Меню

Дроссели для больших токов

Синфазные дроссели TDK-EPCOS

Синфазные дроссели — универсальное классическое средство, позволяющее решить задачи подавления электромагнитных помех (ЭМП) и, соответственно, выполнить требования по электромагнитной совместимости (ЭМС). Эти устройства настолько привычны, что воспринимаются как нечто, не создающее проблем. Но всегда ли синфазный дроссель синфазный? Вот в чем вопрос, но на него есть ответ. И дело здесь в правильном выборе не только дросселя, но и его изготовителя и поставщика.

Когда разработчику радиоэлектронной аппаратуры (РЭА) срочно приходится решать проблемы электромагнитной совместимости и подавления синфазных, а попутно и дифференциальных помех, он буквально хватается за синфазный дроссель. И это правильно. Казалось бы, тут все просто и понятно, про синфазные дроссели и их применение написано много, да и выбор их богатый, в конце концов, можно и самому сделать прибор, намотав, например, на ферритовое кольцо две проволочки. Однако проблемы, как и дьявол, всегда кроются в деталях. Вот на них-то мы и посмотрим.

В общем представлении синфазный дроссель — это связанная индуктивность, в нем на одном сердечнике намотаны как минимум две катушки (бывает, и три, и четыре). Кстати, для получения синфазного дросселя очень важна стратегия намотки (рис. 1), и это разработчикам РЭА хорошо известно. Для ясности и простоты остановимся на дросселе с двумя обмотками.

Рис. 1. Идеальный синфазный дроссель для дифференциальных токов (слева), синфазных токов (в середине) и его условное обозначение в схемах

К омпактное электрическое и электронное оборудование в основном генерирует синфазные помехи. Для того чтобы оно соответствовало требованиям безопасности (не выходя за пределы тока утечки), необходимо использовать дроссели с высоким значением асимметричной эффективной индуктивности. Для этой цели оптимальны дроссели с компенсацией тока с топологией с закрытым сердечником. Проблема насыщения сердечника за счет полезного тока в этих конструкциях решается выбором материала сердечника, но самое главное — намоткой двух катушек с равным числом витков на сердечнике. Катушки связаны таким образом, что магнитный поток, индуцированный верхней катушкой, компенсируется нижней катушкой.

Для подобного идеального дросселя магнитный поток в сердечнике обусловлен тем, что токи дифференциального режима iDM (рис. 1, слева) компенсируют друг друга, что приводит к нулевому сопротивлению (точнее, импедансу) дросселя. Но магнитные потоки Φ1 и Φ2, вызванные синфазными токами iCM (рис. 1, в середине), суммируются, что значительно увеличивает полное сопротивление (импеданс). Для получения такого прекрасного со всех точек зрения эффекта важно правильно выполнить обмотки, поэтому в условном обозначении дросселя данного типа (рис. 1, справа) используется две точки, чтобы указать, как должны быть выполнены обмотки.

Подводя итог, отметим, что синфазный дроссель выглядит как простой проводник для дифференциальных сигналов и как индуктивность для синфазных сигналов. Одно из преимуществ этих видов дросселей заключается в том, что они не будут насыщаться токами дифференциального режима. Для этих связанных индуктивностей коэффициент связи k может быть рассчитан по формуле:

здесь M — коэффициент взаимной индуктивности, а L1, L2 — индуктивности для обеих обмоток.

Значения индуктивностей для синфазного и дифференциального режима могут быть получены по формулам:

LDM = 2×(L-M) и LCM = (L+M)/2 (2)

Учитывая, что индуктивности L1 и L2 равны L и для 100%-ной идеальной связи k = 1, взаимная индуктивность M из формулы (1) получается равной индуктивности L (M = L), а индуктивности дросселя для синфазного и дифференциального режимов, как следует из формул (2), соответственно равны LDM = 0 и LCM = L.

Таким образом, подтверждается, что мы не обнаружим наличие импеданса для сигналов дифференциального режима, но будем иметь некоторое, определяемое индуктивность LCM значение импеданса для сигналов синфазного режима.

На практике взаимная компенсация магнитного потока в дифференциальном режиме не идеальна, этот факт разработчикам РЭА хорошо известен и широко используется. В дифференциальном режиме импеданс не равен нулю, он определяется такой характеристикой, как индуктивность рассеяния, и полезен для фильтрации сигналов дифференциального режима. Однако нельзя забывать и том, что в приложениях с высоким током необходимо убедиться в отсутствии эффекта насыщения сердечника дросселя.

Обратимся к наглядному и поучительному примеру. Столкнулись с крайне неприятной ситуацией, когда устройство, проверенное им на прототипе в лаборатории, провалилось на сертификационных испытаниях. Причем все элементы и компоновка были те же, что и в прототипе. Чтобы проанализировать и понять ситуацию, измерили реакцию синфазных дросселей прототипа (условно названного CHKA) и заявленного на сертификацию изделия (условно названного CHKB) с помощью векторного анализатора цепей Bode 100. Упрощенное измерение синфазного дросселя было выполнено, как показано на рис. 2.

Рис. 2. Упрощенное измерение импедансов для синфазного дросселя

Результаты измерения дросселя, который удовлетворительно работал в приложении (CHKA), представлены на рис. 3.

Рис. 3. Характеристики дросселя CHKA

На рис. 3 можно увидеть, насколько велико различие импедансов синфазного режима по сравнению с дифференциальным. На втором дросселе (CHKB), снятом с изделия, на котором провалились испытания в сертификационной лаборатории, смог заметить очень тонкое отличие — на одной из катушек дросселя отсутствовал один виток (рис. 4).

Рис. 4. Дроссели, используемые в качестве примера

У дросселя CHKA было 14 витков для L1 и L2, а у дросселя CHKB — 14 витков для L1 и 13 витков для L2. Это оказалось весьма существенной разницей. Если одна из катушек отличается от другой, то индуктивность для синфазного сигнала будет уменьшена (соответственно, плохая фильтрация синфазной ЭМП), а дифференциальная индуктивность увеличена. Когда речь идет о линиях передачи, это может привести к проблемам с целостностью сигналов (англ. Signal Integrity — наличие достаточных для безошибочной передачи качественных характеристик электрического сигнала), или если речь идет о цепях питания, то в приложениях с большим током сердечник, вероятно, может быть насыщен даже номинальным рабочим током.

Данный тип дросселей наматывается вручную, так что человеческие ошибки и/или некачественные проверки конечного продукта могут создать проблему, которую трудно будет сразу обнаружить и которая способна проявиться совершенно неожиданно.

Из приведенного примера ясно видно, насколько важна идеальная симметрия для двух катушек в дросселе. Даже в случае, когда в одной из катушек отсутствует лишь один виток, импеданс синфазного дросселя для синфазного режима резко уменьшается. Если говорить в целом, то несимметричность может быть вызвана не только пропуском полного витка, как в приведенном примере, но и просто нарушениями геометрии намотки. К сожалению, нередко этого нарушения шага намотки (не забываем, что в формулу для расчета индуктивности входит величина, обратная длине обмотки, так что при равных условиях неплотно намотанная катушка будет иметь меньшую индуктивность) или пропуска части витка при терминации просто не замечают. Вот почему для ответственных применений, особенно это касается высокочастотных приложений, не рекомендуется их самостоятельное, часто полукустарное, изготовление.

Результатом нарушения неидеальности исполнения синфазного дросселя будет низкая эффективность фильтрации синфазных сигналов ЭМП в области высоких частот — для чего, собственно, эти дроссели и используются. Таким же образом индуктивность в дифференциальном режиме увеличивается с типичным эффектом насыщения сердечника или нарушениями целостности сигнала из-за снижения частоты среза фильтра, образованного индуктивностью рассеяния и, в зависимости от включения дросселя, входной или выходной емкостью.

Отсюда следует вывод: будьте осторожны с недорогими и, как правило, не гарантирующими должного качества компонентами. Это касается не только идеальности намотки, но и материалов, из которых они изготовлены, поскольку последние влияют на точность соблюдения индуктивности и ток насыщения.

В качестве выхода из ситуации можно предложить использовать для критических приложений синфазные дроссели от поставщиков, имеющих надежную репутацию на рынке. (В противном случае, как известно, скупой заплатит дважды.) Одним из таких поставщиков является TDK Corporation — японская компания, занимающаяся производством электронных компонентов и носителей информации.Позиции компании по выпуску элементов из ферритовых материалов значительно усилились в 2008 году после приобретения 90% акций еще одной известной компании EPCOS AG (Electronic Parts and Components) — европейского лидера по производству пассивных электронных компонентов. Объединение таких брендов и их технологий позволило вывести на рынок изделия в качестве, надежности и технических характеристиках которых можно не сомневаться, в том числе синфазных дросселей, специально разработанных для подавления ЭМП и решения вопросов ЭМС.

Читайте также:  Присоединение потребителей звездой фазный ток будет равен

Как уже было сказано, синфазные дроссели помогают решить две важные проблемы по ЭМС. Первая — очистить цепи питания от ЭМП, то есть уменьшить их излучение цепями питания и линиями их подключения, а вторая — защитить цепи или линии передачи сигнала от воздействия ЭМП. Эти проблемы очень различаются, соответственно, для их решения требуются разные типы синфазных дросселей. Компания TDK и ее структурное подразделение EPCOS предлагают универсальные решения для обеих проблем. В портфелях предложений компании имеются синфазные дроссели, как говорится, на любой вкус и цвет — от традиционных двух- и трех- до четырехобмоточных проволочных, рассчитанных на средние и большие токи, а также миниатюрные многослойные и тонкопленочные, предназначенные для сигнальных цепей, и сборки из нескольких дросселей, выполненные в одном корпусе.

Примеры конструктивного исполнения синфазных дросселей компании EPCOS для линий питания

Источник

Дроссели в электрике: что это и где используются?

Чтобы зажечь лампу, натриевую или люминесцентную, необходимо выровнять ток. При включении в сеть лампы, для выполнения этой функции используется дроссель. Он является в данном случае пускорегулирующей аппаратурой. Это устройство необходимо чтобы лампа загорелась. Без данного элемента лампа не может быть запущена. Лампа в обычном режиме может разогреваться на протяжении пяти минут, а иногда и больше. Пусковой ток, которые выдает дроссель может быть значительно больше рабочего напряжения.

Вообще есть два типа дросселей – с одной и двумя обмотками. Однообмоточный также называется ДНаТ. В статье будут рассмотрены все аспекты работы дросселей, как они действуют и какие функции выполняет. В заключении читатель найдет интересный материал на данную тему и видеоролик, который поможет детальнее разобраться в работе дросселей.

Дроссель

Дроссель ДНаТ разновидности и способы подключения

Для того, чтобы обеспечить зажигание и выравнивание тока натриевых ламп, как высокого, так и низкого давления, при включении осветительных приборов в сеть, применяется дроссель днат, к которым относятся пускорегулирующая аппаратура и балласты.Это основные устройства, без которых применение натриевых ламп является не то, чтобы нецелесообразным, а попросту бессмысленным. Помимо пускорегулирующего аппарата, необходимо приобрести также импульсное зажигающее устройство, сокращенно ИЗУ, которое позволяет разогреть лампу, при этом используется импульс, который позволяет получить разряд в газовой смеси.

В настоящее время двухобмоточные дроссели считаются морально устаревшими, поэтому применяются достаточно редко. Пускорегулирующий аппарат можно приобрети как отечественного производства, так и зарубежного, данное утверждение касается и импульсного зажигающего устройства. Главное условие, заключается в том, что мощность дросселя и ИЗУ должна соответствовать мощности натриевой лампы.

Дроссель для люминесцентной лампы

Отметим тот факт, что импульсное зажигающее устройство (ИЗУ) может быть двух видов. К первому виду относятся ИЗУ двухпроводные, ко второму виду относятся ИЗУ с тремя проводами. Соответственно, трех проводные устройства надежнее, но при этом цена на них дороже, поэтому вопрос упирается в экономическую целесообразность приобретения изделия. Следующим термином, который относится к такому понятию, как дроссель днат, является балласт. Балластом принято называть пускорегулирующий аппарат и импульсное запускающее устройство, которые имеют металлический корпус.

Существуют и открытые пра. Вопрос выбора открытого или закрытого устройства, зависит от предпочтений отдельно взятого электрика. К достоинства пра в металлическом корпусе отнесем более низкую рабочую температуру, гарантии производителя относительно сборки изделия, и более простую схему монтажа в осветительных приборах. Остановимся на схеме подключения днат. Итак, основное условие, это соответствие мощности дросселя, мощности лампы. Например, если у вас дроссель днат 600, то и натриевая лампа должна быть 600. Правило простое, но если его не соблюдать, то период эксплуатации осветительного прибора значительно снизится, и светоотдача упадет до критической отметки.

Дроссели в электрике: что это и где используются?

Причем, для соединений необходимо применять медный провод, моножильный или многожильный, сечением 0,75х1,5, хотя также вопрос на любителя, можно взять провод и большего сечения, так сказать, с запасом. Уделите внимание вопросу приобретения сетевого шнура, он также должен выдерживать большие нагрузки, сечение должно быть порядка 1,5 – 2,5 мм, даже если дроссель для днат 150. Примерные параметры дросселей приведены в таблице ниже.

Таблица свойств дроселля

Следующий момент, на который обращаем внимание, это необходимость установки предохранителя. Многие будут утверждать, что это лишняя трата денег, но это высказывание не соответствует истине. Предохранитель, как верный страж, спасет при пробое балласта, когда возможны различные неприятности, которые могут закончиться либо взрывом лампы, пожаром или банальным выбиванием пробок, если у вас не прикручены жучки. Автомат лучше всего приобретать двухполюсной, так более удобно, чтобы не заморачиваться, как необходимо вставить вилку в розетку.

Причем к выбору автоматов необходимо подойти со всей степенью серьезности. Как, впрочем, и к покупке других деталей, таких как дроссель днат 250, пускорегулирующая аппаратура или импульсное зажигающее устройство. Поэтому, необходимо покупать комплектующие исключительно в торговых точках, которые не занимаются продажей бракованного неликвида.

При этом лучше переплатить и купить нормальный автомат или дроссель, чем недоплатить и купить ПРА для ДНаТ произведенное китайской промышленностью. Чтобы потом не получилось, как в русской пословице: скупой платит дважды. Схемы подключения всех обозначенных в статье устройств, в каждом конкретном случае разные, поэтому необходимо воспользоваться услугами профессионального электрика, который выполнит работу качественно.

Дроссель на схеме

Потери в обмотках

Существуют два принципиально разных вида потерь в дросселях: потери в сердечнике и потери в обмотках. Первые обусловлены вихревыми токами внутри самого сердечника и магнитными свойствами материала — потерями на перемагничивание, отображаемыми в виде петли гистерезиса. Причина потерь в обмотках — это сопротивление самих проводов, обычно медных.

Дроссели, используемые в импульсных силовых приборах, подвержены воздействию ВЧ-пульсаций тока, что может привести к существенному росту эффективного сопротивления обмотки и связанных с ним потерь в медных проводниках. Сопротивление обмотки силовых дросселей включает в себя две составляющие: сопротивление постоянному и переменному току, возникающее в результате действия скин-эффекта и эффекта близости.

Изменение тока в проводе индуцирует магнитный поток, который, в свою очередь, приводит к снижению тока в центральной части провода до очень малых величин. Это ведет к уменьшению эффективного поперечного сечения проводника и увеличению его сопротивления с ростом частоты. Поэтому чем выше частота и ток, тем больше потери мощности. На рабочих частотах той цепи, в которую включен дроссель, сопротивление переменному току может становиться очень большим, часто намного превышающим сопротивление по постоянному току, что ведет к существенному росту потерь в медных проводниках.

Кроме того, в силовых дросселях, оснащенных сердечниками с зазором, магнитное поле в зоне воздушного промежутка создает сильный локальный эффект близости, способный значительно увеличить сопротивление медных проводников по переменному току, а, значит, привести к росту соответствующих потерь и даже выходу дросселя из строя. Все описанные явления влияют на величину потерь мощности в любом электромагнитном устройстве. Взаимосвязь этих явлений значительно усложняет процесс разработки дросселей. Например, один из распространенных способов уменьшения сопротивления по переменному току — применение литцендрата. Однако при этом значительно снижается поперечное сечение проводника, что ведет к резкому росту сопротивления постоянному току.

Различные лампы

Рассмотрим другой пример. Для снижения потерь в обмотках при работе в режимах высоких постоянных токов часто применяются дроссели с обмотками из фольги, позволяющие эффективно использовать пространство внутри сердечника. Однако появление даже очень небольшого переменного тока может привести к возникновению в таких обмотках существенных потерь. Все это неприемлемо для большинства современных силовых систем. Многие преобразователи постоянного тока требуют использования дросселей, способных работать в режиме пульсирующих токов с большой постоянной составляющей.

Читайте также:  Для чего применяют генераторы постоянного тока

Даже при условии того, что переменная составляющая тока будет всегда намного меньше постоянной составляющей, сопротивление переменному току может стать на порядок больше сопротивления постоянному току. Проблема становится все более острой по мере того, как в современных установках повышается плотность тока и рабочая частота. К счастью, уже найдены способы снижения потерь по переменному току в медных проводниках.

Дроссели в электрике: что это и где используются?

Однако порошковые сердечники, как правило, характеризуются гораздо большими потерями на перемагничивание, чем ферритовые. Поэтому в силовых установках с высоким уровнем пульсаций тока иногда все же предпочитают использовать сердечники с зазором — из-за меньших потерь в них. Или же применяют порошковые сердечники из материала со сравнительно высокой магнитной проницаемостью и зазором, что позволяет использовать преимущества и того, и другого подхода. Но в этих случаях приходится решать проблемы, связанные с краевыми эффектами в зазорах, а также с потерями в медных проводниках, которые могут быть весьма значительными.

Дроссели разной мощности

Обмотки из литцендрата

Другая работа, проведенная West Coast Magnetics совместно с Thayer School of Engineering, позволила найти способы решения ряда проблем, связанных с применением обмоток из литцендрата в силовых дросселях с сердечниками с зазором. Дело в том, что поле в зоне зазора бывает довольно сильным, что может привести к возникновению локальных потерь в части обмотки, расположенной близко к нему. Было показано, что для заданной геометрии сердечника и каркаса существует оптимальное соотношение параметров обмотки из литцендрата и ее расположения внутри каркаса, позволяющее минимизировать потери в обмотке.

  • ширина и высота окна внутри сердечника;
  • ширина и высота окна каркаса дросселя;
  • амплитуда и частота пульсаций тока;
  • длина зазора;
  • коэффициент заполнения каркаса;
  • диаметр жил литцендрата;
  • длина витка;
  • количество витков.

Используя эти данные, программа рассчитывает напряженность поля внутри каркаса, а также идеальное расположение в нем обмотки. Кроме того, программа определяет суммарные потери в обмотке и выбирает количество жил, требуемое для заполнения доступного внутреннего пространства. Для примера рассмотрим дроссель индуктивностью 10,6 мкГн, работающий на частоте 250 кГц со среднеквадратичным значением пульсаций тока 4 А.

Дроссели в электрике: что это и где используются?

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер. Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

Ближайший по номиналу в большую сторону – резистор на 0.25 Вт. Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно мощность резисторов не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими. Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока. Недостаток – выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Установка дросселя

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации. Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления. Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление).

Пример использования индуктивного сопротивление – это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников. А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется “бестрансфоматорный блок питания с балластным (гасящим) конденсатором”.

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны – нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Три дросселя

Заключение

Более подробно о том, что такое дроссель и зачем он нужен, можно узнать прочитав статью дроссели. Если у вас остались вопросы, можно задать их в комментариях на сайте. Также в нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессионалов.

Источник

Дроссели
высокой частоты

Чем отличается дроссель от катушки индуктивности? Да практически ничем! Однако он имеет определенные особенности, иначе для такого элемента не придумали бы специального названия. Это название произошло от немецкого слова die drossel, что означает – «заслонка».

Высокочастотные дроссели

Основное предназначение дросселя – создать высокое сопротивление переменному току («заслонить» его) и пропустить без потерь постоянный ток. Сопротивление катушки определяется по формуле:

XL = 2πƒL

Из формулы видно, что у дросселя должна быть максимально возможная индуктивность, чем она выше, тем лучше он «заслоняет» переменный ток. Однако на высоких частотах имеются свои особенности. Многие радиолюбители в своих конструкциях в качестве дросселей применяют многослойные катушки с большой индуктивностью, по принципу – «кашу маслом не испортишь». Однако в таком случае сильно возрастают паразитные емкости. Эти емкости в сочетании с высокой индуктивностью дросселя превращают его в целую цепочку колебательных контуров с резонансами частенько попадающими в рабочий диапазон или даже ниже его, тогда дроссель вообще имеет емкостное сопротивление!
Часто эти паразитные колебательные контуры, взаимодействуя с активными элементами устройства, приводят к самовозбуждению и вообще нарушают его работу.
Вот как выглядит график реактивного сопротивления дросселя в зависимости от частоты график полного комплексного сопротивления дросселя в зависимости от частотыЧем выше частота, тем сильнее проявляются эти нехорошие эффекты, следовательно с ростом частоты индуктивность дросселя должна снижаться. На практике эту индуктивность выбирают из расчета, чтобы его индуктивное сопротивление на порядок превышало сопротивление элементов параллельно которым он подключен по высокой частоте. Есть еще один критерий – общая длина провода, которым намотан дроссель не должна превышать четверти длины волны самой высокой частоты рабочего диапазона (точка f на рисунке).

Магнитные свойства сердечника ухудшаются с ростом частоты. В отличие от катушки, это свойство оказывается полезным для дросселя. Дроссели на сердечнике из низкочастотного феррита с μ=400..600 имеют более широкий частотный диапазон. Ранее применялся способ расширить частотный диапазон дросселя с одним заземленным концом — прогрессивная намотка. Однако как показано в статье о расчете собственной паразитной емкости катушки — этот метод неэффективен, по крайней мере для однослойных катушек.

Анодный дроссельДроссели работающие в высокоомных цепях, например анодный дроссель выходного каскада передатчика, часто работают на частотах намного выше собственного резонанса и заслуживают отдельного внимания. Рекомендую очень хорошую статью на тему анодного дросселя.

Силовой дроссельДроссели работающие на низких частотах имеют свои особенности. Обычно это силовые дроссели и их конструктивный расчет зависит от силы протекающего через них тока.

Читайте также:  Почему ток движется от плюса

Источник



Дроссели

Назначение и конструкция дросселей

Что такое дроссель?

Электрический дроссель — устройство, представляющее собой катушку индуктивности и предназначенное для ограничения переменной составляющей электрического тока. Другими словами, если ток в электрической цепи содержит постоянную и переменную составляющие то дроссель, последовательно включенный в эту электрическую цепь, за счёт своей индуктивности и большого сопротивления для переменного тока, значительно его снижает, а на постоянную составляющую тока, влияет минимально, за счёт низкого сопротивления постоянному току.

Типовая схема включения низкочастотного дросселя в фильтр анодного питания

Рис. 1 Типовая схема включения низкочастотного дросселя в фильтр анодного питания

Дроссели позволяют запасать электрическую энергию в магнитном поле. Типичное их применение — сглаживающие фильтры и различные селективные цепи. Их электрические характеристики определяются конструкцией, свойствами материала магнитопровода, его конфигурацией и числом витков катушки.
При выборе дросселя следует учитывать следующие характеристики:

  • требуемое значение индуктивности (Гн, мГн, мкГн, нГн);
  • максимальный ток катушки;
  • допуск (величину отклонения от исходного значения) индуктивности;
  • температурный коэффициент индуктивности (ТКИ);
  • активное сопротивление провода катушки дросселя;
  • добротность дросселя, которая определяется на рабочей частоте как отношение индуктивного и активного сопротивлений;
  • частотный диапазон катушки.

В зависимости от диапазона частот технически различаются высокочастотные и низкочастотные дроссели

Высокочастотные дроссели подразделяются на два типа:

  • с постоянным значением индуктивности;
  • с переменным значением индуктивности, за счет подстраиваемого ферромагнитного сердечника.

Первый тип применяется, как правило, во входных цепях телефонных аппаратов, в сглаживающих фильтрах, в цепях питания ВЧ аппаратуры. Второй тип катушек используется в резонансных цепях – ВЧ, трактах приемных и передающих устройств.

В ламповых усилителях звуковой частоты высокочастотные дроссели, применяются крайне редко. Как правило их использование может быть предопределено схемотехникой выходных каскадов, построенных на высокочастотных пентодах большой мощности, предрасположенных к самовозбуждению на радиочастотах.

Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек. Конструкции дросселей высокой частоты показаны на рис. 2. Для дросселей длинных (а, б) и средних (б, в) волн применяется секционированная многослойная намотка. Дроссели для коротких (г) волн и для метровых (д) волн обычно имеют однослойную намотку — сплошную или с принудительным шагом. В качестве каркаса часто используются керамические стержни от сопротивлений ВС-0,5 и ВС-1,0.

Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек

Рис. 2 Конструктивно дроссели высокой частоты выполняются в виде однослойных или многослойных катушек

Высокочастотный дроссель можно изготовить самостоятельно, намотав необходимое количество витков, для получения нужной индуктивности на керамический или фторопластовый сердечник. Рассчитать необходимое количество витков можно по формулам, приведенным в разделе Индуктивности. Катушки с малой индуктивностью.

Лучше использовать, выпускаемые промышленностью ВЧ дроссели. Они имеют понятную яркую цветовую маркировку и отличаются высокой добротностью.

Цветовая маркировка высокочастотных дросселей

Рис. 2 Цветовая маркировка высокочастотных дросселей

Низкочастотные дроссели — предназначены для подавления низкочастотной составляющей переменного тока питающей сети и его гармоник. На рисунке 3, представлен низкочастотный дроссель, индуктивностью 3 Гн при токе подмагничивания 120 ma.

Рис. 3 Низкочастотный дроссель промышленного производства

Дроссели лучше, и проще всего использовать заводские, предпочтительнее от старых ламповых телевизоров Темп-6, Темп-6М, Темп-7, Рубин-102, Авангард, Беларусь, или других аналогичных по характеристикам старых телевизоров. Но если стоит задача изготовить ламповый усилитель высокого качества и надёжности своими руками, то дроссель придётся рассчитать, по приведенной ниже методике, и изготовить его самостоятельно. Принципиально новым подходом в современной ламповой схемотехнике, может оказаться требование обязательной настройки дросселей фильтра питания в резонанс на частоту 100 Гц. Это необходимо для повышения эффективности фильтрации выпрямленного напряжения.

Расчет низкочастотного дросселя для анодного источника питания

Дроссель — это важный элемент блока питания лампового усилителя. Совместно с электролитическими конденсаторами, он входит в состав П – образного низкочастотного фильтра и становится незаменимым элементом в цепи анодного питания усилителя класса Hi-End. В зависимости от мощностных характеристик усилителя и его качественных показателей, размеры дросселя могут сильно варьировать и доходить до половины размеров силового трансформатора.

Некоторые параметры, встречающиеся в расчетных формулах:
F — частота, Гц;
Sc — площадь сечения сердечника, кв. см;
Кс — коэффициент заполнения сердечника сталью;
Sok — площадь сечения окна, кв. см;
Кок — коэффициент заполнения окна медью;
Вт — максимальная индукция в сердечнике, Тл;
J — плотность тока в проводах, А/кв. мм.
I — постоянный ток в проводе обмотки дросселя, А.

Главный параметр дросселя — его постоянная времени, отношение индуктивности к сопротивлению обмотки L/R. Чем выше требуется эта величина, тем больше должны быть габариты магнитопровода, чтобы провод нужного диаметра и длины поместился в окне сердечника.

Индуктивность дросселя рассчитывается по уже известной формуле:

Индуктивность дросселя

При неизменной степени постоянного подмагничивания индук­тивность получается максимальной при определенной длине немаг­нитного зазора lz. От величины этого зазора зависит эквивалентная магнитная проницаемость сердечника:

От величины немагнитного зазора зависит эквивалентная магнитная проницаемость сердечника

В присутствии постоянного подмагничивания lz уже не является независимой переменной. Ключевой величиной в расчете дросселей и трансформаторов является степень подмагничивания или количество погонных ампервитков (aw0).

Количество погонных ампер - витков

Формула связи напряженности магнитного поля с инженерной величиной aw0, приведена ниже:

Формула связи напряженности магнитного поля с инженерной величиной aw0

Предлагаемый алгоритм расчета основан на экспериментальном графике зависимости магнитной проницаемости от aw0 рисунок 4.

Экспериментальный график зависимости начальной магнитной проницаемости от степени подмагничивания

Рис. 4 Экспериментальный график зависимости начальной магнитной проницаемости от aw0

Эти графики соответствуют массовым маркам сталей. Высококачественная сталь имеет в несколько раз большую магнитную проницаемость, однако в большинстве случаев рассчитывать на это не приходится. На графике показана зависимость начальной (т. е. в Отсутствие переменного магнитного поля) магнитной проницаемости от напряженности магнитного поля, выраженного в ампервитках на сантиметр. В системе СИ напряженность измеряется в амперах на метр. Следует помнить, что точки на графике соответствуют разным зазорам. Более высокие напряженности требуют большего зазора. В начале расчета величины aw0 и, соответственно, μ z не известны. Количество витков в обмотках может быть получено методом последовательных приближений по формуле:

Количество витков в обмотке дросселя

Для этого в формулу подставляются параметры трансформатора, требуемая индуктивность и пробная величина μ проб, по полученному количеству витков вычисляется степень подмагничивания aw0. По графику μ (aw0) находится μ z, вместо графиков при машинных расчетах можно использовать аппроксимирующие уравнения:

Для горячекатанной стали

Аппроксимирующее уравнение для определения действующей магнитной проницаемости для горячекатанной стали

Для холоднокатанной стали

Аппроксимирующее уравнение для определения действующей магнитной проницаемости для холоднокатанной стали

Пробная μ проб корректируется и снова просчитывается количество витков. Эта процедура проделывается несколько раз до тех пор, пока изменение количества витков от просчета к просчету не будет незначительным (несколько процентов). В большинстве случаев достаточно двух-трех проходов. Если новое значение больше старой μ проб, то μ проб следует увеличить так, чтобы она стала немного больше μ z и наоборот. В конце расчета необходимо убедиться, что получившиеся L, N удовлетворяют требованию конструктивной реализуемости. Для этого вычисляется максимальное сечение провода S, которое можно разместить в окне:

Максимальное сечение медного провода, которое можно разместить в окне стального магнитопровода

Плотность тока в медном проводнике обмотки дросселя, рассчитывается по формуле:

Плотность тока в медном проводнике обмотки дросселя

Если плотность тока J не превышает обычных 1,5—2 А/кв. мм, то расчет можно считать оконченным, так как не требуется точного соответствия сопротивления оболочки заданному. Количество витков не должно превышать 3500—4000. При необходимости следует выбрать другой типоразмер магнитопровода и повторить расчет. При сборке намотанного дросселя необходимо уложить в зазор немагнитную прокладку нужной толщины. Точное соблюдение и подбор величины зазора необходимо только для выходных трансформаторов. Для дросселей вполне достаточно точности эмпирической формулы, приведенной ниже. Величина зазора рассчитывается в мм:

Эмпирическоая формула для приблизительного рассчета толщины немагнитного зазора в миллиметрах

Намотка катушек дросселей не имеет особенностей. В большинстве случаев (для дросселей блоков питания) нет необходимости даже в межслоевой изоляции. Обмотка обычно находится под высоким потенциалом, поэтому она должна быть хорошо изолирована от сердечника. Пропитка дросселей, как правило, необходима, чтобы избежать гудения. Результаты расчета дросселя на очень распространенном и дешевом сердечнике от выходного трансформатора лампового телевизора Ш 16×25 с размером окна 16 х 40 мм, приведены в таблице №1:

Источник