Меню

Динамическая характеристика при работе с регулятором

Динамические характеристики систем управления с ПИД-регулятором.

Динамическая характеристика объекта показывает, как ре­гулируемая величина в результате регулирующего воздействия изменяется во времени. Изменение регулируемой величины зави­сит от свойств объекта и от характера возмущения. Наихудшие условия для регулирования имеют место при скачкообразном возмущении. Поэтому параметры объекта принято определять по динамической характеристике, представляющей собой изме­нение регулируемой величины во времени при скачкообразном изменении положения регулирующего органа. Такая характери­стика называется переходной характеристикой объекта или ха­рактеристикой разгона.

1.Переходная характеристика ­– это реакция системы на единичное ступенчатое воздействие (скачок).

1(t) – функция Хевисайда.

а б

Рисунок 1 – Виды испытательных воздействий: а – скачок;

б – «реальный скачок».

1. Весовая или импульсная переходная характеристика – это реакция системы на единичный импульс.

— функция Дирака.

в г

Рисунок 1 – Виды испытательных воздействий: в – прямоугольный импульс;

г – трапецеидальный импульс.

у, °С
ууст
t

Переход системы от одного установившегося режима к другому при каких-либо входных воздействиях называется переходным процессом. Переходные процессы могут изображаться графически в виде кривой y(t).

Например, процесс нагрева сушильного шкафа до установившегося значения может иметь вид, представленный на рисунке 1.12.

То есть, переходный процесс характеризует динамические свойства системы, ее поведение.

Поскольку входные воздействия могут изменяться во времени, то и переходные характеристики будут каждый раз разные. Для простоты анализа систем входные воздействия приводят к одному из типовых видов (см. рис. 1.13).

t
x
t
x
t
x
t
x
а) единичное ступенчатое
б) d-функция (дельта-функция, импульс)
в) линейное
г) синусоидальное (гармоническое)
Рис. 1.13

В зависимости от вида входного воздействия функция у(t) может иметь разное обозначение:

Переходной характеристикой h(t) называется реакция объекта на единичное ступенчатое воздействие при нулевых начальных условиях, т.е. при х(0) = 0 и у(0) = 0.

Импульсной характеристикой w(t) называется реакция объекта на d-функцию при нулевых начальных условиях.

При подаче на вход объекта синусоидального сигнала на выходе, как правило, в установившемся режиме получается также синусоидальный сигнал, но с другой амплитудой и фазой: y = Aвых*sin(w*t + j), где Aвых — амплитуда, w — частота сигнала, j — фаза.

Динамические характеристики могут быть, вообще говоря, различ­ного вида, но здесь будем рассматривать так называемую кривую разгона — реакцию объекта на скачкообразные изменения входной величины. Из того, как изменяется кривая разгона у(г), т.е. как объект управления «разгоняется» и выходит на новое установив­шееся значение, видно, как велики в нем запаздывание, инерцион­ность и т.д.

Читайте также:  Схема обозначения регулятора давления

Получить характеристики объекта можно аналитическим методом и экспериментальными методами — активным и пассивным.

Исследование динамических характеристик необходимо для выбора каналов, по которым регулирующие воздействия вносятся наиболее эффективно.

Источник



Динамические характеристики И-регулятора

В системе регулирования с И-регулятором обычно отсутствует статическая ошибка регулирования. Как правило И-регулятор используется не самостоятельно, а в составе ПИ- или ПИД- регуляторов.

На НЧ коэф. усил. >>1 , а на ВЧ >1. Установившаяся ошибка- стремиться к нулю

Фазовый сдвиг с ростом частоты уменьшается до нуля

При выборе параметров необходимо, чтобы на частоте среза регулятор вносил минимальные искажения.

Выходной сигнал содержит пропорциональную и интегральную составляющую, скорость нарастания определяется Т2

Динамические характеристики ПИ-регулятора

В системе регулирования с ПИ-регулятором так же, как и в системе с И-регулятором, отсутствует статическая ошибка, но динамические характеристики лучше.

Пропорционально-дифференциальный регулятор (ПД-регулятор)

ПД-регулятор — это параллельно соединенные пропорциональное и идеальное дифференцирующее звенья. Выходной сигнал ПД-регулятора ( u(t) ) зависит от ошибки регулирования ( e(t) ) и от производной от этой ошибки (от скорости изменения ошибки).

L(w)=20lg +20lgК

На НЧ коэф. усиления постоянный. На ВЧ он растёт-> усиливаются ВЧ помехи.

Регулятор вносит опережение в систему на 90 градусов то есть улучшается быстродействие системы

Передаточная функция ПД-регулятора: Wр(S)=K1+K2*p

Переходная характеристика: h(t)=K1+K2*d(t), где d(t) — дельта-функция

Динамические характеристики ПД-регулятора

В системе регулирования с ПД-регулятором дифференцирующее звено вычисляет скорость изменения ошибки, т.е. прогнозирует направление и величину изменения ошибки.

Если de/dt>0 (скорость изменения ошибки положительна) => ошибка растет и дифференцирующая часть, суммируясь с пропорциональной, увеличивает воздействие регулятора на объект. Если de/dt ошибка уменьшается и дифференцирующая часть, суммируясь с пропорциональной, уменьшает воздействие регулятора на объект.

В системе регулирования с ПД-регулятором обычно так же, как и в системе с П-регулятором существует статическая ошибка регулирования (если объект статический), но быстродействие у такой системы выше, чем у систем с П-, И- и ПИ- регуляторами.

Читайте также:  Bmw регулятор давления замена

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Большая Энциклопедия Нефти и Газа

Динамическая характеристика — регулятор

Этот вывод будет использован в дальнейшем при определении динамических характеристик регуляторов . [16]

Для того чтобы погрешность, вносимая балластным звеном в динамические характеристики регулятора , была минимальной, следует стремиться поддерживать Гим [ см. ( 6 — 46) ] на минимальном значении. [18]

Введенное в предыдущем параграфе понятие балластного звена можно применить для описания динамических характеристик регуляторов с нелинейными элементами. Представим регулятор в виде последовательного соединения идеального регулятора и балластного звена. Наличие нелинейных звеньев в структуре регулятора приводит к зависимости характеристик балластного звена от амплитуды входного сигнала А. Если частотные характеристики балластного звена известны, могут быть найдены границы ОНР, которые для нелинейного регулятора зависят также от амплитуды выходного сигнала. Регулятор, имеющий нелинейные элементы, часто удается в некоторой области частот, амплитуд и параметров настройки описать линейным дифференциальным уравнением, отличным от уравнения идеального регулятора. Это уточненное уравнение может быть справедливым вне ОНР. Так, в предыдущем параграфе мы получили линейные уравнения регуляторов, отличные от идеальных. [19]

Иначе говоря, в системах регулирования с цифровыми регуляторами могут существовать два вида добавочных ошибок регулирования: ошибка, обусловленная отклонением динамических характеристик регулятора от расчетных [ отличие оператора № дср ( р) от Wp ( p) ], и ошибка, обусловленная квантованием сигналов. [20]

Автоматические регуляторы, применяемые для питания испарителей, подразделяются на две основные группы: плавного действия и двухпозиционные. Динамические характеристики регуляторов плавного действия представим в виде зависимостей расхода холодильного агента от времени при скачкообразном изменении показателя заполнения. [21]

Предположите, что динамические характеристики регулятора и датчика одинаковы. [22]

Обычно, как уже говорилось раньше, характеристики объекта бывают заданы и не могут изменяться при выборе регулятора. Чаще всего и динамическая характеристика регулятора бывает тоже задана. В этом случае параметром, величину которого можно изменять при подборе регулятора, является его коэффициент усиления. В параметрах Вышнеградского коэффициент усиления регулятора ( точнее, произведение коэффициентов усиления объекта и регулятора) находится в знаменателе. Следовательно, увеличение коэффициента усиления регулятора уменьшает значение параметров А и В, что, вообще говоря, ухудшает динамику системы и может вызвать даже ее неустойчивость. [23]

Читайте также:  Регулятор давления hawk для авд

Вследствие малой инерционности объекта рабочая частота может оказаться выше максимальной, ограничивающей область нормальной работы промышленного регулятора, в пределах которой реализуются стандартные законы регулирования. За пределами этой области динамические характеристики регуляторов отличаются от стандартных, вследствие чего требуется введение поправок на рабочие настройки с учетом фактических законов регулирования. [25]

Значение ( сбр) поддерживается всегда на максимальном уровне. Это позволяет уменьшить отклонение динамических характеристик регулятора от линейной модели. Независимые цепи заряда и разряда конденсатора, как следует из выражений ( 3 — 28), позволяют увеличить диапазоны изменения параметров настройки регулятора. [26]

Регуляторы с дополнительными импульсами по производным управляемой величины не нашли широкого распространения из-за трудности конструктивного осуществления дополнительных измерительных элементов, особенно для получения производных высоких порядков. Значительно чаще для улучшения динамических характеристик регуляторов используют обратные связи. [27]

Для того чтобы правильно выбрать и эффективно использовать автоматические регуляторы, необходимо хорошо знать их возможности, технические характеристики и принципы действия. Особенно важно знать и уметь правильно учитывать динамические характеристики регуляторов , так как в реальных промышленных условиях любой регулятор находится под влиянием непрерывно изменяющихся воздействий и по самой сущности своего назначения должен реагировать на них в соответствии с заданным динамическим — законом. [28]

В заключение по этому вопросу следует отметить еще два важных момента. Один из них заключается в том, что рассмотрение выбора динамической характеристики регулятора в зависимости от свойств объектов регулирования наводит на мысль о необходимости составления специальных графиков для подбора. [29]

Создание систем адаптации станков, обеспечивающих их заданное температурное состояние в условиях переменных тепловыделений в кинематических парах, требует разработки методики расчета нестационарных температурных полей. Указанное необходимо для определения конструктивных параметров преобразователей, осуществляющих теп-лоотвод, и динамических характеристик регулятора . [30]

Источник