Меню

Для чего нужны обмотки в трансформаторе тока

Принцип работы трансформатора тока

Что такое трансформатор тока, принцип работы, типы, схемы

Трансформатор тока представляет собой тип «измерительного трансформатора», который предназначен для производства переменного тока в его вторичной обмотки, которое пропорционально току измеряется в его первичном. Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии электропередачи переменного тока, с использованием стандартного амперметра.

Принцип работы основного трансформатора тока немного отличается от обычного трансформатора напряжения.

Трансформатор тока состоит из одного или нескольких витков в качестве своей первичной обмотки. Эта первичная обмотка может иметь либо один плоский виток, либо катушку из сверхпрочного провода, намотанного на сердечник, либо просто проводник или шину, расположенную через центральное отверстие, как показано на рисунке.

Из-за такого типа расположения трансформатор тока часто называют также «последовательным трансформатором», поскольку первичная обмотка, которая никогда не имеет более нескольких витков, соединена последовательно с проводником с током, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с малыми потерями. Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока является низкой при использовании провода с меньшей площадью поперечного сечения, в зависимости от того, какой ток должен быть понижен, когда он пытается выдать постоянный ток, независимо от подключенной нагрузки.

Вторичная обмотка будет подавать ток либо на короткое замыкание, в виде амперметра, либо на резистивную нагрузку, пока напряжение, наведенное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а контролируется внешней нагрузкой. Вторичный ток обычно оценивается в стандартный 1 Ампер или 5 Ампер для больших значений первичного тока.

Существует три основных типа трансформаторов тока:

  • Обмоточный трансформатор тока — первичная обмотка трансформатора физически соединена последовательно с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента оборотов трансформатора.
  • Тороидальный трансформатор тока — они не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены.
  • Трансформатор тока стержневого типа — в этом типе трансформатора тока используется фактический кабель или шина главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно крепятся болтами к токонесущему устройству.

Ручные трансформаторы тока

В настоящее время доступно много специализированных типов трансформаторов тока. Популярный и портативный тип, который может быть использован для измерения нагрузки цепи, называется «клещами», как показано на рисунке.

Измерители зажимов открывают и закрывают вокруг проводника с током и измеряют его ток, определяя магнитное поле вокруг него, обеспечивая быстрое считывание результатов измерений, как правило, на цифровом дисплее без отключения или размыкания цепи.

Наряду с ручным зажимом типа трансформатора тока имеются трансформаторы тока с разделенным сердечником, у которых один конец съемный, поэтому нет необходимости отсоединять проводник нагрузки или шину для его установки. Они доступны для измерения токов от 100 до 5000 ампер, с квадратными размерами окна от 1 ″ до более 12 ″ (от 25 до 300 мм).

Сфера применения

Сфера применения включает все отрасли, в которых происходит преобразование энергетических величин.

Эти устройства относятся к числу вспомогательного оборудования, которое используется параллельно с измерительными приборами и реле при создании цепи переменного тока. В этих случаях трансформаторы преобразуют энергию для более удобной расшифровки параметров или соединения оборудования с разными характеристиками в одну цепь.

Также выделяют измерительную функцию трансформаторов: они служат для запуска электроцепей с повышенным напряжением, к которым требуется подключить измерительные приборы, но не представляется возможным сделать это напрямую. Основная задача таких трансформаторов – передача полученной информации о параметрах тока на приборы для измерительных манипуляций, которые подсоединены к обмотке вторичного типа. Также оборудование дает возможность контролировать ток в цепи: при использовании реле и достижении максимальных токовых параметров активируется защита, выключающая оборудование во избежание перегорания и нанесения вреда персоналу.

Принцип работы

Действие такого оборудования основано на законе индукции, согласно которому напряжение попадает на первичные витки и ток преодолевает создаваемое сопротивление обмотки, что вызывает формирование магнитного потока, передающегося на магнитопровод. Поток идет в перпендикулярном направлении относительно тока, что позволяет минимизировать потери, а при пересечении им витков вторичной обмотки активируется сила ЭДС. В результате ее воздействия в системе появляется ток, который сильнее сопротивления катушки, при этом напряжение на выходной части вторичных витков снижается.

Простейшая конструкция трансформатора, таким образом, включает сердечник из металла и пару обмоток, не соединенных друг с другом и выполненных в виде проводки с изоляцией. В некоторых случаях нагрузка идет только на первичные, а не вторичные витки: это так называемый холостой режим. Если же ко вторичной обмотке подсоединяют оборудование, потребляющее энергию, по виткам проходит ток, который создает электродвижущая сила. Параметры ЭДС обусловлены количеством витков. Соотношение электродвижущей силы для первичных и вторичных витков известно как коэффициент трансформации, вычисляется по отношению их числа. Регулировать напряжение для конечного потребителя энергии можно, изменяя число витков первичной либо вторичной обмотки.

Для чего нужны трансформаторы тока

Трансформатор тока нулевой последовательности широко используется в организации работы производства, в быту (с его помощью проводят сварочные работы, он нормализуют входящее в дом напряжение, бросок тока, он нормализует работу электросчётчика с целью увеличения безопасности).

Трансформатор является важным инструментом в области электротехники. Текущие уровни электрического тока должны контролироваться в целях безопасности и эффективности работы прочих бытовых и промышленных приборов. Измерительные устройства, подключенные к трансформаторам, позволяют совершать мониторинг в различных местах по всей системе. Они также могут быть использованы для измерения электрического использования здания и выставления счетов или целей проверки.

Трансформатор тока — схема

Схемы подключения

Для того чтобы устройство эффективно работало и качественно выполняло возложенные на него функции, нужно правильно его подключить. Для этого следует руководствоваться одной из стандартных схем, позволяющих удовлетворить требования владельцев оборудования. Только в этом случае можно добиться желаемого результата и выполнить работу за максимально короткий промежуток времени.

Основные схемы соединения трансформаторов и обмоток реле:

  1. Звезда. Этот вариант подключения предусматривает установку трансформаторов тока во всех фазах. Их вторичные обмотки соединяются с соответствующими элементами реле в виде звезды, а нулевые точки — с общим проводом. Такая схема используется только в защитных устройствах, предотвращающих короткие замыкания.
  2. Неполная звезда. Единственное отличие этого способа подключения от звезды — установка трансформаторов только в двух фазах.
  3. Треугольник. Вторичные обмотки всех трансформаторов последовательно соединяются друг с другом при помощи разноимённых выводов. К вершинам образованного треугольника подключаются реле, соединённые в звезду. Этот вариант применяется для дистанционных и дифференциальных защит.
  4. Неполный треугольник. Отличительная черта этой схемы подключения — использование вторичных обмоток, установленных не во всех фазах, а только в двух. Такой вариант применяется для защиты двигателей от междуфазных коротких замыканий.

Коэффициент трансформации

Для оценки эффективности работы самого трансформатора была введена величина коэффициента преобразования. Его номинальное значение обычно указывается в официальной документации к трансформатору. Данный коэффициент обозначает отношение первичного номинального тока к аналогичному показателю второй обмотки. К примеру, это может быть значение 100/5 А. Оно может резко изменяться в зависимости от количества секций с витками.

Принцип работы трансформатора тока

Демонстрацию процессов, происходящих при преобразованиях электрической энергии внутри трансформатора, поясняет схема.

Через силовую первичную обмотку с числом витков ω1 протекает ток I1, преодолевая ее полное сопротивление Z1. Вокруг этой катушки формируется магнитный поток Ф1, который улавливается магнитопроводом, расположенным перпендикулярно направлению вектора I1. Такая ориентация обеспечивает минимальные потери электрической энергии при ее преобразовании в магнитную.

Пересекая перпендикулярно расположенные витки обмотки ω2, поток Ф1 наводит в них электродвижущую силу Е2, под влиянием которой возникает во вторичной обмотке ток I2, преодолевающий полное сопротивление катушки Z2 и подключенной выходной нагрузки Zн. При этом на зажимах вторичной цепи образуется падение напряжения U2.

Величина К1, определяемая отношением векторов I1/I2, называется коэффициентом трансформации. Ее значение задается при проектировании устройств и замеряется в готовых конструкциях. Отличия показателей реальных моделей от расчетных значений оценивается метрологической характеристикой —классом точности трансформатора тока.

В реальной работе значения токов в обмотках не являются постоянными величинами. Поэтому коэффициент трансформации принято обозначать по номинальным значениям. Например, его выражение 1000/5 означает, что при рабочем первичном токе 1 килоампер во вторичных витках будет действовать нагрузка 5 ампер. По этим значениям и рассчитывается длительная эксплуатация этого трансформатора тока.

Магнитный поток Ф2 от вторичного тока I2 уменьшает значение потока Ф1 в магнитопроводе. При этом создаваемый в нем поток трансформатора Фт определяется геометрическим суммированием векторов Ф1 и Ф2.

Источник

Трансформатор

Слово “трансформатор” образуется от английского слова “transform” – преобразовывать, изменяться. Но дело в том, что сам трансформатор не может как-либо измениться либо поменять форму и так далее. Он обладает еще более удивительный свойством – преобразует переменное напряжение одного значения в переменное напряжение другого значения. Ну разве это не чудо? В этой статье мы будем рассматривать именно трансформаторы напряжения.

Трансформатор напряжения

Трансформатор напряжения можно отнести больше к электротехнике, чем к электронике. Самый обыкновенный однофазный трансформатор напряжения выглядит вот так.

трансформатор напряжения

Если откинуть верхнюю защиту трансформатора, то мы можем четко увидеть, то он состоит из какого-то железного каркаса, который собран из металлических пластин, а также из двух катушек, которые намотаны на этот железный каркас. Здесь мы видим, что из одной катушки выходит два черных провода

трансформатор в разборе

а с другой катушки два красных провода

обмотки трансформатора

Эти обе катушки одеваются на сердечник трансформатора. То есть в результате мы получаем что-то типа этого

Читайте также:  Векторные диаграммы для тока через конденсатор

трансформатор однофазный

Ничего сложного, правда ведь?

Но дальше самое интересное. Если подать на одну из этих катушек переменное напряжение, то в другой катушке тоже появляется переменное напряжение. Но как же так возможно? Ведь эти обмотки абсолютно не касаются друг друга и они изолированы друг от друга. Во чудеса! Все дело, в так называемой электромагнитной индукции.

Если объяснить простым языком, то когда на первичную обмотку подают переменное напряжение, то в сердечнике возникнет переменное магнитное поле с такой же частой. Вторая катушка улавливает это переменное магнитное поле и уже выдает переменное напряжение на своих концах.

Обмотки трансформатора

Эти самые катушки с проводом в трансформаторе называются обмотками. В основном обмотки состоят из медного лакированного провода. Такой провод находится в лаковой изоляции, поэтому, провод в обмотке не коротит друг с другом. Выглядит такой обмоточный трансформаторный провод примерно вот так.

ПЭТВ-2

Он может быть разного диаметра. Все зависит от того, на какую нагрузку рассчитан тот или иной трансформатор.

У самого простого однофазного трансформатора можно увидеть две такие обмотки.

трансформатор напряжения

Обмотка, на которую подают напряжение называется первичной. В народе ее еще называют “первичка”. Обмотка, с которой уже снимают напряжение называется вторичной или “вторичка”.

Для того, чтобы узнать, где первичная обмотка, а где вторичная, достаточно посмотреть на шильдик трансформатора.

шильдик трансформатора

I/P: 220М50Hz (RED-RED) – это говорит нам о том, что два красных провода – это первичная обмотка трансформатора, на которую мы подаем сетевое напряжение 220 Вольт. Почему я думаю, что это первичка? I/P – значит InPut, что в переводе “входной”.

O/P: 12V 0,4A (BLACK, BLACK) – вторичная обмотка трансформатора с выходным напряжением в 12 Вольт (OutPut). Максимальная сила тока, которую может выдать в нагрузку этот трансформатор – это 0,4 Ампера или 400 мА.

Как работает трансформатор

Чтобы разобраться с принципом работы, давайте рассмотрим рисунок.

как работает трансформатор

Здесь мы видим простую модель трансформатора. Подавая на вход переменное напряжение U1 в первичной обмотке возникает ток I1 . Так как первичная обмотка намотана на замкнутый магнитопровод, то в нем начинает возникать магнитный поток, который возбуждает во вторичной обмотке напряжение U2 и ток I2 . Как вы можете заметить, между первичной и вторичной обмотками трансформатора нет электрического контакта. В электронике это называется гальванически развязаны.

Формула трансформатора

Главная формула трансформатора выглядит так.

формула трансформатора

U2 – напряжение на вторичной обмотке

U1 – напряжение на первичной обмотке

N1 – количество витков первичной обмотки

N2 – количество витков вторичной обмотки

k – коэффициент трансформации

В трансформаторе соблюдается также закон сохранения энергии, то есть какая мощность заходит в трансформатор, такая мощность выходит из трансформатора:

закон сохранения мощности

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Типы трансформаторов по конструкции

Однофазные трансформаторы

Это трансформаторы, которые преобразуют однофазное переменное напряжение одного значения в однофазное переменное напряжение другого значения.

однофазный трансформатор

В основном однофазные трансформаторы имеют две обмотки, первичную и вторичную. На первичную обмотку подают одно значение напряжения, а со вторичной снимают нужное нам напряжение. Чаще всего в повседневной жизни можно увидеть так называемые сетевые трансформаторы, у которых первичная обмотка рассчитана на сетевое напряжение, то есть 220 В.

На схемах однофазный трансформатор обозначается так:

однофазный трансформатор обозначение на схеме

Первичная обмотка слева, а вторичная – справа.

Иногда требуется множество различных напряжений для питания различных приборов. Зачем ставить на каждый прибор свой трансформатор, если можно с одного трансформатора получить сразу несколько напряжений? Поэтому, иногда вторичных обмоток бывает несколько пар, а иногда даже некоторые обмотки выводят прямо из имеющихся вторичных обмоток. Такой трансформатор называется трансформатором со множеством вторичных обмоток. На схемах можно увидеть что-то подобное:

вторичные обмотки трансформатора

Трехфазные трансформаторы

Эти трансформаторы в основном используются в промышленности и чаще всего превосходят по габаритам простые однофазные трансформаторы. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

трехфазный трансформатор

На схемах трехфазные трансформаторы обозначаются вот так:

виды соединений обмоток трехфазного трансформатора

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Здесь мы видим три типа соединения обмоток (слева-направо)

  • звезда-звезда
  • звезда-треугольник
  • треугольник-звезда

В 90% случаев используется именно звезда-звезда.

Типы трансформаторов по напряжению

Понижающий трансформатор

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку мы подаем 220 Вольт, а снимаем 12 Вольт. В этом случае коэффициент трансформации (k) будет больше 1.

Повышающий трансформатор

Это трансформатор, который повышает напряжение. Допустим, на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение 11 раз. У повышающих трансформаторов коэффициент трансформации меньше 1.

Разделительный или развязывающий трансформатор

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР. У развязывающих трансформаторов коэффициент трансформации равен 1.

Согласующий трансформатор

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Работа понижающего трансформатора на практике

Понижающий трансформатор – это такой трансформатор, который выдает на выходе напряжение меньше, чем на входе. Коэффициент трансформации (k) у таких трансформаторов больше 1 . Понижающие трансформаторы – это самый распространенный класс трансформаторов в электротехнике и электронике. Давайте же рассмотрим, как он работает на примере трансформатора 220 В —> 12 В .

Итак, имеем простой однофазный понижающий трансформатор.

трансформатор напряжения

Именно на нем мы будем проводить различные опыты.

Подключаем красную первичную обмотку к сети 220 Вольт и замеряем напряжение на вторичной обмотке трансформатора без нагрузки. 13, 21 Вольт, хотя на трансформаторе написано, что он должен выдавать 12 Вольт.

работа трансформатора на холостом ходу

Теперь подключаем нагрузку на вторичную обмотку и видим, что напряжение просело.

работа трансформатора на нагрузку

Интересно, какую силу тока кушает наша лампа накаливания? Вставляем мультиметр в разрыв цепи и замеряем.

потребление тока лампочкой накаливания

Если судить по шильдику, то на нем написано, что он может выдать в нагрузку 400 мА и напряжение будет 12 Вольт, но как вы видите, при нагрузку близкой к 400 мА у нас напряжение просело почти до 11 Вольт. Вот тебе и китайский трансформатор. Нагружать более, чем 400 мА его не следует. В этом случае напряжение просядет еще больше, и трансформатор будет греться, как утюг.

Как проверить трансформатор

Как проверить на короткое замыкание обмоток

Хотя обмотки прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание между проводами, то трансформатор будет сильно греться или издавать сильный гул при работе. Также он будет пахнуть горелым лаком. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

Проверка на обрыв обмоток

При обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки. Итак, сопротивление первичной обмотки нашего трансформатора чуть более 1 КОм. Значит обмотка целая.

сопротивление первичной обмотки

Таким же образом проверяем и вторичную обмотку.

проверка вторичной обмотки

Отсюда делаем вывод, что наш трансформатор жив и здоров.

Похожие статьи по теме “трансформатор”

Источник

Что такое обмотка трансформатора: принципы работы, задачи, возможности

Все прекрасно понимают, что основная задача трансформатора – это преобразовывать получаемые импульсы, и в этом немаловажную роль играет обмотка трансформатора, позволяющая принципиально правильно работать агрегату. В сфере радиоэлектроники, электротехники и энергетики практически невозможно обойтись без трансформатора, ведь в создаваемой цепи обязательным является звено, отвечающее за преобразование переменного напряжения одного (входящего) значения обязательно через обмотку трансформатора в переменное (выходящее) напряжение уже с заданными по нормам показателями

По предпочтениям выбираются пользователями трансформаторы либо однофазные, либо трехфазные. А в чем между ними разница? Все очень просто, в их техническом комплектовании. Так, в трехфазном агрегате ток проходит по четырем проводам, три из которых – фазные, а один – нейтраль, то есть нулевой. Соответственно, однофазный трансформатор работает, основываясь на двух кабелях, один – фазный, а второй – нулевой. И применяется последний вид трансформаторов чаще всего в быту, обеспечивает электропитание в розетках, трансформируя электрический ток с показателями 220 В.

Как функционирует однофазный трансформатор: основные принципы работы

Первоначально уточним, какие существуют основные комплектующие однофазного трансформатора: магнитопровод, состоящий из пластин стали, по которым и протекает магнитный поток, первичная и вторичная обмотки трансформатора.

Физически объяснимо, что появляются и снимаются в первой обмотке потоки благодаря переменному напряжению. Находясь рядом, вторичная обмотка ловит эти потоки и преобразовывает в переменное напряжение, сохраняя ту же частоту. Напряжение, которое выдается агрегатом со вторичной обмотки, всецело зависит от витков, которые намотаны на имеющиеся в трансформаторе первичные и вторичные обмотки (катушки).

Как правильно понять: что такое виток обмотки?

Виток – это основной технический элемент обмотки, представляющий собой единичные или групповые проводки, расположенные параллельно на стержне магнитопровода. Взятая за единицу измерения совокупность витков, которая, соответственно, образовывается в той или иной электроцепи, и является обмоткой трансформатора.

Сама же обмотка состоит с двух важных компонентов: первый – проводники, второй – изоляционные детали. Задача вторых элементов – защищать витки, предупреждать электрические сбои в сети, препятствовать смещению комплектующих в 1 обмотке трансформаторов

Важно помнить! Обмотки трансформаторов различаются техническими характеристиками и параметрами. Так, обмотки трансформаторов различаются по способу размещения на стержне, могут быть различными по направлению и способу намотки. Специалисты еще оценивают обмотки трансформатора по числу витков, оценивают применяемый агрегат по классу напряжения, изучают перед применением схему соединения обмоток между собой. Следует учитывать каждый обозначенный фактор при выборе агрегата.

С понятием «виток обмотки» связан и другой термин – «слой обмотки». А что он обозначает, также постараемся раскрыть в данной статье.

Читайте также:  Чему равна работа тока физика

Виток – это мера, а вот слой – это уже следствие технического процесса, в ходе которого витками формируются положенные слои, один, два или много. Но помните, что ничего нельзя воспринимать буквально, так как в одном слое может быть один или несколько десятков витков. А сам виток способен формироваться из 6-8 параллельных проводков положенной формы.

На какие эксплуатационные характеристики обмоток обязательно надо обращать внимание?

Когда запланированы работы с электрооборудованием, не стоит упускать из виду даже мелкие технические детали, например, принципы соединения обмоток трансформатора, иначе без сбоев в энергосистеме не обойтись при последующей длительной эксплуатации.

А по каким параметрам в основном оценивают работоспособность агрегата и как определить потенциал обмотки трансформатора? Ответ прост. Специалисты в основном обращают внимание на электрическую прочность элемента, механическую прочность обмотки, а также нагревостойкость, сопротивление обмотки трансформатора и изоляционные характеристики.

Все дело в том, что в процессе эксплуатации изоляция обмоток играет важную роль и отвечает за безопасность и противодействие возможным повреждениям сети из-за коммутационных или атмосферных перенапряжений. Рекомендовано адекватно оценивать и свойства вторичной обмотки трансформатора на ее механическую прочность и способность длительно противостоять в процессе эксплуатации деформациям и повреждениям из-за агрессивной внешней среды, импульсов тока, когда превышаются все нормативные показатели номинального рабочего тока силового агрегата.

Известно, что самый стандартный трансформатор может прослужить верной и правдой более 25 лет, но если его эксплуатация будет выполняться согласно его техническим характеристикам, и удастся избежать нестабильности в сети и перенагрева обмоток. Конечно же, нагрев обмоток и его сопряженных частей происходит при длительной работе агрегата, и это нормально, просто нельзя допускать скачков и повышения разрушительной температуры внутри агрегата, отвечающего за напряжение вторичной обмотки трансформатора. Перенагрев может привести к плачевным последствиям – разрушению и деформации изоляции обмоток, тепловому износу масла, как одной из важных составляющих силовой установки.

Чтобы ознакомиться с техническими эксплуатационными возможностями обмоток трансформаторов напряжения, можете обратить внимание на ряд документов и регламентированных положений. К ним относят «Стандарты по силовым трансформаторам общего назначения, а также на специальные агрегаты», «Инструкции по применению», «Технический паспорт».

Как оценивается электрическая прочность изоляции обмоток?

  • наличие правильно и верно разработанной конструкции агрегата, когда в схеме учтены все тонкости взаимодействия;
  • рассчитаны хорошо и четко изоляционные промежутки;
  • совершен разработчиками продуманный выбор изоляционных материалов;
  • внедрены прогрессивные, а значит, современные технологии обработки изоляции.

Как оценивается механическая прочность обмоток: о чем говорят показатели?

  • учитывается состояние расчета поля рассеяния в магнитостатических полях;
  • определяются соответствующие параметры типа используемой обмотки;
  • узнаются особенности конструкции обмотки, и главное, ее месторасположение;
  • обращается внимание на расположение витков в обмотке, конструктивные особенности катушки, так как этого зависит расчет и соотношение механической силы, возникающей в обмотке, и механической стойкости элемента трансформатора. Идеально, если первый параметр будет минимизирован, а второй – будет соответствовать нормам агрегата и не подводить в процессе эксплуатации.

Как достигается необходимая нагревостойкость обмоткам трансформатора?

Трансформатор в процессе эксплуатации переживает определенную нагрузку, и в дополнение переживает воздействие негативных факторов окружающей среды. И если не обеспечить нормальную теплоотдачу, то негативные последствия не заставят себя ждать. Отметим, что обмотки трансформаторов обладают определенной степенью нагревостойкости, и ее превышение не допускается, поэтому проводить монтажные работы трансформаторов необходимо с определенной тщательностью, учитывать внешние и внутренние факторы, обеспечивать вентиляцию и охлаждение, не забывая о циркуляции воздушных масс и наличия масла внутри системы силового агрегата.Обычно контролирующие службы предприятия регулярно осматривают агрегат, оценивают состояние его контактов, а также всех основополагающих комплектующих.

Чтобы избежать перегрева обмоток трансформатора, необходимо учитывать особенности эксплуатации агрегата и обеспечить нормальную и технически выверенную теплоотдачу, а для этого обязательно надо обеспечить должную площадь поверхности соприкосновения обмоток трансформатора с окружающей средой. Причем способ охлаждения трансформаторов может быть соответствующий его заводским параметрам, предусматривающих систему охлаждения при помощи воздуха или масла.

Какие существуют основные типы обмоток трансформатора: определим общепринятую классификацию

Чтобы правильно выполнить расчет обмоток трансформатора, прежде нужно понимать, с чем придется иметь дело и какой тип обмотки внедрен в агрегат, какие он имеет преимущества. Постараемся в этом детально разобраться.

Итак, какие существуют типы обмоток трансформаторов?

  • Одно-двухслойная обмотка цилиндрической формы, изготовленная из прямоугольного провода. Это элементарный образец обмотки трансформатора, который отличается простотой технологии изготовления, должной и надежной системой охлаждения, но при этом имеет один немаловажный недостаток – низкую механическую прочность, поэтому быстро изнашивается от агрессивного воздействия окружающей среды, а перепады в сети могут вообще стать губительными для энергосистемы, в которой применен агрегат с подобной обмоткой.
  • Многослойная обмотка трансформатора цилиндрической формы, созданная из прямоугольного провода. Данный образец обмотки отличается нормальным сопротивлением первичной обмотки трансформатора, высоким функционалом магнитной системы и элементарной технологией изготовления. Но вот при длительной эксплуатации агрегата могут возникать проблемы, связанные с малой эффективностью системы охлаждения. Основная причина такого недостатка теплоотдачи – отсутствие радиальных каналов на обмотке.

Интересно знать! В классификации обмоток также упоминаются многослойные обмотки. А в чем их особенность! Все просто. В процессе их формирования обязательно слои располагаются концентрически, в соответствии с заданным количеством слоев, но при этом развернутая длина остается одинаковой, без нарушения заводских параметров. Все «наматывается» правильно по отношению к полю рассеяния трансформатора. А когда необходимо переходит при обмотке на новый слой, то используемые провода не обрываются, не заламываются, только на новом витке меняется направление укладки слоя.

  • Многослойная обмотка или катушка, также имеющая форму цилиндра, но уже изготовленная из круглого провода. В этой ситуации агрегат отличается повышенной мощностью, но при этом проигрывает в функционале теплоотдачи и не может похвастаться механической прочностью. Из-за этого износ оборудования значительно ускоряется, требуя от обслуживающего персонала частых контролей оборудования и профилактических осмотров комплектующих.

Интересно знать!Почему некоторые обмотки называют цилиндрическими, то есть имеющими форму цилиндра. Секрет кроется в особенностях витков и слоев. Когда начинают формировать цилиндрическую обмотку, то для ее правильного создания на цилиндрическую поверхность наносят слои витков плотно, ни в коем случае не допуская интервалов.

  • Винтовая обмотка, созданная из прямоугольного провода. Трансформатор с такой катушкой будет стоить дороже, но отличаться высокой механической прочностью, надежной защитной изоляцией. А во время длительной работы агрегата даже не стоит думать о его системе охлаждения. Все сработает на 100%, как это заложено в технические характеристики трансформатора с данным видом обмоток.
  • катушечная обмотка непрерывного типа, когда материалом служит прямоугольный провод. Существует и такой образец обмоток, которые отличаются высокой механической и электрической прочностью и степенью нагревостойкостью. Многие посчитают данный образец идеальной находкой, которую так и хочется ввести в эксплуатацию для эффективной работы предприятия.
  • многослойная катушечная цилиндрическая обмотка, сформированная из алюминиевой фольги. Имеет данный образец только положительные отзывы, но такая эффективность достигнута максимальными усилиями и внедрением сложных технологий изготовления, когда изоляция обмоток трансформатора внушает доверие и веру в длительную и эффективную эксплуатацию. А что еще нужно для успешного предприятия, где создается современная энергосистема или, по крайней мере, модернизируется.

Таким образом, можно сделать вывод, что классификация типов обмоток зависит от конструктивных особенностей детали трансформатора, материла и метода изготовления, а по сложности обмотки различают на простые, многослойные, многослойные, но уже изготовленные из фольги, а не провода.

Источник

Принцип действия ТТ и их назначение

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

принцип работы трансформатора тока

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

Читайте также:  Как приборы работают от переменного тока

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют отличия в работе ТТ и ТН.

  • Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
  • ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
  • Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Сохраните в закладки или поделитесь с друзьями

Источник



Что такое трансформатор тока, его конструкция и принцип работы

Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Трансформатор тока

Рис. 1. Трансформатор тока

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Промышленный керамический трансформатор тока

Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

Принципиальная схема трансформатора тока

Рис. 3. Принципиальная схема трансформатора тока

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).

Схематическое изображение ТТ Рис. 4. Схематическое изображение ТТ Устройство ТТ Рис. 5. Устройство ТТ

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).

ТТ с разъемным корпусом

Рис. 6. ТТ с разъемным корпусом

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.

Принцип действия трансформатора тока

Рис. 7. Принцип действия трансформатора тока

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

Пример наружного использования ТТ

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.

Рис. 8. Пример наружного использования ТТ

  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
  • По величине номинальных напряжений:
    • До 1 кВ;
    • Свыше 1 кВ.

Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

Расшифровка маркировки

Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

  • Т — трансформатор тока;
  • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
  • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
  • ВТ — встроенный в конструкцию силового трансформатора;
  • Л— со смоляной (литой) изоляцией;
  • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
  • Ф — с надежной фарфоровой изоляцией;
  • Ш — шинный;
  • О — одновитковый;
  • М — малогабаритный;
  • К — катушечный;
  • 3 — применяется для защиты от последствий замыкания на землю;
  • У — усиленный;
  • Н — для наружного монтажа;
  • Р — с сердечником, предназначенным для релейной защиты;
  • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
  • М — маслонаполненный. Применяется для наружной установки.
  1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
  2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
  3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
  4. после позиции дробных символов — код варианта конструкционного исполнения;
  5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
  6. цифра на последней позиции — категория размещения.

Схемы подключения

Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

Схема «неполная звезда» применяется для двухфазного соединения.

В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.

Основные схемы подключения:

Основные схемы подключения

  • В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
  • Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
  • Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
  • Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.

Технические параметры

Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.

Коэффициент трансформации

Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.

У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.

Класс точности

Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:

  • 0,1;
  • 0,5;
  • 1;
  • 3;
  • 10P.

Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.

О назначении

Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.

Видео по теме

Источник