Меню

Для чего ацп опорное напряжение

Аналого-цифровое преобразование для начинающих

В этой статье рассмотрены основные вопросы, касающиеся принципа действия АЦП различных типов. При этом некоторые важные теоретические выкладки, касающиеся математического описания аналого-цифрового преобразования остались за рамками статьи, но приведены ссылки, по которым заинтересованный читатель сможет найти более глубокое рассмотрение теоретических аспектов работы АЦП. Таким образом, статья касается в большей степени понимания общих принципов функционирования АЦП, чем теоретического анализа их работы.

«

В качестве отправной точки дадим определение аналого-цифровому преобразованию. Аналого-цифровое преобразование – это процесс преобразования входной физической величины в ее числовое представление. Аналого-цифровой преобразователь – устройство, выполняющее такое преобразование. Формально, входной величиной АЦП может быть любая физическая величина – напряжение, ток, сопротивление, емкость, частота следования импульсов, угол поворота вала и т.п. Однако, для определенности, в дальнейшем под АЦП мы будем понимать исключительно преобразователи напряжение-код.

Понятие аналого-цифрового преобразования тесно связано с понятием измерения. Под измерением понимается процесс сравнения измеряемой величины с некоторым эталоном, при аналого-цифровом преобразовании происходит сравнение входной величины с некоторой опорной величиной (как правило, с опорным напряжением). Таким образом, аналого-цифровое преобразование может рассматриваться как измерение значения входного сигнала, и к нему применимы все понятия метрологии, такие, как погрешности измерения.

Основные характеристики АЦП

АЦП имеет множество характеристик, из которых основными можно назвать частоту преобразования и разрядность. Частота преобразования обычно выражается в отсчетах в секунду (samples per second, SPS), разрядность – в битах. Современные АЦП могут иметь разрядность до 24 бит и скорость преобразования до единиц GSPS (конечно, не одновременно). Чем выше скорость и разрядность, тем труднее получить требуемые характеристики, тем дороже и сложнее преобразователь. Скорость преобразования и разрядность связаны друг с другом определенным образом, и мы можем повысить эффективную разрядность преобразования, пожертвовав скоростью.

Существует множество типов АЦП, однако в рамках данной статьи мы ограничимся рассмотрением только следующих типов:

  • АЦП параллельного преобразования (прямого преобразования, flash ADC)
  • АЦП последовательного приближения (SAR ADC)
  • дельта-сигма АЦП (АЦП с балансировкой заряда)

Существуют также и другие типы АЦП, в том числе конвейерные и комбинированные типы, состоящие из нескольких АЦП с (в общем случае) различной архитектурой. Однако приведенные выше архитектуры АЦП являются наиболее показательными в силу того, что каждая архитектура занимает определенную нишу в общем диапазоне скорость-разрядность.

Наибольшим быстродействием и самой низкой разрядностью обладают АЦП прямого (параллельного) преобразования. Например, АЦП параллельного преобразования TLC5540 фирмы Texas Instruments обладает быстродействием 40MSPS при разрядности всего 8 бит. АЦП данного типа могут иметь скорость преобразования до 1 GSPS. Здесь можно отметить, что еще большим быстродействием обладают конвейерные АЦП (pipelined ADC), однако они являются комбинацией нескольких АЦП с меньшим быстродействием и их рассмотрение выходит за рамки данной статьи.

Среднюю нишу в ряду разрядность-скорость занимают АЦП последовательного приближения. Типичными значениями является разрядность 12-18 бит при частоте преобразования 100KSPS-1MSPS.

Наибольшей точности достигают сигма-дельта АЦП, имеющие разрядность до 24 бит включительно и скорость от единиц SPS до единиц KSPS.

Еще одним типом АЦП, который находил применение в недавнем прошлом, является интегрирующий АЦП. Интегрирующие АЦП в настоящее время практически полностью вытеснены другими типами АЦП, но могут встретиться в старых измерительных приборах.

АЦП прямого преобразования

АЦП прямого преобразования получили широкое распространение в 1960-1970 годах, и стали производиться в виде интегральных схем в 1980-х. Они часто используются в составе «конвейерных» АЦП (в данной статье не рассматриваются), и имеют разрядность 6-8 бит при скорости до 1 GSPS.

Архитектура АЦП прямого преобразования изображена на рис. 1

Рис. 1. Структурная схема АЦП прямого преобразования

Принцип действия АЦП предельно прост: входной сигнал поступает одновременно на все «плюсовые» входы компараторов, а на «минусовые» подается ряд напряжений, получаемых из опорного путем деления резисторами R. Для схемы на рис. 1 этот ряд будет таким: (1/16, 3/16, 5/16, 7/16, 9/16, 11/16, 13/16) Uref, где Uref – опорное напряжение АЦП.

Пусть на вход АЦП подается напряжение, равное 1/2 Uref. Тогда сработают первые 4 компаратора (если считать снизу), и на их выходах появятся логические единицы. Приоритетный шифратор (priority encoder) сформирует из «столбца» единиц двоичный код, который фиксируется выходным регистром.

Теперь становятся понятны достоинства и недостатки такого преобразователя. Все компараторы работают параллельно, время задержки схемы равно времени задержки в одном компараторе плюс время задержки в шифраторе. Компаратор и шифратор можно сделать очень быстрыми, в итоге вся схема имеет очень высокое быстродействие.

Но для получения N разрядов нужно 2^N компараторов (и сложность шифратора тоже растет как 2^N). Схема на рис. 1. содержит 8 компараторов и имеет 3 разряда, для получения 8 разрядов нужно уже 256 компараторов, для 10 разрядов – 1024 компаратора, для 24-битного АЦП их понадобилось бы свыше 16 млн. Однако таких высот техника еще не достигла.

АЦП последовательного приближения

АЦП последовательного приближения реализует алгоритм «взвешивания», восходящий еще к Фибоначчи. В своей книге «Liber Abaci» (1202 г.) Фибоначчи рассмотрел «задачу о выборе наилучшей системы гирь», то есть о нахождении такого ряда весов гирь, который бы требовал для нахождения веса предмета минимального количества взвешиваний на рычажных весах. Решением этой задачи является «двоичный» набор гирь. Подробнее о задаче Фибоначчи можно прочитать, например, здесь: http://www.goldenmuseum.com/2015AMT_rus.html.

Аналого-цифровой преобразователь последовательного приближения (SAR, Successive Approximation Register) измеряет величину входного сигнала, осуществляя ряд последовательных «взвешиваний», то есть сравнений величины входного напряжения с рядом величин, генерируемых следующим образом:

1. на первом шаге на выходе встроенного цифро-аналогового преобразователя устанавливается величина, равная 1/2Uref (здесь и далее мы предполагаем, что сигнал находится в интервале (0 – Uref).

2. если сигнал больше этой величины, то он сравнивается с напряжением, лежащим посередине оставшегося интервала, т.е., в данном случае, 3/4Uref. Если сигнал меньше установленного уровня, то следующее сравнение будет производиться с меньшей половиной оставшегося интервала (т.е. с уровнем 1/4Uref).

3. Шаг 2 повторяется N раз. Таким образом, N сравнений («взвешиваний») порождает N бит результата.

Рис. 2. Структурная схема АЦП последовательного приближения.

Таким образом, АЦП последовательного приближения состоит из следующих узлов:

1. Компаратор. Он сравнивает входную величину и текущее значение «весового» напряжения (на рис. 2. обозначен треугольником).

Читайте также:  Стабилизатор напряжения для классики

2. Цифро-аналоговый преобразователь (Digital to Analog Converter, DAC). Он генерирует «весовое» значение напряжения на основе поступающего на вход цифрового кода.

3. Регистр последовательного приближения (Successive Approximation Register, SAR). Он осуществляет алгоритм последовательного приближения, генерируя текущее значение кода, подающегося на вход ЦАП. По его названию названа вся данная архитектура АЦП.

4. Схема выборки-хранения (Sample/Hold, S/H). Для работы данного АЦП принципиально важно, чтобы входное напряжение сохраняло неизменную величину в течение всего цикла преобразования. Однако «реальные» сигналы имеют свойство изменяться во времени. Схема выборки-хранения «запоминает» текущее значение аналогового сигнала, и сохраняет его неизменным на протяжении всего цикла работы устройства.

Достоинством устройства является относительно высокая скорость преобразования: время преобразования N-битного АЦП составляет N тактов. Точность преобразования ограничена точностью внутреннего ЦАП и может составлять 16-18 бит (сейчас стали появляться и 24-битные SAR ADC, например, AD7766 и AD7767).

Дельта-сигма АЦП

И, наконец, самый интересный тип АЦП – сигма-дельта АЦП, иногда называемый в литературе АЦП с балансировкой заряда. Структурная схема сигма-дельта АЦП приведена на рис. 3.

Рис.3. Структурная схема сигма-дельта АЦП.

Принцип действия данного АЦП несколько более сложен, чем у других типов АЦП. Его суть в том, что входное напряжение сравнивается со значением напряжения, накопленным интегратором. На вход интегратора подаются импульсы положительной или отрицательной полярности, в зависимости от результата сравнения. Таким образом, данный АЦП представляет собой простую следящую систему: напряжение на выходе интегратора «отслеживает» входное напряжение (рис. 4). Результатом работы данной схемы является поток нулей и единиц на выходе компаратора, который затем пропускается через цифровой ФНЧ, в результате получается N-битный результат. ФНЧ на рис. 3. Объединен с «дециматором», устройством, снижающим частоту следования отсчетов путем их «прореживания».

Рис. 4. Сигма-дельта АЦП как следящая система

Ради строгости изложения, нужно сказать, что на рис. 3 изображена структурная схема сигма-дельта АЦП первого порядка. Сигма-дельта АЦП второго порядка имеет два интегратора и две петли обратной связи, но здесь рассматриваться не будет. Интересующиеся данной темой могут обратиться к [3].

На рис. 5 показаны сигналы в АЦП при нулевом уровне на входе (сверху) и при уровне Vref/2 (снизу).

Рис. 5. Сигналы в АЦП при разных уровнях сигнала на входе.

Более наглядно работу сигма-дельта АЦП демонстрирует небольшая программа, находящаяся тут: http://designtools.analog.com/dt/sdtutorial/sdtutorial.html.

Теперь, не углубляясь в сложный математический анализ, попробуем понять, почему сигма-дельта АЦП обладают очень низким уровнем собственных шумов.

Рассмотрим структурную схему сигма-дельта модулятора, изображенную на рис. 3, и представим ее в таком виде (рис. 6):

Рис. 6. Структурная схема сигма-дельта модулятора

Здесь компаратор представлен как сумматор, который суммирует непрерывный полезный сигнал и шум квантования.

Пусть интегратор имеет передаточную функцию 1/s. Тогда, представив полезный сигнал как X(s), выход сигма-дельта модулятора как Y(s), а шум квантования как E(s), получаем передаточную функцию АЦП:

То есть, фактически сигма-дельта модулятор является фильтром низких частот (1/(s+1)) для полезного сигнала, и фильтром высоких частот (s/(s+1)) для шума, причем оба фильтра имеют одинаковую частоту среза. Шум, сосредоточенный в высокочастотной области спектра, легко удаляется цифровым ФНЧ, который стоит после модулятора.

Рис. 7. Явление «вытеснения» шума в высокочастотную часть спектра

Однако следует понимать, что это чрезвычайно упрощенное объяснение явления вытеснения шума (noise shaping) в сигма-дельта АЦП.

Итак, основным достоинством сигма-дельта АЦП является высокая точность, обусловленная крайне низким уровнем собственного шума. Однако для достижения высокой точности нужно, чтобы частота среза цифрового фильтра была как можно ниже, во много раз меньше частоты работы сигма-дельта модулятора. Поэтому сигма-дельта АЦП имеют низкую скорость преобразования.

Они могут использоваться в аудиотехнике, однако основное применение находят в промышленной автоматике для преобразования сигналов датчиков, в измерительных приборах, и в других приложениях, где требуется высокая точность. но не требуется высокой скорости.

Немного истории

Самым старым упоминанием АЦП в истории является, вероятно, патент Paul M. Rainey, «Facsimile Telegraph System,» U.S. Patent 1,608,527, Filed July 20, 1921, Issued November 30, 1926. Изображенное в патенте устройство фактически является 5-битным АЦП прямого преобразования.

Рис. 8. Первый патент на АЦП

Рис. 9. АЦП прямого преобразования (1975 г.)

Устройство, изображенное на рисунке, представляет собой АЦП прямого преобразования MOD-4100 производства Computer Labs, 1975 года выпуска, собранный на основе дискретных компараторов. Компараторов 16 штук (они расположены полукругом, для того, чтобы уравнять задержку распространения сигнала до каждого компаратора), следовательно, АЦП имеет разрядность всего 4 бита. Скорость преобразования 100 MSPS, потребляемая мощность 14 ватт.

На следующем рисунке изображена продвинутая версия АЦП прямого преобразования.

Рис. 10. АЦП прямого преобразования (1970 г.)

Устройство VHS-630 1970 года выпуска, произведенное фирмой Computer Labs, содержало 64 компаратора, имело разрядность 6 бит, скорость 30MSPS и потребляло 100 ватт (версия 1975 года VHS-675 имела скорость 75 MSPS и потребление 130 ватт).

Источник



Источники опорного напряжения от компании Analog Devices

Компания Analog Devices производит около 600 модификаций источников опорного напряжения (ИОН), и рассмотреть их все, конечно же, невозможно. Поэтому в первую очередь рассмотрим недорогие ИОН ADR 01, ADR02, ADR03, и ADR06 с номинальными выходными напряжениями 10,0 В, 5,0 В, 2,5 В и 3,0 В соответственно, а завершим наш краткий обзор сведениями об AD780. Как и все другие ИОН, источники ADR 01, ADR02, ADR03 и ADR06 формируют опорные напряжения с помощью запрещенной энергетической зоны внутренних базовых p-n-переходов (band gap) транзисторов с разной площадью эмиттеров. ИОН серии ADR изготавливаются в компактных 8-выводных корпусах SOIC, а также в 5-выводных корпусах SC70 и TSOT. Малые габариты ИОН и широкий диапазон рабочих температур (–40…+125 °С) позволят им найти применение во многих приложениях, в том числе там, где на первый план выходит компактность печатной платы.

Начальная погрешность и температурный коэффициент зависят от исполнения ИОН, которое бывает трех типов: A, B и С. В зависимости от типа и исполнения микросхемы начальная погрешность варьируется в пределах 0,05–0,2%, а типовое значение температурного коэффициента находится в диапазоне 1–10 ppm/°С. Однако кроме типового значения существуют и максимальные значения, величина которых зависит уже от типа корпуса микросхемы. Например, в исполнении А типовое значение температурного коэффициента составляет 3 ppm/°С, но максимально возможная величина может достигать 10 ppm/°С для ИОН в корпусе SOIC и 25 ppm/°С для ИОН в корпусах SC70 и TSOT.

Читайте также:  Нервно психическое напряжение учителя

Это обстоятельство надо обязательно учитывать особенно в тех случаях, когда ИОН используется во всем рабочем диапазоне температур –40…+125 °С. Иначе вас может ожидать весьма неприятный сюрприз, и вместо температурной погрешности 3 ppm/°С × 165 °С = 495 ppm вы получите погрешность 25 ppm/°С × 165 °С = 4125 ppm. Напомним формулу для вычисления температурного коэффициента TCV:

где V(T2), V(T1) и V(+25 °С) — выходное напряжение при температуре Т2, Т1 и +25 °С соответственно.

В таблице указаны некоторые типовые параметры рассматриваемых ИОН. Заметьте, что нестабильность выходного напряжения зависит от температуры. Графики зависимостей можно найти в документации производителя.

Наименование микросхемы Диапазон входных напряжений, В Нестабильность выходного напряжения, ppm/В Нестабильность выходного напряжения по нагрузке ppm/мА Спектральная плотность шума, нВ√Гц Размах шума (от пика до пика), мкВ Ослабление пульсаций на частоте 10 кГц, дБ ADR 01 12–36 7 40 510 20 –75 ADR02 7–36 7 40 230 10 –75 ADR03 4,5–36 7 25 230 6 –75 ADR06 5–36 7 40 510 10 –75

Особенно нужно отметить довольно высокий уровень ослабления пульсаций напряжения и широкий диапазон входных напряжений, причем максимальная величина напряжений может достигать 36 В. Последнее обстоятельство упрощает схему и снижает стоимость решений. Например, если требуется получить опорное напряжение 2,5 или 3,0 В, а на плате напряжение питания только 15 В, вам не придется создавать еще одну шину питания 5 В специально для ИОН, на его вход можно безбоязненно подавать напряжение 15 В.

В распределенной системе питания с нестабилизированной шиной 12 В, напряжение на которой может варьироваться в пределах 9–18 В, напряжение на входе ИОН не превысит максимально допустимую величину.

Конечно, при большом падении напряжения на ИОН возрастает мощность рассеяния, но для контроля температуры микросхемы предусмотрен специальный вывод TEMP, напряжение на котором пропорционально температуре микросхемы. Контроль напряжения на этом выводе позволит избежать перегрева сверх максимального значения +125 °С или другого заданного разработчиком предела.

Хотя для использования ИОН серии ADR не требуются внешние компоненты, будет не лишним установить на вход и выход микросхемы ИОН керамические конденсаторы емкостью 0,1 мкФ, как показано на рис. 1. Конденсатор на выходе увеличит стабильность и послужит фильтром выходных шумов, а на входе сократит время протекания переходных процессов и уменьшит пульсации питания. Если пульсации питания велики, то параллельно конденсатору 0,1 мкФ можно подключить электролитический или танталовый конденсатор 1–10 мкФ.

Вывод TRIM в микросхемах позволяет изменить их выходное напряжение. Простейший вариант подстройки выходного напряжения показан на рис. 2. Резистор R1 величиной 470 кОм позволит увеличить плавность настройки, потенциометр POT надо выбрать многооборотным, иначе не удастся произвести точную подстройку.

Напряжение на выводе TEMP изменяется пропорционально изменению температуры, однако надо учесть, что производитель не указывает точность измерения, поэтому следует использовать такое напряжение скорее как справочное значение, а не для точных измерений. При температуре +25 °С напряжение на этом выводе составляет примерно 552 мВ и при увеличении температуры на 20 °С повышается на 39,2 мВ. Таким образом, чувствительность достигает 1,96 мВ/°С. Следует иметь в виду, что вывод TEMP подключен к опорному напряжению band gap, а потому нагрузка на данном выводе должна быть минимальной. Лучше всего подсоединять этот вывод к схеме через буфер с большим входным сопротивлением.

В выходном каскаде ИОН серии ADR применяется схема Дарлингтона на биполярных n-p-n-транзисторах и ток собственного потребления практически не зависит от тока нагрузки. Соответственно, на основе ИОН можно создавать прецизионные источники тока. Довольно простая схема такого источника изображена на рис. 3. Потенциометр ABW величиной 100 кОм введен в схему для регулирования тока.

Нагрузкой источника является резистор RL. Величина тока нагрузки IL = VREF/RSET. При использовании ИОН в различных схемах, в том числе с операционными усилителями, следует помнить, что выход рассмотренных ИОН рассчитан на вытекающий ток и даже небольшой втекающий ток может привести к увеличению погрешности выходного напряжения. При выборе резисторов не забудьте обратить внимание на их ТКС, он должен быть минимальным.

Однако не всегда можно удовлетвориться параметрами рассмотренных выше ИОН. А потому компания Analog Devices предлагает ИОН с лучшими параметрами — в частности, AD780. Его выходное напряжение составляет 2,5 или 3,0 В и программируется коммутацией внешних выводов. В отличие от рассмотренных выше ИОН серии ADR ИОН AD780 содержит встроенный буфер, поэтому максимальные втекающие и вытекающие токи равны и составляют 10 мА, что упрощает схемотехнику узлов с использованием AD780.

Лазерная подгонка при производстве позволяет уменьшить начальную погрешность до 1 мВ или 0,04% полной шкалы в случае напряжения 2,5 В, а максимальный температурный дрейф, в зависимости от исполнения, составляет 3 или 7 ppm/°С, что также существенно лучше, чем у ИОН серии ADR. Это иллюстрируется рис. 4, на котором показана зависимость погрешности напряжения ИОН AD780 от температуры. Как видно из рисунка, почти во всем рабочем диапазоне температур погрешность не превышает 1 мВ.
Ну и конечно, нельзя не сказать о долговременной стабильности опорного напряжения. У ИОН серии ADR она составляет ±20 ppm/1000 ч, а серии ADR — 50 ppm/1000 ч.

Описанные ИОН могут найти применение в очень многих функциональных узлах аналоговых схем. Вот некоторые из них: опорное напряжение для АЦП, ЦАП и аналоговых компараторов, источники прецизионного тока для питания датчиков, мониторинг напряжения аккумуляторных батарей и другие.

Таким образом ИОН серии ADR01, ADR02, ADR03, ADR06 и AD780 компании Analog Devices схожи по характеристикам, но AD780 имеет программируемое выходное напряжение и встроенный буфер, что позволяет упростить конечную схему. В линейке компании Analog Devices огромное количество различных ИОН. В данной статье показано, что выбор ИОН может и должен осуществляться в зависимости от требований конкретного проекта, и на примере продукции Analog Devices продемонстрировано широкие возможности такого выбора.

Читайте также:  Конспект по физике 8 класс тема напряжение

Источник

Аналого-цифровые преобразователи (АЦП): назначение, устройство, применение.

Содержание

Что такое АЦП?

Аналого-цифровые преобразователи (АЦП) — это устройства, предназначенные для преобразования аналоговых сигналов в цифровые. Для такого преобразования необходимо осуществить квантование аналогового сигнала, т. е. мгновенные значения аналогового сигнала ограничить определенными уровнями, называемыми уровнями квантования.

Характеристика идеального квантования имеет вид, приведенный на рис. 3.92.

Васильев Дмитрий Петрович Профессор электротехники СПбГПУ

Квантование представляет собой округление аналоговой величины до ближайшего уровня квантования, т. е. максимальная погрешность квантования равна ±0,5h (h — шаг квантования).

К основным характеристикам АЦП относят число разрядов, время преобразования, нелинейность и др. Число разрядов — количество разрядов кода, связанного с аналоговой величиной, которое может вырабатывать АЦП.

Абрамян Евгений Павлович Доцент кафедры электротехники СПбГПУ

Часто говорят о разрешающей способности АЦП, которую определяют величиной, обратной максимальному числу кодовых комбинаций на выходе АЦП. Так, 10-разрядный АЦП имеет разрешающую способность (210 = 1024)−1, т. е. при шкале АЦП, соответствующей 10В, абсолютное значение шага квантования не превышает 10мВ. Время преобразования tпp — интервал времени от момента заданного изменения сигнала на входе АЦП до появления на его выходе соответствующего устойчивого кода.

Характерными методами преобразования являются следующие: параллельного преобразования аналоговой величины и последовательного преобразования.

АЦП с параллельным преобразованием входного аналогового сигнала

По параллельному методу входное напряжение одновременно сравниваются с n опорными напряжениями и определяют, между какими двумя опорными напряжениями оно лежит. При этом результат получают быстро, но схема оказывается достаточно сложной.

Принцип действия АЦП (рис. 3.93)

При U вх = 0, поскольку для всех ОУ разность напряжений (U + − U −) +, U − — напряжения относительно общей точки соответственно неинвертирующего и инвертирующего входа), напряжения на выходе всех ОУ равны −Е пит а на выходах кодирующего преобразователя (КП) Z 0, Z 1, Z 2 устанавливаются нули. Если U вх > 0,5U, но меньше 3/2U, лишь для нижнего ОУ (U + − U −) > 0 и лишь на его выходе появляется напряжение +Е пит, что приводит к появлению на выходах КП следующих сигналов: Z 0 = 1, Z 2 = Z l = 0. Если U вх > 3/2U, но меньше 5/2U, то на выходе двух нижних ОУ появляется напряжение +Е пит, что приводит к появлению на выходах КП кода 010 и т. д.

Посмотрите интересное видео о работе АЦП:

АЦП с последовательным преобразованием входного сигнала

Это АЦП последовательного счета, который называют АЦП со следящей связью (рис. 3.94).

В АЦП рассматриваемого типа используется ЦАП и реверсивный счетчик, сигнал с которого обеспечивает изменение напряжения на выходе ЦАП. Настройка схемы такова, что обеспечивается примерное равенство напряжений на входе U вх и на выходе ЦАП −U. Если входное напряжение U вх больше напряжения U на выходе ЦАП, то счетчик переводится в режим прямого счета и код на его выходе увеличивается, обеспечивая увеличение напряжения на выходе ЦАП. В момент равенства U вх и U счет прекращается и с выхода реверсивного счетчика снимается код, соответствующий входному напряжению.

Метод последовательного преобразования реализуется и в АЦП время — импульсного преобразования (АЦП с генератором линейно изменяющегося напряжения (ГЛИН)).

Принцип действия рассматриваемого АЦП рис. 3.95) основан на подсчете числа импульсов в отрезке времени, в течение которого линейно изменяющееся напряжение (ЛИН), увеличиваясь от нулевого значения, достигает уровня входного напряжения U вх. Использованы следующие обозначения: СС — схема сравнения, ГИ — генератор импульсов, Кл — электронный ключ, Сч — счетчик импульсов.

Васильев Дмитрий Петрович Профессор электротехники СПбГПУ

Отмеченный во временной диаграмме момент времени t1 соответствует началу измерения входного напряжения, а момент времени t2 соответствует равенству входного напряжения и напряжения ГЛИН.

Погрешность измерения определяется шагом квантования времени. Ключ Кл подключает к счетчику генератор импульсов от момента начала измерения до момента равенства U вх и U глин. Через U Сч обозначено напряжение на входе счетчика.

Код на выходе счетчика пропорционален входному напряжению. Одним из недостатков этой схемы является невысокое быстродействие.

АЦП с двойным интегрированием

Такой АЦП реализует метод последовательного преобразования входного сигнала (рис. 3.96). Использованы следующие обозначения: СУ — система управления, ГИ — генератор импульсов, Сч — счетчик импульсов.

Принцип действия АЦП состоит в определении отношения двух отрезков времени, в течение одного из которых выполняется интегрирование входного напряжения U вх интегратором на основе ОУ (напряжение U и на выходе интегратора изменяется от нуля до максимальной по модулю величины), а в течение следующего — интегрирование опорного напряжения U оп (U и меняется от максимальной по модулю величины до нуля) (рис. 3.97).

Пусть время t 1 интегрирования входного сигнала постоянно, тогда чем больше второй отрезок времени t 2 (отрезок времени, в течение которого интегрируется опорное напряжение), тем больше входное напряжение. Ключ К З предназначен для установки интегратора в исходное нулевое состояние.

В первый из указанных отрезков времени ключ К 1 замкнут, ключ К 2 разомкнут, а во второй, отрезок времени их состояние является обратным по отношению к указанному. Одновременно с замыканием ключа К 2 импульсы с генератора импульсов ГИ начинают поступать через схему управления СУ на счетчик Сч.

Поступление этих импульсов заканчивается тогда, когда напряжение на выходе интегратора оказывается равным нулю.

Напряжение на выходе интегратора по истечении отрезка времени t 1 определяется выражением

U и(t 1) = − ( 1/RC) · t1 ∫ 0U вхdt= − ( U вх · t 1 ) / ( R·C)

Используя аналогичное выражение для отрезка времени t 2, получим

Подставив сюда выражение для U и(t 1), получим t 2 =( U вх / U оп)·t 1 откуда U вх = U oa · t 2/t 1

Код на выходе счетчика определяет величину входного напряжения.

Одним из основных преимуществ АЦП рассматриваемого типа является высокая помехозащищенность. Случайные выбросы входного напряжения, имеющие место в течение короткого времени, практически не оказывают влияния на погрешность преобразования. Недостаток АЦП — малое быстродействие.

Наиболее распространенными являются АЦП серий микросхем 572, 1107, 1138 и др. (табл. 3.3)

Из таблицы видно, что наилучшим быстродействием обладает АЦП параллельного преобразования, а наихудшим — АЦП последовательного преобразования.

Предлагаем посмотреть ещё одно достойное видео о работе и устройстве АЦП:

Источник