что выходные каскады аналоговых датчиков построены на базе источников тока. Это позволяет избавиться от влияния на выходной сигнал сопротивления соединительных линий, пользоваться соединительными линиями большой длины.

Дальнейшее преобразование достаточно просто. Токовый сигнал преобразуется в напряжение, для чего достаточно ток пропустить через резистор известного сопротивления. Падение напряжения на измерительном резисторе получается по закону Ома U=I*R.

Например, для тока 10 мА на резисторе сопротивлением 100Ом получится напряжение 10*100=1000мВ, аж прямо целый 1 вольт! При этом выходной ток датчика не зависит от сопротивления соединительных проводов. В разумных, конечно, пределах.

Подключение аналоговых датчиков

Полученное на измерительном резисторе напряжение легко преобразовать в цифровой вид, пригодный для ввода в контроллер. Преобразование выполняется с помощью аналого-цифровых преобразователей АЦП.

Цифровые данные в контроллер передаются последовательным или параллельным кодом. Все зависит от конкретной схемы включения. Упрощенная схема подключения аналогового датчика показана на рисунке 3.

Подключение аналогового датчика

Рисунок 3. Подключение аналогового датчика (чтобы увеличить нажмите на картинку)

К контроллеру подключаются исполнительные механизмы, либо сам контроллер подключается к компьютеру, входящему в систему автоматизации.

Читайте также:  Как направлен ток в источнике энергии

Естественно, что аналоговые датчики имеют законченную конструкцию, одним из элементов которой является корпус с присоединительными элементами. В качестве примера на рисунке 4 показан внешний вид датчика избыточного давления типа Зонд-10.

Датчик избыточного давления Зонд-10

Рисунок 4. Датчик избыточного давления Зонд-10

В нижней части датчика можно видеть присоединительную резьбу для подключения к трубопроводу, а справа под черной крышкой находится разъем для подключения линии связи с контроллером.

Герметизация резьбового соединения производится с помощью шайбы из отожженной меди (входит в комплект поставки датчика), а отнюдь не подмоткой из фум-ленты или льна. Делается это для того, чтобы при установке датчика не деформировать расположенный внутри сенсорный элемент.

Выходные сигналы аналоговых датчиков

Согласно стандартам существует три диапазона токовых сигналов: 0…5мА, 0…20мА и 4…20мА. В чем их отличие, и какие особенности?

Чаще всего зависимость выходного тока прямо пропорциональна измеряемой величине, например, чем выше давление в трубе, тем больше ток на выходе датчика. Хотя иногда применяется инверсное включение: большей величине выходного тока соответствует минимальное значение измеряемой величины на выходе датчика. Все зависит от типа применяемого контроллера. Некоторые датчики имеют даже переключение с прямого на инверсный сигнал.

Выходной сигнал диапазона 0…5мА весьма мал, и поэтому подвержен действию помех. Если сигнал такого датчика колеблется при неизменном значении измеряемого параметра, то есть рекомендации параллельно выходу датчика установить конденсатор емкостью 0.1…1мкФ. Более устойчивым является токовый сигнал в диапазоне 0…20мА.

Но оба этих диапазона нехороши тем, что ноль в начале шкалы не позволяет однозначно определить, что же произошло. Или измеряемый сигнал на самом деле принял нулевой уровень, что в принципе возможно, или просто оборвалась линия связи? Поэтому от использования этих диапазонов стараются, по возможности, отказаться.

Более надежным считается сигнал аналоговых датчиков с выходным током в диапазоне 4…20мА. Помехозащищенность его достаточно высокая, а нижний предел, даже если измеряемый сигнал имеет нулевой уровень, будет 4мА, что позволяет говорить о том, что линия связи не оборвана.

Еще одной хорошей особенностью диапазона 4…20мА является то, что датчики можно подключать всего по двум проводам, поскольку именно таким током питается сам датчик. Это его ток потребления и одновременно измерительный сигнал.

Источник питания датчиков диапазона 4…20мА включается, как показано на рисунке 5. При этом датчики Зонд-10, как и многие другие, по паспорту имеют широкий диапазон напряжения питания 10…38В, хотя чаще всего применяются стабилизированные источники с напряжением 24В.

Подключение аналогового датчика с внешним источником питания

Рисунок 5. Подключение аналогового датчика с внешним источником питания

На этой схеме присутствуют следующие элементы и обозначения. Rш – резистор измерительного шунта, Rл1 и Rл2 – сопротивления линий связи. Для повышения точности измерения в качестве Rш должен использоваться прецизионный измерительный резистор. Прохождение тока от источника питания показано стрелками.

Нетрудно видеть, что выходной ток источника питания проходит с клеммы +24В, через линию Rл1 достигает клеммы датчика +AO2, проходит через датчик и через выходной контакт датчика — AO2, соединительную линию Rл2, резистор Rш возвращается на клемму источника питания -24В. Все, цепь замкнулась, ток течет.

В случае, если контроллер содержит источник питания 24В, то подключение датчика или измерительного преобразователя возможно по схеме, показанной на рисунке 6.

Подключение аналогового датчика к контроллеру с внутренним источником питания

Рисунок 6. Подключение аналогового датчика к контроллеру с внутренним источником питания

На этой схеме показан еще один элемент – балластный резистор Rб. Его назначение защита измерительного резистора при замыкании линии связи или неисправности аналогового датчика. Установка резистора Rб необязательна, хотя и желательна.

Кроме различных датчиков токовый выход имеют также измерительные преобразователи, которые в системах автоматизации используются достаточно часто.

Измерительный преобразователь – устройство для преобразования уровней напряжения, например, 220В или тока в несколько десятков или сотен ампер в токовый сигнал 4…20мА. Здесь просто происходит преобразование уровня электрического сигнала, а не представление некоторой физической величины (скорость, расход, давление) в электрическом виде.

Но единственным датчиком дело, как правило, не обходится. Одними из самых популярных измерения являются измерения температуры и давления. Количество таких точек на современных производствах может достигать нескольких десятков тысяч. Соответственно и количество датчиков тоже велико. Поэтому к одному контроллеру чаще всего подключается сразу несколько аналоговых датчиков. Конечно же, не сразу несколько тысяч, хорошо, если десяток – другой. Такое подключение показано на рисунке 7.

Подключение нескольких аналоговых датчиков к контроллеру

Рисунок 7. Подключение нескольких аналоговых датчиков к контроллеру

На этом рисунке показано, как из токового сигнала получается напряжение, пригодное для преобразования в цифровой код. Если таких сигналов несколько, то обрабатываются они не все сразу, а разделяются по времени, мультиплексируются, в противном случае на каждый канал пришлось бы ставить отдельный АЦП.

Для этой цели контроллер имеет схему коммутации каналов. Функциональная схема коммутатора показана на рисунке 8.

Коммутатор каналов аналоговых датчиков

Рисунок 8. Коммутатор каналов аналоговых датчиков (картинка кликабельна)

Сигналы токовой петли, преобразованные в напряжение на измерительном резисторе (UR1…URn) поступают на вход аналогового коммутатора. Управляющие сигналы поочередно пропускают на выход один из сигналов UR1…URn, которые усиливаются усилителем, и поочередно поступают на вход АЦП. Преобразованное в цифровой код напряжение поступает в контроллер.

Схема, конечно, очень упрощенная, но принцип мультиплексирования в ней рассмотреть вполне возможно. Примерно так построен модуль ввода аналоговых сигналов контроллеров МСТС (микропроцессорная система технических средств) выпускавшихся смоленским ПК «Пролог». Внешний вид контроллера МСТС показан на рисунке 9.

Контроллер МСТС

Рисунок 9. Контроллер МСТС

Выпуск таких контроллеров давно уже прекращен, хотя в некоторых местах, далеко не лучших, эти контроллеры служат до сих пор. На смену этим музейным экспонатам приходят контроллеры новых моделей, в основном импортного (китайского) производства.

Для подключения токовых датчиков 4…20мА рекомендуется использовать двухпроводный экранированный кабель с сечением жил не менее 0,5 мм2.

Если контроллер смонтирован в металлическом шкафу, то экранирующие оплетки рекомендуется подключать к точке заземления шкафа. Длина соединительных линий может достигать двух с лишним километров, что рассчитывается по соответствующим формулам. Считать здесь ничего не будем, но поверьте, что это так.

Новые датчики, новые контроллеры

С приходом новых контроллеров появились и новые аналоговые датчики, работающие по протоколу HART (Highway Addressable Remote Transducer), что переводится как «Измерительный преобразователь, адресуемый дистанционно через магистраль».

Выходной сигнал датчика (полевого устройства) представляет собой аналоговый токовый сигнал диапазона 4…20мА, на который накладывается частотно модулированный (FSK — Frequency Shift Keying) сигнал цифровой связи.

Выходной сигнал аналогового датчика по протоколу HART

Рисунок 10. Выходной сигнал аналогового датчика по протоколу HART

На рисунке показан аналоговый сигнал, а вокруг него, как змея, извивается синусоида. Это и есть частотно – модулированный сигнал. Но это еще вовсе не цифровой сигнал, его еще предстоит распознать. На рисунке заметно, что частота синусоиды при передаче логического нуля выше (2,2КГц), чем при передаче единицы (1,2КГц). Передача этих сигналов осуществляется током амплитудой ±0,5мА синусоидальной формы.

Известно, что среднее значение синусоидального сигнала равно нулю, поэтому, на выходной ток датчика 4…20мА передача цифровой информации влияния не оказывает. Такой режим используется при настройке датчиков.

Связь по протоколу HART осуществляется двумя способами. В первом случае, стандартном, по двухпроводной линии могут обмениваться информацией только два устройства, при этом выходной аналоговый сигнал 4…20мА зависит от измеряемой величины. Такой режим применяется при настройке полевых устройств (датчиков).

Во втором случае к двухпроводной линии может быть подключено до 15 датчиков, количество которых определяется параметрами линии связи и мощностью блока питания. Это режим многоточечной связи. В этом режиме каждый датчик имеет свой адрес в диапазоне 1…15, по которому к нему обращается устройство управления.

Датчик с адресом 0 от линии связи отключен. Обмен данными между датчиком и устройством управления в многоточечном режиме осуществляется только частотным сигналом. Токовый сигнал датчика зафиксирован на необходимом уровне и не изменяется.

Под данными в случае многоточечной связи подразумеваются не только собственно результаты измерений контролируемого параметра, но еще и целый набор всевозможной служебной информации.

В первую очередь это адреса датчиков, команды управления, параметры настройки. И вся эта информация передается по двухпроводным линиям связи. А нельзя ли избавиться и от них? Правда, делать это надо осторожно, лишь в тех случаях, когда беспроводное соединение не сможет повлиять на безопасность контролируемого процесса.

Оказывается, избавиться от проводов можно. Уже в 2007 году был опубликован Стандарт WirelessHART, средой передачи является нелицензируемая частота 2,4ГГц, на которой работают многие компьютерные беспроводные устройства, в том числе и беспроводные локальные сети. Поэтому и WirelessHART-устройства можно использовать без всяких ограничений. На рисунке 11 показана беспроводная сеть WirelessHART.

Беспроводная сеть WirelessHART

Рисунок 11. Беспроводная сеть WirelessHART

Вот такие технологии пришли на смену старой аналоговой токовой петле. Но и она свои позиции не сдает, широко применяется везде, где это возможно.

Источник

Датчик сигналы по напряжению или току

Унифицированные аналоговые сигналы в системах автоматики

При автоматизации технологических процессов используются различные датчики и исполнительные устройства. И те и другие так или иначе связаны с контроллерами или модулями ввода/вывода, которые получают от датчиков измеренные значения физических параметров и управляют исполнительными устройствами.

Представьте, что все устройства, присоединяемые к контроллеру имели бы различные интерфейсы — тогда производителям пришлось бы «плодить» огромное количество модулей ввода-вывода, а для того, чтобы заменить, например, неисправный датчик, нужно было бы искать точно такой же.

Именно поэтому, в системах промышленной автоматики принято унифицировать интерфейсы различных устройств.

В этой статье мы расскажем об унифицированных аналоговых сигналах. Поехали!

Унифицированные аналоговые сигналы

С аналоговыми сигналами мы имеем дело при измерении любых физических величин (температуры, влажности, давления и т.д.), а так же при непрерывном управлении исполнительными устройствами (регулирование скорости вращения двигателя с помощью преобразователя частоты; управление температурой с помощью нагревателя и т.д.).

Во всех перечисленных и им подобных случаях используются аналоговые (непрерывные) сигналы.

В контроллерном оборудовании в подавляющем большинстве случаев используются два типа аналоговых сигналов: токовый 4-20 мА и сигнал напряжения 0-10 В.

Унифицированный сигнал напряжения 0-10 В

При использовании этого типа сигнала для получения информации с датчика весь его (датчика) диапазон делится на диапазон напряжения 0-10 В. Например, датчик температуры имеет диапазоны -10…+70 °С. Тогда при -10 °С на выходе датчика будет 0 В, а при +70 °С — 10 В. Все промежуточные значения находятся из пропорции.

Это же верно для любого другого устройства. Например, если аналоговый выход частотного преобразователя настроен на передачу текущей скорости вращения двигателя — тогда 0 В у него на выходе означает, что двигатель остановлен, а 10 В, что двигатель крутится на максимальной частоте.

Управление сигналом 0-10 В

С помощью унифицированного сигнала напряжения можно не только получать данные о физических величинах, но и управлять устройствами. Например, можно привести трёхходовой клапан в нужное положение, изменить скорость вращения электродвигателя через частотный преобразователь или мощность нагревателя.

Возьмём для примера электродвигатель, частотой вращения которого управляет частотный преобразователь.

управление сигналом 0-10 В

Частоту вращения двигателя задаёт контроллер сигналом 0-10 В, приходящим на аналоговый вход частотника.Частота вращения двигателя двигателя может быть от 0 до 50 Гц. Тогда, если в соответствии с алгоритмом контроллер собирается раскрутить двигатель на 25 Гц, он должен подать на вход частотника 5В.

«Токовая петля»: унифицированный аналоговый сигнал 4-20 мА

Аналоговый сигнал 4-20 мА (ещё называют «токовая петля») так же как сигнал напряжения 0-10 В используется в автоматике для получения информации от датчиков и управления различными устройствами.

По сравнению с сигналом 0-10 В сигнал 4-20 мА имеет ряд преимуществ:

  • Во-первых, токовый сигнал можно передать на большие расстояния в сравнении с сигналом 0-10 В, в котором происходит падение напряжения на длинной линии, обусловленное сопротивлением проводников.
  • Во-вторых, легко диагностировать обрыв линии, т.к. рабочий диапазон сигнала начинается от 4 мА. Поэтому если на входе 0 мА — значит на линии обрыв.

Управление сигналом 4-20 мА

Управление различными устройствами с помощью токового сигнала ничем не отличается от управления с помощью сигнала напряжения. Только в данном случае нужен уже источник не напряжения, а тока.

Если устройство имеет управляющий вход 4-20 мА, то таким устройством может управлять контроллер или другое интеллектуальное устройство, имеющее соответствующий выход.

Например, мы хотим плавно открывать вентиль, имеющий электропривод со входом 4-20 мА. Если подать на вход сигнал тока 4 мА, тогда вентиль будет полностью закрыт, а если подать 20 мА — полностью открыт.

Активный и пассивный аналоговый выход 4-20 мА

Зачастую аналоговый выход датчика, контроллера или другого устройства — пассивный, то есть не может являться источником тока без внешнего питания. Поэтому при проектировании схемы автоматики нужно внимательно изучить характеристики аналоговых выходов используемых устройств, и если они пассивные — добавить в схему внешний источник питания для пропитки токовой петли.

Читайте также:  Шина для крепления трансформатора тока

Сигнал тока 4-20 мА

На рисунке представлена схема подключения датчика с выходом 4-20 мА к измерителю-регулятору с соответствующим входом. Поскольку выход датчика пассивный — требуется его пропитка внешним блоком питания.

Нормирующий преобразователь

ОВЕН Нормирующий преобразователь 4-20 мА датчика температуры При измерении физической величины (температуры, влажности, загазованности, pH и др.) датчики преобразуют её значение в ток, напряжение, сопротивление, ёмкость и т.д. (в зависимости от принципа работы датчика). Для того, чтобы привести выходной сигнал датчика к унифицированному сигналу используют нормирующие преобразователи.

Нормирующий преобразователь

Нормирующий преобразователь — устройство, приводящее сигнал первичного преобразователя к унифицированному сигналу тока или напряжения.

Так выглядит датчик температуры с нормирующим преобразователем:

Источник



Датчики электрического тока

Глобальные тренды — спрос на снижение выбросов CO2, повышение интенсивности энергосбережения — приводят к необходимости сбалансированного потребления энергии, для чего большую помощь могут оказать электронные схемы управления процессами. Наиболее распространённые случаи — это оптимизация эксплуатационных характеристик аккумуляторов, контроль скорости вращения двигателей и переходных процессов в серверах, управление солнечными батареями. Для операторов таких систем важно, в частности, знать, какой ток протекает в цепи. Неоценимую помощь в этом могут оказать датчики тока.

Почему необходимы датчики тока

Датчиками называют блоки, задача которых измерить некоторый параметр, а потом, сравнив его с эталонным для данной технической системы значением, подать соответствующий сигнал на исполнительный элемент схемы. Поскольку большинство систем используют электродвигатели, то наиболее распространёнными типами являются датчики тока и напряжения (общий вид последнего представлен на следующем рисунке).

Широкое внедрение таких устройств обусловлено развитием сенсорных методов управления, когда исходный сигнал — электрический или оптический — преобразуется в необходимые параметры управления.

По сравнению в другими управляющими технологиями (например, контакторного контроля) датчики обеспечивают следующие преимущества:

  1. Компактность.
  2. Безопасность в применении.
  3. Высокую точность.
  4. Экологичность.

Малые размеры и вес часто позволяют изготавливать многофункциональные датчики, например, такие, которые могут контролировать несколько параметров цепи. Таковыми являются современные датчики тока и напряжения.

В состав таких детекторов входят:

  • Контактные группы входа;
  • Контактные группы выхода;
  • Шунтирующий резистор;
  • Усилитель сигнала;
  • Несущая плата;
  • Блок питания.

Идея того, что устройства можно подключать к уже имеющейся сети, не выдерживает проверку временем, ибо часто в экстремальных ситуациях (пожар, взрыв, землетрясение) именно системы встроенного электроснабжения первыми выходят из строя.

Детекторы подразделяют на активные и пассивные. Первые не только передают конечный сигнал на управляющий элемент, но и управляют его действием.

Классификация и схемы подключения

Датчики тока предназначаются для оценки параметров постоянного и/или переменного тока. Сравнение выполняется двумя методами. В первом случае используется закон Ома. При установке шунтирующего резистора в соответствии с нагрузкой системы на нём создаётся напряжение, пропорциональное нагрузке системы. Напряжение на шунте может быть измерено дифференциальными усилителями, например, токовыми шунтирующими, операционными или разностными. Такие устройства используются для нагрузок, которые не превышают 100 А.

Измерение переменного тока выполняется в соответствии с законами Ампера и Фарадея. При установке петли вокруг проводника с током там индуцируется напряжение. Этот метод измерения используется для нагрузок от 100 А до 1000 А.

Схема описанных измерений представлена на рисунке:

Слева — измерение малых токов; справа — измерение больших токов

Измерение обычно производится при низком входном значении синфазного напряжения. При помощи чувствительного резистора датчик тока соединяется между нагрузкой и землей. Это необходимо, поскольку синфазное напряжение всегда учитывает наличие операционных усилителей. Нагрузка обеспечивает питание прибора, а выходное сопротивление заземляется. Недостатками данного способа считаются наличие помех, связанных с потенциалом нагрузки системы на землю, а также невозможность обнаружения коротких замыканий.

Читайте также:  При отмене антидепрессантов бьет током

Для слежения работой мощных систем детектор присоединяют к усилителю между источником питания и нагрузкой. В результате непосредственно контролируются значения параметров, подаваемых источником питания. Это позволяет идентифицировать возможные короткие замыкания. Особенность подключения заключается в том, что диапазон синфазного напряжения на входе усилителя должен соответствовать напряжению питания нагрузки. Перед измерением выходного сигнала контролируемого устройства нагрузка заземляется.

Как функционирует датчик тока

Работа данного элемента включает следующие этапы:

  1. Измерение нагрузки в контролируемой схеме.
  2. Сравнение полученного значения с эталонным, которое программируется в процессе настройки.
  3. Фиксация полученного результата (может быть выполнена в цифровом или аналогом виде).
  4. Передача данных на панель управления.

Для выполнения указанных функций (в частности, реализации высокой точности измерений) к элементам детектора предъявляются следующие требования:

  • Допустимое падение напряжения на шунтирующем резисторе должно быть не более 120…130 мВ;
  • Температурная погрешность не может быть выше 0.05 %/°С и не изменяться во времени работы;
  • В функциональном диапазоне значений характеристики сопротивления резисторов должны быть линейными;
  • Способ пайки токочувствительных резисторов на плату не может увеличивать общее сопротивление схемы подключения.

Монтажные схемы устройств, которые предназначены для контроля цепей постоянного и переменного тока представлены соответственно на рисунках.

Практика применения

Чаще всего данные изделия используются как измерители в схемах токовых реле, которые управляют режимами работы различного электроприводного оборудования и предохраняют его от экстремальных ситуаций.

Токовые реле способны защитить любое механическое устройство от заклинивания или других условий перегрузки, которые приводят к ощутимому увеличению нагрузки на двигатель. Функционально они определяют уровни тока и выдают выходной сигнал при достижении указанного значения. Такие реле используются для:

  • Сигнала сильноточных условий, например, забитая зёрнами доверху кофемолка;
  • Некоторых слаботочных условий, например, работающий насос при низком уровне воды.

Чтобы удовлетворить требования разнообразного набора приложений, в настоящее время используется блочный принцип компоновки датчиков, включая применение USB-разъёмов, монтаж на DIN-рейку и кольцевые исполнения устройств. Это обеспечивает выполнение следующих функций:

  • Надёжную работу на любых режимах эксплуатации;
  • Возможность применения трансформаторов;
  • Регулировка текущих параметров, которые могут быть фиксированными или регулируемыми;
  • Аналоговый или цифровой выход, включая и вариант с коротким замыканием;
  • Различные исполнения блоков питания.

В качестве примера рассмотрим схему датчика тока для управления работой водяного насоса, обеспечивающего подачу воды в дом.

Кавитация — это разрушительное состояние, вызванное присутствием пузырьков, которые образуются, когда центробежный насос или вертикальный турбинный насос работает с низким уровнем жидкости. Образующиеся пузырьки затем лопаются, что приводит к точечной коррозии и разрушению исполнительного узла насоса. Подобную ситуацию предотвращает токовое реле.

Когда насос работает в нормальном режиме, и жидкость полностью перекрывает его впускное отверстие, двигатель насоса потребляет номинальный рабочий ток. В случае снижения уровня воды потребляемый ток уменьшается. Если кнопка запуска нажата, одновременно включаются стартёр M и таймер TD. Реле CD настроено на максимальный ток, поэтому его контакт при первоначальном запуске двигателя не будет замкнут. При падении силы тока ниже установленного минимума реле включается, а, после истечения времени ожидания TD, включается в его нормально замкнутый контакт. Соответственно контакты CR размыкаются и обесточивают двигатель насоса.

Применение такого детектора исключает автоматический перезапуск насоса, поскольку оператору необходимо убедиться в том, что уровень жидкости перед впускным отверстием достаточен.

Датчик тока своими руками

Если приобрести стандартный датчик (наиболее известны конструкции от торговой марки Arduino) по каким-то соображениям невозможно, устройство можно изготовить и самостоятельно.

Датчик тока фирмы Arduino. Стрелкой указан USB-разъём.

  1. Операционный усилитель LM741, или любой другой, который мог бы действовать как компаратор напряжения.
  2. Резистор 1 кОм.
  3. Резистор 470 Ом.
  4. Светодиод.

Общий вид устройства в сборе, сделанного своими руками, представлен на следующем рисунке. В данной схеме используется эффект Холла, когда разность управляющих потенциалов может изменяться при изменении месторасположения проводника в электромагнитном поле.

Читайте также:  Губы как под током

Источник

Датчики тока и датчики напряжения

date image2015-04-12
views image9493

facebook icon vkontakte icon twitter icon odnoklasniki icon

Датчики тока и датчики напряжения осуществляют преобразование текущих значений тока и, соответственно, напряжения (в контролируемой цепи) в электрический сигнал, у которого носителем информации обычно является напряжение. В датчиках может предусматриваться гальваническая развязка выходной (слаботочной) цепи от входной (силовой) цепи, а также нормирование сигнала (приведение его значений к определенной области, например, к напряжению из диапазона 0…10 В). В состав такого датчика входят следующие функциональные части: чувствительный элемент (первичный измерительный преобразователь), устройство гальванической развязки (потенциальный разделитель), усилительные устройства. Обобщенная структурная схема датчика тока и датчика напряжения показана на рис. 8.22.

На схеме обозначены:

ЧЭ – чувствительный элемент (первичный измерительный преобразователь – шунт, трансформатор тока в датчиках тока; делитель напряжения, измерительный трансформатор напряжения в датчиках напряжения);

ВУ – входной усилитель;

ПР – потенциальный разделитель;

НУ – нормирующий усилитель;

ЭЦ – контролируемая датчиком электрическая цепь;

ПИ – приемник информации (например регулятор системы управления автоматизированного электропривода).

Подключение чувствительных элементов к электрической цепи с нагрузкой (RH, ZH) показано на рис. 8.23.

Шунт (RШ на рис. 8.23а) представляет собой резистор с двумя токовыми и двумя потенциальными зажимами. С помощью токовых зажимов шунт подключают в разрыв (рассечку) контролируемой цепи. Напряжение, пропорциональное току контролируемой цепи, с потенциальных зажимов шунта подается на входной усилитель (ВУ) датчика тока и усиливается им в 100…200 раз. Линейная зависимость напряжения от тока обеспечивается при большом входном сопротивлении ВУ.

Классы точности шунтов: 0,02; 0,05; 0,1; 0,2; 05. Номинальные токи в пределах от 0,5 А до 7500 А. Номинальное падение напряжения на шунте составляет 75 мВ (это напряжение между потенциальными зажимами, когда по шунту протекает ток, равный номинальному току шунта).

Делитель напряжения в виде последовательного соединения резисторов R1 и R2 (рис. 8.23а) подключают под полное контролируемое напряжение. Выходное напряжение делителя, пропорциональное контролируемому напряжению, снимается с резистора R2. ВУ исполняет роль согласующего элемента, обладая высоким входным сопротивлением.

Измерительный трансформатор переменного тока (ТА) применяют вместо шунта (рис. 8.23б), что позволяет: уменьшить потери энергии, возникающие в процессе ее преобразования; реализовать гальваническую развязку между цепями; повысить безопасность эксплуатации; уменьшить габариты и массу датчика. Режим работы выбирают близким к режиму короткого замыкания (разрыв вторичной цепи приводит к аварийному режиму). Усилитель (ВУ) с малым входным сопротивлением подключают к вторичной цепи трансформатора тока через выпрямитель.

Трансформаторы тока изготовляют на номинальные первичные токи в диапазоне от 0,1 А до 40000 А. Вторичные номинальные токи могут иметь значения 1,2; 2,5; 5 А. Классы точности: 0,2; 0,5; 1; 3.

Измерительный трансформатор напряжения (TV на рис. 8.23б) работает в режиме близком к режиму холостого хода. Он понижает контролируемое переменное напряжение и гальванически развязывает электрические цепи. Сигнал, снимаемый с вторичной обмотки трансформатора, через выпрямитель подается на усилитель (ВУ) с большим входным сопротивлением.

Характеристики управления рассмотренных чувствительных элементов считают линейными в практических приложениях. Зависимость выходной переменной u1 от входной переменной u определяют через номинальный коэффициент преобразования kЧЭном=u1ном/uном , где «ном» означает номинальное значение соответствующего параметра. Тогда

Измерительный трансформатор постоянного тока, выполненный на основе магнитного усилителя (см. [1] п. 5.3), применяют для измерения постоянных токов свыше 5000 А. Использование шунтов в таких случаях нецелесообразно, так как шунты получаются весьма громоздкими и дорогими.

Обмотка управления wy магнитного усилителя А подключается в разрыв контролируемой цепи, по которой протекает постоянный ток I (рис. 8.24). Она состоит из одного витка провода. Рабочие обмотки wp получают питание от источника переменного напряжения

Среднее значение напряжения на выходе выпрямителя UZ линейно зависит от тока I при I

Источник