Меню

Допустимый перекос фаз по току электродвигателя

Перекос фаз в трехфазной сети — чем опасен и когда возникает?

Самая распространенная проблема, порождающая массу деструктивных последствий – перекос фаз в трехфазной сети (до 1,0 кВ) с глухозаземленной нейтралью. При определенных условиях такое явление может вывести из строя электрические приборы и создать угрозу для жизни. Учитывая актуальность проблемы, будет полезным узнать, что представляет собой несимметрия токов и напряжений, а также причины ее возникновения. Это позволит выбрать наиболее оптимальную стратегию защиты.

Что такое перекос фаз?

Данный термин используется для описания состояния сети, при котором возникают неравномерные нагрузки между фазами, что приводит к возникновению перекоса. Если составить векторную диаграмму идеальной трехфазной сети, то она будет выглядеть так, как показано на рисунке ниже.

Диаграмма напряжений в идеальных трехфазных сетях

Диаграмма напряжений в идеальных трехфазных сетях

Как видно из рисунка, в данном случае равны как линейные напряжения (АВ=ВС=СА=380,0 В), так и фазные (АN=ВN=СN=220,0 В). К сожалению, на практике добиться такого идеального равенства нереально. То есть, линейные напряжения сети, как правило, совпадают, в то время как в фазных наблюдаются расхождения. В некоторых случаях они могут превысить допустимый предел, что приведет к возникновению аварийной ситуации.

Пример диаграммы напряжений при возникновении перекоса

Пример диаграммы напряжений при возникновении перекоса

Допустимые нормы значений перекоса

Поскольку в трехфазных сетях предотвратить и полностью устранить перекосы невозможно, существуют нормы несимметрии, в которых установлены допустимые отклонения. В первую очередь это ГОСТ 13109 97, ниже приведена вырезка из него (п. 5.5), чтобы избежать разночтения документа.

Нормы несимметрии напряжения ГОСТ 13109-97

Нормы несимметрии напряжения ГОСТ 13109-97

Поскольку, основная причина перекоса фаз напрямую связана с неправильным распределением нагрузок, существуют нормы их соотношения, прописанные в СП 31 110. Вырезку из этого свода правил также приведем в оригинале.

Вырезка из СП 31-110 (п 9.5)

Вырезка из СП 31-110 (п 9.5)

Здесь необходимы пояснения в терминологии. Для описания несимметрии используются три составляющих, это прямая, нулевая и обратная последовательность. Первая считается основной, она определяет номинальное напряжение. Две последние можно рассматривать в качестве помех, которые приводят к образованию в цепях нагрузки соответствующих ЭДС, которые не участвуют в полезной работе.

Причины перекоса фаз в трехфазной сети

Как уже упоминалось выше, данное состояние электросети чаще всего вызвано неравномерным подключением нагрузки на фазы и обрывом нуля. Чаще всего это проявляется в сетях до 1, кВ, что связано с особенностями распределения электроэнергии, между однофазными электроприемниками.

Обмотки трехфазных силовых трансформаторов подключаются «звездой». Из места соединения обмоток отводится четвертый провод, называемый нулевым или нейтралью. Если происходит обрыв нулевого провода, то в сети возникает несимметрия напряжений, причем перекос напрямую будет зависеть от текущей нагрузки. Пример такой ситуации приведен ниже. В данном случае RН это сопротивления нагрузок, одинаковые по значению.

Перекос фаз, вызванный обрывом нейтрали

Перекос фаз, вызванный обрывом нейтрали

В данном примере напряжение на нагрузке, подключенной к фазе А, превысит норму и будет стремиться к линейному, а на фазе С упадет ниже допустимого предела. К подобной ситуации может привести перекос нагрузки, выше установленной нормы. В таком случае напряжение на недогруженных фазах повысится, а на перегруженных упадет.

К перекосу напряжений также приводит работа сети в неполнофазном режиме, когда происходит замыкание фазного провода на землю. В аварийных ситуациях допускается эксплуатация сети в таком режиме, чтобы обеспечить электроснабжение потребителям.

Исходя из вышесказанного, можно констатировать три основные причины перекоса фаз:

  1. Неравномерная нагрузка на линии трехфазной сети.
  2. При обрыве нейтрали.
  3. При КЗ одного из фазных проводов на землю.

Несимметрия в высоковольтных сетях

Вызвать подобное состояние в сети 6,0-10,0 кВ иногда может подключенное к ней оборудование, в качестве характерного примера можно привести дугоплавильную печь. Несмотря на то, что она не относится к однофазному оборудованию, управление тока дуги в ней производится пофазно. В процессе плавки также могут возникнуть несимметричные КЗ. Учитывая, что существуют дугоплавильные установки запитывающиеся от напряжения 330,0 кВ, то можно констатировать, что и в данных сетях возможен перекос фаз.

В высоковольтных сетях перекос фаз может быть вызван конструктивными особенностями ЛЭП, а именно, разным сопротивлением в фазах. Чтобы исправить ситуацию выполняется транспозиция фазных линий, для этого устанавливаются специальные опоры. Эти дорогостоящие сооружения не отличаются особой прочностью. Такие опоры не особо стремятся устанавливать, предпочитая пожертвовать качеством электроэнергии, чем надежностью ЛЭП.

Опасность и последствия

Считается, что наиболее значимые последствия несимметрии связаны с низким качеством электроэнергии. Это, безусловно, так, но нельзя забывать и о других негативных воздействиях. К таковым относится образование уравнительных токов, вызывающих увеличение расхода электрической энергии. В случае с трехфазным автономным электрическим генератором это также приводит к повышенному расходу дизеля или бензина.

При равномерном подключении нагрузки, геометрическая сумма проходящих через нее токов была бы близкой к нулю. Когда возникает перекос, растет уравнительный ток и напряжение смещения. Увеличение первого приводит к росту потерь, второго – к нестабильному функционированию бытовых приборов или другого оборудования, срабатыванию защитных устройств, быстрому износу электроизоляции и т.д.

Перечислим, какие последствия можно ожидать, когда появляется перекос:

  1. Отклонение фазного напряжения. В зависимости от распределения нагрузок возможно два варианта:
  • Напряжение выше номинального. В этом случае большинство электрических устройств, оставленных включенными в бытовые розетки, с большой вероятностью выйдут из строя. При срабатывании защиты результат будет менее трагическим.
  • Напряжение падает ниже нормы. Увеличивается нагрузка на электродвигатели, происходит падение мощности электромашин, растут пусковые токи. Наблюдаются сбои в работе электроники, устройства могут отключиться и не включаться пока перекос не будет устранен.
  1. Увеличивается потребление электричества оборудованием.
  2. Нештатная работа электрооборудования приводит к уменьшению эксплуатационного срока.
  3. Снижается ресурс техники.
Читайте также:  Характеристика электрического тока 380 вольт

Не следует забывать, что перекос может создать угрозу для жизни. При превышении номинального напряжения вероятность КЗ в проводке не велика, при условии, что она не ветхая, а кабель подобран правильно. Более опасны в этом случае электроприборы, подключенные к сети. Когда появляется перекос, может произойти КЗ на корпус или возгорания электроприбора.

Защита от перекоса фаз в трехфазной сети

Наиболее простой, но, тем не менее, эффективный способ минимизировать негативные последствия описанного выше отклонения — установить реле контроля фаз. С внешним видом такого устройства и примером его подключения (в данном случае после трехфазного счетчика), можно ознакомиться ниже.

Реле контроля фаз (А) и пример схемы его подключения (В)

Реле контроля фаз (А) и пример схемы его подключения (В)

Данный трехфазный автомат может обладать следующими функциями:

  1. Производить контроль амплитуды электротока. Если параметр выходит за установленные границы, нагрузка отключается от питания. Как правило, диапазон срабатывания прибора можно настраивать в соответствии с особенностями сети. Данная опция имеется у всех приборов данного типа.
  2. Проверка очередности подключения фаз. Если чередование неправильное питание отключается. Данный вид контроля может быть важен для определенного оборудования. Например, при подключении трехфазных асинхронных электромашин от этого зависит, в какую сторону будет происходить вращение вала.
  3. Проверка обрыва на отдельных фазах, при обнаружении такового нагрузка отключается от сети.
  4. Функция отслеживает состояние сети, как только появляется перекос, происходит срабатывание.

Совместно с реле контроля фаз можно использовать трехфазные стабилизаторы напряжения, с их помощью можно несколько улучшить качество электроэнергии. Но данный вариант не отличается эффективностью, поскольку такие приборы сами могут взывать нарушение симметрии, помимо этого на стабилизаторах возникают потери.

Лучший способ симметрировать фазы – использовать для этой цели специальный трансформатор. Этот вариант выравнивания фаз может дать результаты, как при неправильном распределении однофазных нагрузок на автономный 3-х фазный генератор электроэнергии, так и в более серьезных масштабах.

Защита в однофазной сети

В данном случае повлиять на внешние проявления системы электроснабжения не представляется возможным, например, если фазы перегружены, потребители электроэнергии не могут исправить ситуацию. Все, что можно сделать, это обезопасить электрооборудование путем установки реле напряжения и однофазного стабилизатора.

Имеет смысл установить общее стабилизирующее устройство на всю квартиру или дом. В этом случае необходимо высчитать максимальную нагрузку, после этого добавить запас 15-20%.. Это запас на будущее, поскольку со временем количество электрооборудования может увеличиться.

Совсем не обязательно подключать к стабилизатору сети все оборудование, некоторые виды приборов (например, электропечи или бойлеры), могут быть подключены к реле напряжения (через АВ) напрямую. Это позволит сэкономить, поскольку устройства меньшей мощности стоят дешевле.

Источник

Электролаборатория

  • Электролаборатория испытания
  • Услуги электролаборатории
  • Отчёт электролаборатории
  • Протокол электролаборатории
  • Блог

Перекос фаз. Какие нормы на перекос фаз.

Перекос фаз явление в электротехнике встречающееся довольно часто. Практики хорошо знакомы с ним и знают его последствия. А вот причина негативных его проявлений далеко не всем понятна.

perekos-faz-kakie-normyi-na-perekos-faz-1

Кабельная линия, проверка на перекос фаз

Сначала давайте определимся в терминах. Речь идет о разнице напряжений, между фазами в трехфазной сети или фазными и нулевым проводником в той же трехфазной цепи. Под перекосом мы будем понимать различие этих напряжений.

Напомним, что любая трехфазная цепь может быть выполнена с «глухо заземлённой нейтралью» либо с «изолированной нейтралью». Первая имеет три фазных проводника и, так называемый, нулевой провод. Вторая только три фазных проводника. Соответственно, потребители в первой цепи могут быть соединены как в треугольник, так и на звезду. Во второй только в треугольник. В сети 380/220 В с глухо заземлённой нейтралью потребители, в подавляющем большинстве случаев, подключены по схеме «звезда». Это относится как к асинхронным двигателям, так и к «осветительным нагрузкам». О таких случаях мы будем вести речь в дальнейшем. Сделаем одно замечание. Сопротивление питающих линий является конечным, носит омический характер и должно учитываться при расчете трехфазной цепи.

Так называемый перекос фаз, является отклонением от нормальной разницы между мгновенными значениями линейных напряжений, либо результатом изменения фазового угла между линейными напряжениями. Последний случай можно исключить из рассмотрения, так как он встречается крайне редко.

Когда мы определились с терминами можно перейти к рассмотрению вопроса по существу. И тут становиться всё просто. Предположим, что все нагрузки у нас осветительные. Под этим термином понимают активные нагрузки, например в виде ламп накаливания. Ещё, предположим, что к одной из фаз подключено лампочек значительно больше чем к остальным. Токи, протекающие через них, по законам Кирхгофа будут протекать не только через нулевой проводник но, и через других потребителей. В результате падение напряжения на потребителях других фаз неизбежно вырастет. Это и вызывает перекос фаз.

perekos-faz-kakie-normyi-na-perekos-faz-2

Щит электрический, питающий кабель, проверка на перекос фаз

Все это можно объяснить и через напряжения. Большой ток одной из фаз создает небольшое, но вполне реальное падение напряжения в нулевом проводе. Это напряжение сдвинуто на угол 120 о относительно других фаз. Поэтому напряжение, приложенное к их нагрузкам, является суммой фазного напряжения и напряжения на нулевом проводе.

Читайте также:  Приемник в цепи синусоидального тока

Крайним случаем перекоса фаз является однофазное замыкание на «землю». В этом случае токи короткого замыкания будут протекать и через потребителей, питающихся от двух других фаз что, неизбежно, вызовет перенапряжение в них.

Ещё одним из случаев того же порядка является обрыв нулевого провода. При этом также нарушается баланс токов в нагрузках. Напряжения в сети могут изменяться крайне непредсказуемо, в зависимости от величины нагрузки на каждую из фаз. Практики знают, что напряжения в бытовых розетках, в этих условиях могут достигать даже линейных значений. Ещё перекос фаз возникает при обрыве одного из фазных проводников. Такой режим называется неполнофазным.

В любом случае перекос фаз ведёт к экономическим потерям, связанным с протеканием токов в нулевом проводнике. В теоретических основах электротехники (ТОЭ) для таких расчётов вводят понятия токов прямой, обратной и нулевой последовательностей.

Ещё раз. Существенное увеличение тока одной из фаз трехфазной сети, потребители которой соединены в звезду, незамедлительно ведёт за собой увеличение напряжения на нагрузках других фазных проводов. При этом напряжение перегруженной фазы относительно нулевого провода понижается. Чем это чревато? У ламп накаливания значительно сокращается срок службы либо светоотдача, у асинхронных двигателей, подключенных к такой сети, ухудшается КПД. В конце концов, повышенное напряжение может вывести из строя электронные приборы.

Ещё одно негативное явление это появление гармоник высших порядков при питании различных электрических машин от несбалансированной сети. Речь идет о двигателях, трансформаторах и генераторах. Это связанно с процессами, протекающими в их магнитопроводах. Гармоники высших порядков часто вызывают сбои в работе электронного оборудования. Поэтому при проектировании электрических сетей необходимо равномерно распределять нагрузки по фазам. Своды правил по проектированию считают предельным разброс нагрузок в 30% в распределительных щитках, а для вводных распредустройств 15%.

Какие требования предъявляются к перекосу фаз нормативными документами? Основным документом, определяющим качество электроэнергии, является ГОСТ 13109-97. Его требования выражаются в терминах нулевых и обратных последовательностей. Не уверены, что стоит грузить читателя столь сложными материями.

Конечно, выявить перекос фаз не сложно с помощью простейших приборов не прибегая к посторонней помощи. Но провести анализ причин перекоса фаз, выработать конкретные рекомендации по его устранению могут только профессиональные специалисты. Наша электролаборатория выполняет любые электротехнические измерения. Мы прошли государственную аккредитацию и имеем соответствующие документы. Мы с радостью поможем решить ваши проблемы.

Источник

Портал о стройке

Страница 15 из 30

НЕИСПРАВНОСТИ АСИНХРОННЫХ ДВИГАТЕЛЕЙ И СПОСОБЫ ИХ УСТРАНЕНИЯ
Работа асинхронного двигателя при неноминальных условиях
Отклонение напряжения питающей сети от номинального значения. Напряжение сельских электрических сетей колеблется в значительных пределах. Допускается отклонение напряжения у потребителей ±7,5%.
При пониженном напряжении сети уменьшается намагничивающий ток двигателя (ток холостого хода), снижается частота вращения ротора, увеличивается скольжение, растет роторный ток.
При пуске двигателя под нагрузкой резко уменьшаются пусковой и максимальный моменты и двигатель может не развернуться. Величина статорного тока при значительных нагрузках двигателя обыкновенно увеличивается, что ведет к перегреву обмоток статора и ротора. При значительном понижении напряжения двигатель может остановиться, при этом он потребляет очень большой ток.
При повышенном напряжении сети увеличивается намагничивающий ток двигателя (ток холостого хода), что ведет к перегреву активной стали статора; несколько увеличивается частота вращения; уменьшается скольжение; уменьшается роторный ток. Пусковой и максимальный моменты двигателя возрастают.
При значительных повышениях напряжения двигатель на холостом ходу потребляет ток, близкий к номинальному, а под нагрузкой величина статорного тока может быть выше номинального значения. Коэффициент мощности двигателя уменьшается, обмотка статора перегревается за счет теплопередачи от чрезмерно нагретой активной стали и от протекающего по ней тока.
Из сказанного следует, что отклонение напряжения сети от номинального значения чаще всего приводит к перегреву обмотки двигателя, перегрев обмотки в сильной степени сокращает срок службы изоляции. В конечном счете происходит пробой изоляции между обмоткой и корпусом, между фазами статора или между витками.
При отклонениях напряжения необходимо уменьшить нагрузку, чтобы ток статора был номинальным. В некоторых случаях можно увеличить или уменьшить напряжение путем перестановки анцапфного переключателя трансформатора. Иногда приходится увеличивать сечение проводов питающей сети.
Асимметрия напряжения питающей сети. При неравномерной нагрузке фаз сети напряжение становится асимметричным — неодинаковым между отдельными фазами. Асимметрия напряжения приводит к тому, что токи в фазах обмотки статора электродвигателя резко отличаются один от другого. Фаза с большим током может перегреваться выше допустимых пределов даже при небольшой асимметрии напряжения. Кроме того, перегревается активная сталь ротора двигателя. Асимметрия напряжения мало влияет на момент двигателя и на частоту вращения. Асимметрию напряжения можно обнаружить с помощью вольтметра, а также измерением величины тока в отдельных фазах двигателя, например токоизмерительными клещами. При асимметрии напряжения необходимо уменьшить нагрузку на электродвигатели и устранить неравномерную нагрузку фазы.
Обрыв фазы питающей сети. При обрыве фазы сети работающие трехфазные двигатели переходят в однофазный режим.
Если нагрузка двигателя до обрыва фазы была не более 60% номинальной, то двигатель продолжает работать с несколько худшими энергетическими показателями, частота вращения ротора уменьшается незначительно, температура обмоток находится в допустимых пределах. При больших нагрузках обмотка двигателя чрезмерно перегревается, а в отдельных случаях ротор двигателя останавливается и по двум фазам обмотки статора течет большой ток. Двигатель после остановки не может быть запущен даже на холостом ходу, так как в двигателе при однофазном токе получается пульсирующее магнитное поле. Обрыв одной из фаз питающей сети чаще всего бывает вследствие перегорания плавкой вставки, защищающей двигатель. При подозрении на обрыв одной из фаз сети следует двигатель остановить и пустить его вновь на холостом ходу. Если фаза оборвана, то двигатель гудит и не разворачивается.
Отсутствующую фазу можно найти с помощью вольтметра. Для этого питающие провода отключают от двигателя и ставят gод напряжение, вольтметр следует включать между линейными проводами: первым и вторым, вторым и третьим, третьим и первым. Вольтметр покажет напряжение из трех включений только один раз на целых проводах.
При обрыве фазы питающей сети все двигатели останавливают и принимают меры к восстановлению нормального напряжения.

Читайте также:  Электроды lb 52u для какого тока

Источник



Особенности перекоса фаз

Часто перекос фаз возникает на этапе проектирования объекта. Причиной этой ошибки становится некорректное распределение нагрузок. Для устранения риска возникновения данной проблемы рекомендуется несколько раз проверять расчеты для мощностей электрического оборудования.

Также требуется руководствоваться нормативными документами на каждом этапе работы, чтобы устранить ситуации, которые могут привести к авариям. Ознакомившись с материалом, вы сможете узнать, что такое перекос фаз и какие нормы на перекос фаз существуют в соответствии с официальными стандартами.

Официальные нормы и стандарты

В ГОСТ 13109-97 прописаны сведения о ситуации, при которой наблюдается несимметрия напряжений. При таком случае может фиксироваться коэффициент по нулевой последовательности. Вариант нормы значения данного показателя варьируется от 2% до 4%.

Также нормативы в этой сфере вы можете посмотреть в ГОСТ 13109-97. В соответствии с данным документом, нагрузки между трехфазными проводниками в зданиях должны распределяться так, чтобы разница между максимально и минимально загруженными элементами не переходила определенные рамки.

Для панелей ВРУ это значение составляет не более 15%. В распределительных цепях этот показатель равен 30%. С этими нормативами и стандартами стоит ознакомиться тем потребителям, которые не удовлетворены уровнем напряжения тока в электрической сети.

Признаками наличия проблемы могут быть следующие проявления:

  • работа светильников в полнакала;
  • перегорание эл.ламп в осветительных приборах;
  • резкие скачки напряжения;
  • перебои в поставке электроэнергии.

С такими трудностями чаще всего сталкиваются владельцы дачных домов, садовых кооперативов и жители деревень. Для решения проблемы требуется обратиться в лабораторию по исследованию качества эл.энергии. После проведения детальной диагностики сети, специалисты смогут найти метод устранения дефекта.

Метод проверки перекоса фаз

Измерение тока на двух проводниках является самым эффективным и передовым методом определения и проверки для перекоса фаз в распределительных щитках или ВРУ. Для проведения данной процедуры требуется наличие токовых клещей. По современным технологиям нужно применять цифровые приборы, которые обеспечивают высокую точность данных измерения. Такое оборудование отличается предельной компактностью и удобством использования. Оно позволяет проводить замеры даже в стесненных условиях.

Измерения тока необходимо проводить при полной загрузке. Далее требуется сравнить полученные данные с нормативами. Для панелей ВРУ это значение составляет не более 15%. В распределительных цепях показатель равен 30%. При отклонениях от нормы можно утверждать, что присутствует перекос фаз.

Всегда стоит помнить о том, что такие нарушения способны ухудшить работу оборудования и даже вывести из строя некоторые бытовые приборы. Ввиду этого, требуется уделять особое внимание качеству эл.энергии.

Для стабильно нормальной работы сети, стоит соблюдать правило чередования фаз. Особо важно это в случае подключения электродвигателя. Если чередование фаз будет нарушено, тогда возрастет риск выхода из строя оборудования. В некоторых ситуациях механизм двигателя начинает работать в обратную сторону. Для измерения фаз в данном случае применяется специализированный прибор TKF-12, который обеспечивает высокую точность полученных сведений.

Эффективные методы защиты

Для снижения риска выхода из строя оборудования и стабилизации его работы требуется применять специализированные приборы. Чаще всего используется установка для стабилизации напряжения. Однофазные стабилизаторы напряжения подходят для защиты бытовой техники. Для промышленного оборудования, требуется применять трехфазные стабилизаторы.

Однако стоит заметить, что даже такая техника не способна обеспечить максимальный уровень защиты и устранить последствия перекоса фаз. В некоторых ситуациях эти приборы могут провоцировать возникновения ситуации, при которой энергия и питание распределяется неравномерно по сети. Для нормализации показателей на всех элементах требуется применять технологии, которые помогут выровнять значения одновременно на всех фазах цепи.

Как избежать возникновения проблем?

Чтобы максимально избежать негативных последствий, необходимо следовать таким правилам:

  • правильно разрабатывать проект по снабжению объекта электричеством с учетом предполагаемых нагрузок;
  • обязательно применять специальные приборы, которые предназначены для выравнивания нагрузок в автоматическом режиме;
  • изменения способа потребления энергии (требуется в случае, когда ранее каждая из фаз не рассчитывалась на определенный уровень перегрузки;
  • снизить мощность при возникновении критических ситуаций;
  • монтаж специального реле регулировки фаз, которое отключает питание при возникновении критической ситуации, опасной для работоспособности оборудования.

Применяя в комплексе все методы защиты, можно добиться оптимального уровня безопасности и практически полностью исключить риск возникновения перекоса фаз на этапе проектирования и введения в эксплуатацию оборудования.

Источник