Меню

Датчики давления переменного напряжения

Электрические датчики давления

В данных приборах измеряемое давление, оказывая воздействия на

чувствительный элемент, изменяет его собственные электрические параметры: сопротивление, ёмкость или заряд, которые становятся мерой этого давления. Подавляющее большинство современных общепромышленных ИПД реализовано на основе трех основных принципов:

1) емкостные – используют упругий чувствительный элемент в виде

конденсатора с переменным зазором: смещение или прогиб под действием

прилагаемого давления подвижного электрода-мембраны относительно

неподвижного изменяет его ёмкость;

2) пьезоэлектрические – основаны на зависимости поляризованного

заряда или резонансной частоты пьезокристаллов: кварца, турмалина и

других от прилагаемого к ним давления;

3) тензорезисторные – используют зависимость активного сопротивления проводника или полупроводника от степени его деформации.

4) тензорезонансные – используют зависимость собственной резонансной частоты чувствительного элемента от величины приложенной нагрузки.

В последние годы получили развитие и другие принципы работы

ИПД: волоконно-оптические, индукционные, гальваномагнитные, объемного сжатия, акустические, диффузионные и т.д.

На сегодняшний день самыми популярными в России являются тен-

7.7.1. Емкостные преобразователи давления

Принцип действия емкостных преобразователей основан на измене-

нии емкости переменного конденсатора С под воздействием преобразуемой неэлектрической величины (например, давления). Емкость конденсатора зависит от таких параметров как расстояние между пластинами (об-

кладками) δ, площадь пластин S, диэлектрическая постоянная среды между пластинами E.

Характеристика управления емкостного плоскопараллельного преобразователя с изменяющимся зазором определяется выражением:

где С — емкость конденсатора, Ф; δ — расстояние между обкладками, м; E —

абсолютная диэлектрическая проницаемость среды между обкладками,

Ф/м; S — площадь обкладок, м 2 .

На рис.39 показана принципиальная схема одного из вариантов емкостного измерительного преобразователя давления. Сенсорная мембрана 1 и металлизированные обкладки 2, 3 образуют электрические конденсаторы изолированные диэлектриком 4. Образовавшийся блок установлен в металлический корпус 5. Внутренние полости электрических конденсаторов соединены с полостями, образованными разделительными мембранами и корпусом. Эти полости заполняются кремнийорганической жидкостью. Обкладки и сенсорная мембрана проводниками 8, 9 и 10 подключаются к мостовой измерительной схеме. Измеряемое давление Р ИЗБ через разделительную мембрану воздействует на сенсорную мембрану и прогибает её. Расстояние между сенсорной мембраной и обкладкой 2 уменьшается, что вызывает увеличение электрической ёмкости конденсатора, образованного сенсорной мембраной и обкладкой 2, и уменьшение ёмкости конденсатора, состоящего из сенсорной мембраны и обкладки 3. Изменение емкости конденсаторов преобразуется измерительной схемой в выходной электрический сигнал.

Рис. 39. Схема емкостного преобразователя давления

На основе ёмкостных измерительных преобразователей фирмой Fischer- Rosemount выпускаются микропроцессорные измерители давления серии 3051 с пределом основной допускаемой приведенной погрешности ±0,075%.

7.7.2. Пьезоэлектрические преобразователи давления

Действие пьезоэлектрических преобразователей основано на свойстве некоторых кристаллических веществ создавать электрические заряды

под действием механической силы. Это явление, называемое пьезоэффек-

том, характерно для кристаллов кварца, турмалина, сегнетовой соли, тита-

ната бария и некоторых других веществ. Особенностью пьезоэффекта яв-

ляется его безынерционность. Заряды возникают мгновенно в момент при-

ложения силы. Это обстоятельство делает пьезоэлектрические приборы не-

заменимыми при измерении и исследовании быстропротекающих процес-

сов, связанных с изменением давления (индицирование быстроходных

двигателей, изучение явлений кавитации, взрывных реакций и т.п.).

Для изготовления пьезоэлектрических датчиков наиболее широко

применяют кварц, сочетающий хорошие пьезоэлектрические свойства с большой механической прочностью, высокими изоляционными свойствами и независимостью пьезоэлектрической характеристики в широких пределах от изменения температуры.

Элементарной структурной ячейкой является шестигранная призма

Рис. 40. Схема кристалла кварца

В кристаллах кварца различают продольную ось ZZ, называемую оп-

тической осью, ось XX, проходящую через ребра призмы (электрическую

ось), и ось YY, проходящую через середины противолежащих граней (ме-

ханическая или нейтральная). Если из кристалла кварца вырезать паралле-

лепипед так, чтобы его грани были расположены перпендикулярно осям YY и XX, то он будет обладать пьезоэлектрическими свойствами. Силы, приложенные к параллелепипеду в направлении оси ZZ, не вызывают электризации, а растягивающая или сжимающая силы Fx, приложенные в направлении электрической оси, вызывают появление разноименных зарядов на гранях, перпендикулярных к этой оси (продольный пьезоэффект). Заряд, возникающий на гранях, равен:

где P x и F x — давление и сила, действующие на грань; S x — площадь грани; k — постоянная величина, так называемый, пьезоэлектрический модуль.

Пьезоэлектрическая постоянная кварца практически не зависит от

температуры до 500°С. При температуре выше 500°С она быстро уменьша-

ется и при температуре 570°С становится равной нулю, т. е. кварц теряет

пьезоэлектрические свойства. Пьезоэлектрические приборы позволяют из-

мерять давление до 100МПа.

7.7.3. Тензорезисторные преобразователи давления

В основе работы тензорезисторов (пьезорезисторов) лежит явление тензоэффекта, заключающееся в изменении активного сопротивления проводниковых и полупроводниковых материалов при их механической деформации. В Росси широкое применение в изготовлении общепромышленных тензорезисторных ИПД в силу своих высоких механических, изолирующих и теплоустойчивых качеств получила технология КНС — «кремний на сапфире». Чувствительный элемент таких преобразователей состоит из сапфировой изолирующей подложки, на которую способом напыления в вакууме нанесены кремниевые тензорезисторы, образующие мостовую схему. Подложка припаяна твердым припоем к титановой мембране.

Рис. 41. Схема тензорезисторного преобразователя давления

Принципиальная схема размещения тензорезисторов на поверхности сапфировой мембраны показана на рис. 41. Радиальные механические напряжения вблизи края мембраны имеют отрицательный знак, а касательные – положительный. В связи с этим, у размещенных радиально вблизи края мембраны тензорезисторов с ростом давления сопротивление снижается, а у размещенных касательно увеличивается. Тензорезисторы включаются по схеме неуравновешенного моста, который запитывается от генератора стабильного тока ГСТ. При отсутствии давления механические напряжения мембране равны нулю и сопротивления тензорезисторов моста одинаковы, поэтому мост находится в равновесии и напряжение на измерительной диагонали моста ΔU равно нулю. При подаче измеряемого давления сопротивление радиально расположенных тензорезисторов R– уменьшается, а сопротивление касательно расположенных тензерезисторов R+ увеличивается, в результате чего возникает напряжение разбаланса. Напряжение разбаланса моста пропорционально величине измеряемого давления. Подобную конструкцию имеют широко распространенные датчики давления «Сапфир-22М» и «Метран» различных модификаций. Предел основной допускаемой погрешности этих приборов в зависимости от исполнения составляет от 0,2% до 0,5%. Диапазон перенастроек пределов измерения давления до 25:1.

Эти манометры обеспечивают непрерывное преобразование значения измеряемого параметра (давления избыточного, абсолютного, разряжения, разности давлений нейтральных и агрессивных сред) в унифицированный токовый сигнал для дистанционной передачи (0 — 5 мА, 4 — 20 мА и др.).

Рис. 42. Схема тензорезисторного манометра

Мембранный тензопреобразователь 3 размещен внутри основания 9 (см. рисунок 42). Внутренняя полость 4 тензопреобразователя заполнена кремнийорганической жидкостью и отделена от измеряемой среды металлической гофрированной мембраной 6, приваренной по наружному контуру к основанию 9. Полость 10 сообщена с окружающей атмосферой.

Измеряемое давление подается в камеру 7 фланца 5, который уплотнен прокладкой 8. Измеряемое давление воздействует на мембрану 6 и через жидкость воздействует на мембрану тензопреобразователя, вызывая ее прогиб и изменение сопротивления тензорезисторов. Электрический сигнал от тензопреобразователя передается из измерительного блока 1 по проводам через гермовывод 2. Преобразователи «Сапфир-22М-ДИ» предназначены для измерения избыточного давления, а преобразователи «Сапфир-22М-ДВ» — для измерения вакуумметрического давления. Преобразователи «Сапфир-22М-ДА», предназначенные для измерения абсолютного давления, отличаются тем, что полость 10 вакуумирована и герметизирована.

Преобразователи «Сапфир-22М-ДД (см. рисунок 43), предназначенные для измерения разности давлений, отличаются тем, что в них используется тензопреобразователь мембранно-рычажного типа, который размещен внутри основания в замкнутой полости, заполненной кремнийорганичес-кой жидкостью, и отделен от измеряемой среды двумя металлическими гофрированными мембранами. Мембраны соединены между собой центральным штоком, перемещение которого передается рычагу тензо-преобразователя, что вызывает деформацию тензопреобразователя.

Электрический сигнал от тензопреобразователя передается из измерительного блока в электронное устройство 1 по проводам через гермоввод 2. Измерительный блок выдерживает без разрушения воздействие односторонней перегрузки рабочим избыточным давлением. Это обеспечивается тем, что при такой перегрузке одна из мембран 8 ложится на профилированную поверхность основания 9.

7.7.4. Тензорезонансные преобразователи давления

Принцип действия тензорезонансных преобразователей давления основан на эффекте изменения резонансной частоты чувствительного элемента под действием приложенной механической нагрузки. Например, при натяжении металлической струны её резонансная частота (тон) становится выше, а при ослаблении – ниже. Имеется достаточно много вариантов конструкции тензорезонансных преобразователей давления, но наиболее совершенным на сегодняшний день является сенсор DPHarp фирмы Yokogawa. Сенсор представляет собой монокристаллическую кремниевую мембрану с интегрированными в нее двумя кремниевыми резонаторами в виде буквы Н. Резонаторы и мембрана образуют единую монокристаллическую структуру, что позволяет практически исключить влияние остаточных и усталостных деформаций. Резонаторы размещаются на мембране асимметрично относительно центра мембраны. Асимметричное расположение резонаторов приводит к тому, что при деформации кремниевой мембраны под действием измеряемого давления резонатор расположенный на периферии мембраны испытывает растяжению, а резонатор расположенный вблизи центра мембраны – сжатие. При растяжении частота резонатора возрастает, а при растяжении – уменьшается. Электронная схема сенсора измеряет разность частот резонаторов. Собственная частота резонаторов при отсутствии нагрузки равна 90 кГц, а разность частот резонаторов при номинальной нагрузке – 40 кГц. Зависимость частоты от измеряемого давления линейная.

Датчикам на основе сенсоров DPHarp свойственна высокая точность измерения и исключительно высокая долговременная стабильность показаний. Датчики давления серии FJX фирмы Yokogawa имеют предел основной допускаемой погрешности ±0,04% при долговременной стабильности ±0,1% в течении 10 лет. Диапазон перенастроек пределов измерения давления до 200:1.

7.9. Грузопоршневой манометр

Принцип действия грузопоршневого манометра основан на уравно-

вешивании сил, создаваемых, с одной стороны, измеряемым давлением, а с

другой стороны — грузами, действующими на поршень, помещенный в ци-

Прибор состоит из колонки 7 с цилиндрическим шлифованным ка-

налом и поршня 6, несущего на своем верхнем конце тарелку 4 для нагру-

жения ее эталонными грузами 5. Поршень 1 винтового пресса служит для

подъема и опускания поршня 6 так, чтобы при любых нагрузках поршень 6

был погружен в цилиндр примерно на 2/3 своей высоты.

Рис. 44. Схема грузопоршневого манометра

Камеру 2 поршневого манометра заполняют трансформаторным, вазелиновым или касторовым маслом через воронку 8. Давление в системе

создают с помощью винта с маховиком 9 и поршня 1. Штуцеры 3 служат

для установки поверяемого и образцового манометров. Вентиль 10 предна-

значен для слива масла. В процессе измерений для устранения вредных сил трения поршня 6 о стенки цилиндрического канала колонки 7 поршень 6 вручную приводят во вращение. Грузопоршневой манометр может быть использован для поверки манометров, как с помощью грузов, так и с помощью образцового манометра.

Источник



Разновидности датчиков давления

Эксплуатация многих промышленных и бытовых приборов нуждается в контроле состояния находящейся внутри них рабочей среды. Этой средой могут быть жидкие (вода, моторное или компрессорное масло, химические продукты) либо газообразные вещества (воздух, водяной пар, природный газ, кислород и иные технические среды). Чтобы устройство исполняло свои функции, оно должно как-то измерять рабочие параметры и реагировать на них заданным образом. Для этого предназначены датчики контроля давления и температуры.

Что такое датчик давления

Датчиком давления называют контрольное оборудование, отвечающее непосредственно за измерение указанного показателя.

Области его применения бывают разнообразными:

  • нефтедобывающая, газодобывающая, перерабатывающая отрасль;
  • химическая промышленность;
  • энергетика;
  • пищевое производство;
  • множество других направлений.

В быту самый очевидный пример — это сенсоры давления для насосной станции в системе автономного водоснабжения жилого дома (дачи, коттеджа).

Схематическое изображение, где находится датчик давления в водопроводе:

На схеме можно найти два измерителя, управляющие включением основного и дополнительного насосов. Они обеспечивают равномерную подачу воды независимо от ее потребления конечными пользователями.

Иногда такие устройства называют манометрами. Это не совсем верно, поскольку манометр — это готовый прибор, визуально показывающий величину давления в удобном для человеческого восприятия виде. Датчик же лишь элемент системы измерения, непосредственно воспринимающий физическую величину и передающий измерительный сигнал для дальнейшей обработки.

Устройство и типы сенсоров

Принцип работы датчиков давления основан на фиксации изменения состояния среды чувствительным элементом (приемником). Электронный каскад вторичной обработки преобразует выходной сигнал до принятых стандартных параметров.

По типу чувствительного элемента существует несколько решений.

Емкостные

Данный вариант использует эффект изменения электрической емкости элемента, в котором гибкая мембрана является одной из обкладок конденсатора совместно с неподвижным корпусом. Преимущества в прямом измерении электрических характеристик без промежуточных преобразований; защищенности сенсора от перегрузок и импульсного удара; стабильности показаний. Именно такие датчики давления чаще применяют в промышленном оборудовании. Например, в компрессорах, воздушных и гидравлических насосах, диагностической аппаратуре.

Особый интерес представляет возможность изготовить именно такой датчик давления своими руками. Ведь из всех прочих разновидностей только емкостные сенсоры не требуют для производства точной механики или особого оборудования. Две токопроводящие пластины несложно соединить через прокладку из упругого диэлектрика, а настраивать самодельный датчик давления можно, используя в качестве эталона надежный проверенный манометр.

Индуктивные

Регистрируют токи в катушках с переменным полем, одна из которых располагается на упругой мембране. Небольшое перемещение магнита относительно воздушного зазора, приводит к сильному изменению индуктивности. Благодаря этому достигают высокой чувствительности сенсора.

Электронные

Кроме перечисленных, электронный датчик давления воздуха может быть реализован и на других физических принципах: изменении теплопроводности, ионизации газа. Такие сенсоры требуют точной настройки и используются в сложной аппаратуре и научных приборах. Их достоинство в способности измерять сверхнизкие давления, включая глубокий вакуум.

Тензометрические

Используется изменение электрического сопротивления при деформации тензорезистора, который расположен на упругом элементе. Сам тензорезистор изготовлен в виде тонких проводников на слюдяной или бумажной подложке площадью 2–10 квадратных мм.

По-другому этот тип сенсоров называется резистивным.

Механические

Группа устройств, в которых давление внутри системы приводит к механическому движению частей сенсора относительно неподвижного основания. Это перемещение регистрируется прибором.

Достоинством измерителей данной группы служит их очень высокая чувствительность в некоторых диапазонах, где другие конструкции недостаточно эффективны. Так датчик низкого давления в вакуумной системе должен реагировать на изменения порядка 0.01 Мпа. Этого можно добиться, применяя чувствительную мембрану. Другой тип механического измерителя — трубка Бурдона. Используется в приборах, в которых нет электроники, непосредственно воздействуя на стрелку. По этому принципу действуют механические манометры, а также глубиномеры (включая наручные для водолазов).

Похожий принцип реализован в знакомых многим автомобильных указателях моторного масла. Упругий элемент реагирует на сжатие, через толкатель перемещая подвижный контакт по обмотке реостата. Электрическое сопротивление изменяется, что и регистрирует прибор.

Различия по использованию

По характеру измеряемого параметра различают следующие разновидности датчиков:

  • абсолютного давления;
  • избыточного давления;
  • дифференциальные.
Читайте также:  При каком напряжении генератора заряжается аккумулятор

Измерение давления чаще всего требуется для задания общих режимов работы оборудования: включения или выключения подающих насосов, системы подогрева и множества других управляемых автоматикой процессов. Простые по конструкции устройства прошлых лет измеряли перепад показателя по отношению к атмосферному, что не всегда удовлетворяло требованиям точности. Это связано с тем, что величина, с которой атмосфера давит на поверхность, может ощутимо меняться (в истории зафиксированы измерения от 641 до 816 мм ртутного столба).

Датчик абсолютного давления

Чтобы избежать ошибок из-за влияния погоды, более современные приборы способны отсекать влияние атмосферы. Они регистрируют измеряемую величину по отношению к глубокому вакууму. Такой сенсор называют абсолютным. Полученные от него показания чаще всего применяют для последующей цифровой обработки, чтобы расчетным путем привести характеристику давления к стандартным условиям. Это необходимо для правильной фиксации расхода тепловой энергии или газа в системах учета.

Датчик избыточного давления

Более простые в устройстве датчики избыточного давления учитывают суммарный показатель абсолютного и атмосферного. Без них не обойтись в коммунальном хозяйстве, в производственных или коммерческих устройствах, регистрирующих расход жидкости или газа. Другая область применения простых и надежных измерителей избыточного давления — устройства аварийной сигнализации о превышении допустимого уровня.

Дифференциальный датчик

Датчик дифференциального типа определяет разницу давлений в двух раздельных полостях. Обычно такие приборы установлены в приборе, который постоянно контролирует расход вещества, протекающего по трубе, без использования вращающихся деталей. Его принцип действия основан на эффекте увеличения давления потока перед сужением диаметра и уменьшения после него. Чем такая разница выше, тем больше и протекающий по трубе поток.

Одна из возможных схем подключения этих устройств приведена на рисунке.

Диапазон измеряемой величины

Поскольку интервал показателя давления весьма широк, то инженерам требуются сенсоры, способные качественно измерять параметры в интересующем диапазоне. Изготовить прибор, одинаково хорошо и с удовлетворительной чувствительностью применимый как в глубоком вакууме, так и на промышленном компрессоре высокого уровня сжатия, на практике невозможно. Поэтому существуют отдельные датчики: вакуумные, низкого и высокого давления. В числовом выражении:

  • вакуумные датчики — для измерения низкого (1 мм. рт. ст.) или высокого (105 мм. рт. ст.) вакуума;
  • датчики низкого давления — от атмосферного до величин порядка 10 Па (встречается также другое название: форвакуумные);
  • датчики высокого давления — измеряют параметр выше 1 атм., также делятся на диапазоны по возрастанию компрессии.

Датчики низкого давления широко применяют в научном и лабораторном оборудовании, в медицине, в промышленности, производящей электронные компоненты и сверхчистые вещества.

По типу контролируемой среды

Потребность узнать степень сжатия или разрежения рабочей среды может возникнуть для самых разных веществ или агрегатных состояний. Чтобы обеспечить долгий срок службы и достаточную точность показаний, регистрирующие приборы также делают с учетом условий, в которых им предстоит работать.

  • датчики давления воздуха — замеряют показатель сжатия газообразной среды в широком интервале величин;
  • топливные — устанавливают в системе питания двигателей, например, в топливной рампе инжекторного мотора с целью оптимизировать состав и количество горючей смеси в цилиндрах;
  • водяные — для трубопроводов и магистралей в коммунальном хозяйстве, для установки на насосной станции;
  • для агрессивных сред — в защищенном исполнении используют в химическом производстве, при перекачке нефти и газа.

Проверка и настройка

Как проверить датчик давления, если возникли подозрения в его работоспособности? Проверка разделяется на два этапа. Сперва нужно прозвонить электрическую цепь измерителя, чтобы убедиться в отсутствии обрыва или короткого замыкания. Методика проверки мультиметром аналогична работе с другими электроприборами.

Если такая диагностика не выявила проблемы, то следующий шаг — проконтролировать регулировки сенсора на соответствие реальной величине давления. Для этого не обойтись без эталона, в показаниях которого нет сомнений. Для этого выполняют подключение датчика давления к испытательной емкости, оборудованной прошедшим метрологическую поверку манометром. Поскольку настраивать сам сенсор обычно невозможно, регулируют воспринимающий его сигнал прибор так, чтобы его показания не расходились с эталоном.

Рассмотрим несколько примеров тестирования устройств, с которыми многие сталкиваются в жизни.

Регулировка реле насосной станции

Для примера рассмотрим, как настроить нормальную работу устройства, включающего и выключающего насос на установке автономного водоснабжения. Его схема содержит датчик давления и две пружины с регулировочными гайками, воздействующие на электрический контакт. Они находятся под защитной пластмассовой крышкой реле, закрепленного возле двигателя насоса.

Изменяя затяжку пружин вращением гаек, наблюдают за показанием штатного манометра и добиваются требуемой величины сжатия воздуха в гидроаккумуляторе системы по нижнему и верхнему пределам.

Автомобильный датчик абсолютного давления

Этот сенсор находится на впускном коллекторе двигателей, оборудованных впрыском топлива. Он известен также под названием MAP (Manifold Absolute Pressure) или русской аббревиатурой ДАД. Его задача — направлять в электронный блок управления двигателем сигнал о степени сжатия воздуха на впуске, что необходимо учитывать для оптимизации состава топливной смеси. При отказе ДАД форсунки впрыскивают в цилиндры больше бензина, чем нужно двигателю для оптимальной работы, отчего вырастает его расход, падает мощность, обороты становятся нестабильными.

Тестирование выполняется подключением датчика давления к мультиметру и замером электрического сопротивления в разных режимах. Роль эталонного прибора здесь играет бортовой компьютер автомобиля, в котором хранятся стандартные параметры. При отклонении от них деталь признается негодной и выбраковывается, поскольку возможности ее регулировок не предусмотрены.

Источник

Электрические датчики давления

Сегодня для цели измерения давления в разных областях промышленности используют отнюдь не только ртутные барометры и анероиды, но и различные датчики, отличающиеся как принципом действия, так и достоинствами и недостатками, свойственными каждому типу таких датчиков. Современная электроника позволяет реализовывать датчики давления непосредственно на электрической, электронной базе.

Так что же мы понимаем под словосочетанием «электрический датчик давления»? Какие бывают электрические датчики давления? Как они устроены, и какими обладают особенностями? И наконец, какой датчик давления выбрать, чтобы он максимально подошел для той или иной цели? В этом и разберемся по ходу данной статьи.

Электрические датчики давления

Прежде всего определимся с самим термином. Датчиком давления называется устройство, выходные параметры которого зависят от измеряемого давления. В качестве исследуемой среды может выступать пар, жидкость или какой-нибудь газ, в зависимости от сферы применения конкретного датчика.

Современным системам необходимы точные приборы данного типа, как важные составные части систем автоматизации энергетической, нефтяной, газовой, пищевой и многих других промышленностей. Жизненно необходимы миниатюрные датчики давления в медицине.

Любой электрический датчик давления включает в себя: чувствительный элемент, служащий для передачи воздействия на первичный преобразователь, схему обработки сигнала и корпус. Принципиально электрические датчики давления подразделяются на:

Резистивный или тензорезистивный датчик давления — это устройство, чувствительный элемент которого изменяет свое электрическое сопротивление под действием деформирующей нагрузки. Тензорезисторы устанавливаются на чувствительную мембрану, которая под давлением изгибается, и изгибает прикрепленные к ней тензорезисторы. Сопротивление тензорезисторов меняется, и соответственно меняется величина тока цепи первичного преобразователя.

Резистивный или тензорезистивный датчик давления

Растяжение проводящих элементов каждого тензорезистора приводит к росту длины и уменьшению поперечного сечения, в результате сопротивление растет. При сжатии — наоборот. Относительные изменения сопротивления измеряются тысячными долями, поэтому в схемах обработки сигнала используются прецизионные усилители с АЦП. Так деформация преобразуется в изменение электрического сопротивления полупроводника или проводника, и далее — в сигнал напряжения.

Читайте также:  Тестер показывает неправильное напряжение

Тензорезистор

Тензорезисторы обычно представляют собой зигзагообразный проводящий или полупроводящий элемент, нанесенный на гибкую подложку, которая приклеивается к мембране. Подложка как правило — из слюды, бумаги или полимерной пленки, а проводящий элемент — из фольги, тонкой проволоки или полупроводника, напыленного в вакууме на металл. Соединение чувствительного элемента тензорезистора с измерительной цепью осуществляется при помощи контактных площадок или проволочных выводов. Сами тензорезисторы имеют обычно площадь от 2 до 10 кв.мм.

Тензорезистивые датчики отлично подойдут для оценки уровня давления, силы нажатия и измерения веса.

Следующий тип электрического датчика давления — пьезоэлектрический . В качестве чувствительного элемента здесь выступает пьезоэлемент. Пьезоэлемент на основе пьезоэлектрика генерирует электрический сигнал при деформации, это так называемый прямой пьезоэффект. Пьезоэлемент помещается в измеряемую среду, и тогда ток в цепи преобразователя будет по величине пропорционален изменению давления в этой среде.

Поскольку для возникновения пьезоэффекта требуется именно изменение давления, а не постоянное давление, то данный тип датчиков давления годится лишь для измерения давления в динамике. Если же давление будет постоянным, то процесса деформации пьезоэлемента не произойдет, и ток не будет пьезоэлектриком сгенерирован.

Пьезорезонансные датчики давления

Применяются пьезоэлектрические датчики давления, например, в первичных преобразователях скорости потока вихревых счетчиков воды, пара, газа и других однородных сред. Такие датчики монтируют попарно в трубопровод с условным проходом от десятков до сотен миллиметров за телом обтекания и так регистрируют вихри, частота и количество которых оказываются пропорциональны объемному расходу и скорости потока.

Далее рассмотрим пьезорезонансные датчики давления . В пьезорезонансных датчиках давления работает обратный пьезоэффект, при котором пьезоэлектрик деформируется под действием подаваемого напряжения, и чем больше напряжение, тем сильнее деформация. В основе датчика — резонатор в форме пластины из пьезоэлектрика, с двух сторон которой нанесены электроды.

При подаче на электроды переменного напряжения, материал пластины вибрирует, изгибаясь то в одну, то в другую сторону, и частота вибрации равна частоте подаваемого напряжения. Однако если теперь пластину деформировать, подействовав на нее внешней силой, например посредством чувствительной к давлению мембраны, то частота свободных колебаний резонатора изменится.

Так, собственная частота резонатора отразит величину давления на мембрану, которая давит на резонатор, приводя к изменению частоты. В качестве примера можно рассмотреть датчик абсолютного давления на базе пьезорезонанса.

Устройство датчика давления на базе пьезорезонанса

В камеру 1 через штуцер 12 передается измеряемое давление. Камера 1 отделена мембраной от чувствительной измерительной части прибора. Корпус 2, основание 6 и мембрана 10 соединены герметично между собой, образуя вторую герметичную камеру. Во второй герметичной камере на основании 6 закреплены держатели 9 и 4, второй из которых прикреплен к основанию 6 при помощи перемычки 3. Держатель 4 служит для фиксации чувствительного резонатора 5. Опорный резонатор 8 зафиксирован держателем 9.

Под действием измеряемого давления, мембрана 10 давит через втулку 13 на шарик 14, который также закреплен в держателе 4. Шарик 14 давит в свою очередь на чувствительный резонатор 5. Провода 7, закрепленные в основании 6, соединяют резонаторы 8 и 5 с генераторами 16 и 17 соответственно. Для формирования сигнала, пропорционального величине абсолютного давления служит схема 15, которая из разности частот резонаторов формирует выходной сигнал. Сам датчик размещен в активном термостате 18, в котором поддерживается постоянная температура 40 °C.

Емкостный датчик давления

Одними из наиболее простых являются емкостные датчики давления . Два плоских электрода и зазор между ними образуют конденсатор. Один из электродов — мембрана, на которую действует измеряемое давление, что и приводит к изменению толщины зазора между, по сути, обкладками конденсатора. Общеизвестно, что емкость плоского конденсатора изменяется с изменением величины зазора при постоянной площади обкладок, поэтому для фиксации даже очень малых изменений давления емкостные датчики оказываются весьма и весьма эффективными.

Емкостные датчики давления

Малогабаритные емкостные датчики давления позволяют измерять избыточное давление в жидкостях, газах, в паре. В различных технологических процессах с применением гидравлических и пневматических систем, в компрессорах, в насосах, на станках — во множестве промышленных задач оказываются полезными емкостные датчики давления. Конструкция датчика устойчива к перепадам температур и вибрациям, невосприимчива к электромагнитным помехам и агрессивным условиям среды.

Индуктивные датчики

Еще один тип электрических датчиков давления, отдаленно похожих на емкостные — индуктивные или магнитные датчики . Проводящая мембрана, чувствительная к давлению, расположена на некотором расстоянии от тонкого Ш — образного магнитопровода, на среднем керне которого намотана катушка. Между мембраной и магнитопроводом выставлен определенный воздушный зазор.

Когда на катушку подается напряжение, ток в ней создает магнитный поток, который проходит как через сам магнитопровод, так и через воздушный зазор и через мембрану, замыкаясь. Поскольку магнитная проницаемость в зазоре приблизительно в 1000 раз меньше, чем в магнитопроводе и в мембране, то даже небольшое изменение толщины зазора приводит к ощутимому изменению индуктивности цепи.

Под действием измеряемого давления чувствительная мембрана претерпевает изгиб, и комплексное сопротивление обмотки изменяется. Преобразователь конвертирует это изменение в электрический сигнал. Измерительная часть преобразователя выполнена по мостовой схеме, где в одно из плеч включена обмотка датчика. Посредством АЦП сигнал с измерительной части переводится в пропорциональный измеряемому давлению электрический сигнал.

Отоэлектронный датчик

Последний тип датчиков давления, который мы рассмотрим, — оптоэлектронные датчики . Они довольно просто детектируют давление, имеют высокую разрешающую способность, обладают высокой чувствительностью, и термостабильны. Работающие на основе интерференции света, использующие для измерения малых перемещений интерферометр Фабри-Перо, эти датчики особо перспективны. Кристалл оптического преобразователя с диафрагмой, светодиод, и детектор, состоящий из трех фотодиодов — вот основные части такого датчика.

К двум фотодиодам пристроены оптические фильтры Фаби-Перо, имеющие небольшую разницу в толщине. Эти фильтры представляют собой кремниевые зеркала с отражением от передней поверхности, покрытые слоем оксида кремния, на поверхность которой нанесен тонкий слой алюминия.

Оптический преобразователь похож на емкостной датчик давления, диафрагма, сформированная методом травления в подложке из монокристаллического кремния, покрыта тонким слоем металла. На нижнюю сторону стеклянной пластины также нанесено металлическое покрытие. Между стеклянной пластиной и кремниевой подложкой существует зазор шириной w, получаемый при помощи двух прокладок.

Два слоя металла формируют интерферометр Фабии-Перо с переменным воздушным зазором w, в состав которого входят: подвижное зеркало, расположенное на мембране, меняющее свое положение при изменении давления, и параллельное ему стационарное полупрозрачное зеркало на стеклянной пластине.

Микроскопический датчик давления

Примерно на этой основе фирма FISO Technologies производит микроскопические чувствительные датчики давления, диаметром всего 0,55 мм, легко проходящие сквозь игольное ушко. При помощи катетера мини-датчик вводится в исследуемый объем, внутри которого и измеряется давление.

Оптическое волокно связано с интеллектуальным сенсором, в котором под управлением микропроцессора включается источник монохроматического света, вводимого в волокно, измеряется интенсивность обратно отраженного светового потока, по калибровочным данным вычисляется внешнее давление на датчик и выводится на дисплей. В медицине, например, такие сенсоры применяют для контроля внутричерепного давления, для измерений давления крови в легочных артериях, куда иным способом невозможно добраться.

Источник