Меню

Электрическая цепь однофазного переменного тока с активным сопротивлением

Цепи однофазного переменного тока (ОПТ)

date image2015-04-01
views image11704

facebook icon vkontakte icon twitter icon odnoklasniki icon

Элементы цепи ОПТ и их свойства

Однофазным переменным током называют ток, меняющийся по закону синуса / косинуса:

Здесь Im — амплитуда колебаний тока; ω=2πν — циклическая частота колебаний; φI — начальная фаза колебаний.

Источниками переменного тока являются генераторы переменного тока, чье напряжение меняется по аналогичному закону. Цепи переменного тока формируются так же, как и цепи постоянного тока, т.е содержат источник электрической энергии и потребителей этой энергии. Эти цепи могут быть простыми и сложными , разветвленными и неразветвленными, с одним или несколькими источниками напряжения. Для токов и напряжений в таких цепях также справедливы первый и второй законы Кирхгофа, законы Ома, Джоуля-Ленца и т.д.

Однако физические процессы в таких цепях намного сложнее и разнообразнее, чем в цепях постоянного тока. Здесь уместна их аналогия с фото и видео: хотя любое видео, технологически, сводится к большой совокупности фотографий, его информационные возможности несопоставимо богаче информационных возможностей фотографий.

Соответственно, математическое описание переменного тока требует более сложного математического аппарата и графического инструментария.

Основными элементами цепи переменного тока являются:

1) источники переменного напряжения, E (U)

4) катушки (индуктивности), L

Первые два типа элементов присутствуют и в цепях постоянного тока. Однако два последних в них не используются : 1) конденсаторы создают разрывы в цепи и не пропускают постоянный ток; 2) катушки пропускают постоянный ток, но обладают в нем нулевым сопротивлением , и, следовательно, не оказывают на распределение токов и напряжений никакого влияния.

Если конденсатор включить в цепь с переменным напряжением, то амперметр зарегистрирует наличие тока. Это значит, что он пропускает переменный ток. Как такое возможно? Причина заключается в том , что разрыв, создаваемый конденсатором в цепи, не является препятствием для электрического поля, через которое заряды на одной пластине конденсатора влияют на заряды другой. При постоянном токе это взаимодействие прекращает ток — заряды, набежавшие на пластину ближайшую к источнику тока, останавливают набегающие от источника заряды путем их отталкивания.

В переменном токе это взаимодействие, наоборот, поддерживает ток, приводя в движение заряды по другую сторону разрыва. Что касается взаимодействия набежавших и набегающих зарядов на пластине, обращенной к источнику тока, то оно вызывает не прекращение тока, а лишь его торможение. В результате конденсатор оказывает сопротивление току и создает на себе падение напряжения.

Если , аналогично, включить в цепь переменного тока катушку, то вольтметр зарегистрирует на ней падение напряжения, что является признаком появления у ней сопротивления. Откуда оно взялось — ведь в постоянном токе катушка обладает нулевым сопротивлением?

Ответ кроется в явлении электромагнитной индукции (ЭМИ). При изменении тока в катушке, изменяется ее магнитное поле, а согласно закону ЭМИ изменение последнего порождает вихревое электрическое поле. Согласно правилу Ленца вихревое поле ЭМИ всегда противофазно полю создающему ток и , следовательно, оказывает ему сопротивление.

Появление в цепях переменного тока катушек и конденсаторов кардинально меняет их (цепей) электрические свойства.

Это проявляется в:

1) расфазировке (рассогласовании) колебаний тока и напряжения;

2) реактивном характере потребления энергии

Первое свойство означает несовпадение динамики изменения тока и напряжения как на конденсаторе, так и на катушке, а именно: когда напряжение по модулю максимально, ток равен нулю, и наоборот. Второе свойство означает принципиально новую форму потребления энергии — и катушка и конденсатор, забирая энергию у источника тока, возвращают ее затем ему обратно.

Реактивностью, реакцией, как известно, называют свойство объекта формировать отклик (реакцию) на внешнее воздействие. Например реактивное движение возникает как результат ответного влияния отбрасываемого объекта на отбрасывающий объект ( ракета, морские моллюски и т.д.). Реактивный характер потребления энергии выражается в последующем отбрасывании от себя полученной энергии.

Расфазировка колебаний тока и напряжения на конденсаторе определяется противоположным характером влияния накопленного им заряда на ток и напряжение:

1) чем больше заряда оказывается на конденсаторе, тем меньше к нему ток, так как набежавшие заряды отталкивают набегающие;

2) чем больше заряда на конденсаторе, тем силнее его электрическое поле, — и тем больше напряжение

Расфазировка колебаний тока и напряжения на катушке определяется противоречивым характером влияния тока на величину вихревого поля ЭМИ:

а) наибольшую ЭДС ЭМИ ток создает при нулевом значении ( в этот момент он, — а следовательно и магнитное поле, — изменяется быстрее всего);

б) наименьшую ЭДС ЭМИ (ноль) ток создает при максимальном значении, когда его рост прекращается.

Наиболее наглядно точный характер расфазировки колебаний тока и напряжения можно показать на временных диаграммах (рис.6, рис.7) Сплошными линиями на графиках показаны синусоиды колебания напряжения, пунктирными — тока.

Рисунок 6 показывает как соотносятся колебания этих параметров на катушке, а рисунок 7 — на конденсаторе. Сдвиг в фазах в обоих случаях одинаков и составляет 90 0 , однако при одной и той же фазе напряжения , фазы токов в катушке и конденсаторе противоположны. Говорят, что напряжение в катушке опережает ток на 90 0 , а на конденсаторе — отстает . Это следует из того, что ток на катушке идет в область положительных значений, с некоторым запаздыванием по отношению к напряжению, а у конденсатора — с опережением.

Физически это объяснимо:

1) в катушке при большом внешнем напряжениивозникает противоположная по знаку эдс ЭМИ — в результате ток в ней подавляется; он начинает нарастать лишь по мере ее ослабевания;

2) в конденсаторе, наоборот — даже при нулевом значении напряжения ток уже достигает максимальной величины, что есстественно: отсутствие напряжения означает отсутствие на конденсаторе зарядов и, как следствие, – отсутствие какого-либо сопротивления набегающим зарядам.

Наконец на рисунке 8 показаны ко-лебания тока и напряжения на резисторе. Здесь никакой расфазировки не наблюдается, так как падение напряжения создается самим током (а не зарядами или ЭДС, как у конденсатора или катушки).

Читайте также:  Как может протекать ток круговой

Векторные диаграммы цепей ОПТ

Рассогласование колебаний тока и напряжения на реактивных элементах ОПТ (т.е. катушке и конденсаторе) резко усложняет их математическое и даже наглядное описание. Действительно, если электрическая цепь состоит из большого количества таких разнородных элементов, то, например, при втекании в один провод пяти расфазированных токов, суммарный ток будет представлять «кашу» из синусоид и определение суммарного тока может оказаться весьма сложной задачей ( ситуация оказывается похожей на описание поведения поверхности воды под дождем).

Для решения этой проблемы используется метод векторных диаграмм (ВД). На них колебания каждого электрического параметра ассоциируют с вращающимся вектором ( например, вращающийся на нити шарик создает на стене, — при его освещении, — колеблющуюся тень). Если в один провод втекает несколько токов, то на ВД для такого провода рисуют соответствующее количество векторов. Так как все токи колеблются , то соответствующие им вектора на ВД должны находиться в совместном вращении. Однако важнейшей особенностью колебаний любых электрических параметров в цепях ОПТ является одинаковость их периодов.

На ВД это выражается в одинаковой скорости вращения всех векторов. Последнее означает неподвижность этих вектров относительно друг друга, а следовательно непринципиальность самого факта вращения. Это позволяет изобразить все колеблющиеся электрические параметры в виде неподвижных векторов.

Наличие вращения, тем не менее, учитывают через:

1) увязывание угла, под которым рисуется вектор на графике, с циклической частотой и фазой колебания всех электрических параметров φ = ω?t + φ =2πν?t + φ ;

2) выбором положительного отсчета углов и направления вращения векторов ( теперь уже «воображаемого» ) против часовой стрелки.

Если требуется учесть колебания всех электрических параметров цепи, то независимо от того на каких участках полной цепи они появляются, все их можно отобразить на одно й диаграмме, поскольку принципиальное значение имеет лишь временная расфазировка

Пространственная расфазировка в цепях ОПТ отсутствует из-за огромной скорости распрос-транения электромагнитных взаимодействий, т.е. в любой точке цепи в заданны й момент времени все значения рассматриваемого параме-тра имеют одну и туже фазу колебания.

Предположим, что втекающие в один провод несколько токовмы изобразили в виде нескольких векторов а, b, c (рис.9) . Каким образом можно найти полный ток ? Ответ на этот вопрос теперь уже не представляет сложности — для этого используем правило векторного сложения, которое имеет несколько вариантов применения:

1) в виде известного правила «параллелограма»;

2) в виде правила последовательного соединения складываемых векторов друг за другом (начало последующего вектора соединяем с концом предыдущего — итоговый вектор соединяет начало самого первого вектора с концом самого последнего (рис.9).

Если все сказанное применить теперь к векторному способу отображения колебаний тока и напряжения на катушке, конденсаторе и резисторе, то получим ВД на рис.10, рис.11, рис.12. (длинный вектор соответствует напряжению, короткий — току). На рис. 10 видно, что в катушке значениям тока и напряжения, отмеченным черными кружками на временнóй диаграмме, соответствует положения векторов на левой круговой диаграмме; правая круговая диаграмма иллюстрирует точную ориентацию и угол между векторами напряжения и тока для катушки. Аналогичное соответствие между временными значениям тока и напряжения, и положениями векторов на векторных диаграммах, иллюстрируют графики для конденсатора (рис.11) и резистора (рис.12)

Законы Ома для элементов R-L-C цепей ОПТ

Математический анализ зависимости тока и напряжения на различных эле-ментах переменной цепи показывает, что для них справедлив закон Ома.

1. На резисторе закон Ома записывается точно также как и для постоянного тока — формула справедлива для любого момента времени:

2. На катушке закон Ома соблюдается только для амплитудных значений, или для тех значений тока и напряжения, которые имеют одну и ту же фазу:

где — индуктивное сопротивление катушки

Из формулы следует , что сопротивление катушки тем больше, чем больше ее индуктивность и циклическая частота переменного тока. Это согласуется и с физической природой сопротивления катушки переменному току. Действительно, индуктивность L является показателем величины магнитного поля , создаваемого током ( Ф = LI), а ω — показателем скорости его изменения. И то и другое в прямой пропорции увеличивают вихревую ЭДС, создающую сопротивление току.

2. На конденсаторе закон Ома также соблюдается только для амплитудных значений, или для тех значений тока и напряжения, которые имеют одну и ту же фазу:

, где — емкостное сопротивление конденсатора

В этом случае из формулы вытекает, что сопротивление конденсатора наоборот уменьшается — как с ростом частоты, таки с ростом емкости конденсатора. Это объясняется тем, что с ростом частоты заряды не успевают набежать на обкладки конденсатора и, следовательно, — создать заметное сопротивление набегающим зарядам. Рост емкости, также вызывает уменьшение сопротивления, поскольку он означает снижение, тем или иным способом, величины взаимного отталкивания зарядов.

Указанные графические методы и математические формулы позволяют перейти к описанию и анализу конкретных цепей переменного тока. Для образовательных целей наиболее принципиальными среди них являются последовательная и параллельная R-L-C-цепи.

Последовательная R-L-C цепь ОПТ

Для цепей ОПТ, как и для цепей постоянного тока, расчет сводится к определению токов и напряжений на всех участках цепи. В данном случае, при известном напряжении на генераторе (U) , его циклической частоте ω, требуется определить ток в цепи (I) и напряжения на всех ее участках(UR, UL, UC). Слож-ность расчета заключается в неодинако-вости фаз колебаний рассматриваемых параметров. Как уже указывалось выше, учет этих фаз можно осуществить через построение векторов.

Из схемы (рис.13) следует, что через все элементы цепи проходит один и тот же ток — следовательно, с него и надо начинать построение диаграммы. Так как в реальности все вектора вращаются, то рассмотрим схему в тот момент, когда вектор общего тока находится в горизонтальном положении и направлен вправо (рис.14): для всех последующих расчетов это не имеет никакого значения.

Читайте также:  Токи фуко в галилео

Выбор ориентации вектора тока предопределяет ориентацию напряжений на резисторе (всегда параллелен току), на катушке (направляем вверх – опережает при вращении ток) и на конденсаторе (направляем вниз — отстает при вращении от тока).

Общее напряжение на генераторе (U) получим, сложив все напряжения векторным образом, а связь между суммарным напряжением и составляющими найдем из получившегося треугольника напряжений по теореме Пифагора:

Используя законы Ома для отдельных элементов

и подставляя их в полученную формулу, получим:

Так как ток во всех элементах одинаков, его можно вынести за квадратный корень, индуктивное и емкостное сопротивления выразить через Lи С:

Полученное выражение можно рассматривать как закон Ома для последовательной R-L-C цепи. Параметр Zназывают полным или комплексным сопротивлением всей цепи.

Зная значение Z, нетрудно рассчитать напряжения на всех участках цепи:

Из чертежа видно, что между векторами напряжения на генераторе и полным током существует угол φ, который по своему физическому смыслу представляет собой не что иное, как сдвиг фаз между колебаниями тока и напряжения. Из чертежа следует, что он может быть вычеслен через тангенс треугольника напряжений:

Или сокращая , ток и переходя к основным параметрам элементов, получим окончательное выражение:

Из чертежа видно, что по модулю угол φ, в общем случае, может меняться от 0 до . По установленным в математике правилам угол считается положительным, если он отсчитывается от горизонтальнойоси ОХ, направленной вправо, против часовой стрелки. В электротехнике сдвиг фаз считается положительным, если при вращении против часовой стрелке вектор напряжения оказывается впереди (левее) вектора тока, т.е. если напряжение опережает по фазе ток. Поскольку такое положение вещей всегда имеет место в катушке – индуктивности — то любая цепь, где напряжение опережает ток называется активно-индуктивной , а сдвиг фаз считается положительным

0 ХС угол φ оказывается отрицательным, а из векторной диаграммы — что ток при этом опережает напряжение по фазе. Это соответствует активно-емкостной цепи.

При ХL 0 ( положительный знак φ означает, что формула для тока непосредственно описывает активно-емкостную цепь; для активно-индуктивной цепи φ надо взять со знаком «- »). Тогда обозначая непоглощаемую, т.е. реактивную мощность буквой Q, запишем:

Далее используем известную алгебраическую формулу:

Аналогичным образом формула мощности содержит постоянную ( знак «-» связан с выбором опережающего характера тока) и переменную составляющие.

Так как переменные составляющие не представляют интереса , мы приходим окончательно к двум важнейшим формулам мощности переменного тока:

Учитывая известное выражение , введем понятие полной мощности переменного тока:

Из формул следует что реальные мощности оказываются в 2 раза меньше максимально возможных. В связи с этим в электротехнике введены понятия действующих значений тока и напряжения:

Во всех дальнейших формулах подразумеваются только действующие значения токов и напряжений и индексы при них не ставятся.

Источник

Конденсатор в цепи переменного тока

При изучении постоянного тока мы узнали, что он не может проходить в цепи, в которой есть конденсатор. Так как конденсатор — это две пластины, разделенные слоем диэлектрика. Для цепи постоянного тока конденсатор будет, как разрыв в цепи. Если конденсатор пропускает постоянный ток, значит, он неисправен.

Рассмотрим, как будет меняться сила тока в цепи, содержащей конденсатор, с течением времени. При этом будем пренебрегать сопротивлением соединяющих проводов и обкладок конденсатора.

Напряжение на конденсаторе будет равняться напряжению на концах цепи. Значит, мы можем приравнять эти две величины.

Видим, что заряд будет изменяться по гармоническому закону. Сила тока — это скорость изменения заряда. Значит, если возьмем производную от заряда, получим выражение для силы тока.

I = q’ = UmC ω cos( ω t+ π /2).

Разность фаз между колебаниями силы тока и заряда, а также напряжения, получилась равной π /2. Получается, что колебания силы тока опережают по фазе колебания напряжения на π /2. Это представлено на рисунке.

Из уравнения колебаний силы тока получаем выражение для амплитуды силы тока:

Введем следующее обозначение:

Запишем следующее выражение закона Ома, используя Xc и действующие значения силы тока и напряжения:

Xc — величина, называемая емкостным сопротивлением.

Катушка индуктивности в цепи переменного тока

Индуктивность в цепи переменного тока будет влиять на силу переменного тока.

Рассмотрим цепь, в которой есть только катушка индуктивности. При этом значение сопротивления катушки и соединительных проводов пренебрежимо мало.

Выясним, как будут связаны напряжение на катушке с ЭДС самоиндукции в ней. При сопротивлении катушки равном нулю, напряженность электрического поля внутри проводника тоже будет равна нулю. Равенство нулю напряженности возможно.

Напряженности электрического поля создаваемого зарядами Eк будет соответствовать такая же по модулю и противоположно направленная напряженность вихревого электрического поля, которое появится вследствие изменения магнитного поля.

Следовательно, ЭДС самоиндукции ei будет равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Следовательно: ei = -u.

Сила тока будет изменяться по гармоническому закону: I = Im sin(ωt).

ЭДС самоиндукции будет равна: Ei = -Li’ = -L ω Im cos( ω t).

Следовательно, напряжение будет равно: U = L ω Im cos( ω t) = L ω Im sin( ω t+ π /2).

Im = Um /(ωL). Введем обозначение XL = ωL. Эта величина называется индуктивное сопротивление.

Источник

Цепь переменного тока с активным сопротивлением

Когда в электрическую цепь переменного тока подключается активное сопротивление R , то под воздействием разницы потенциалов источника в цепи начинает течь ток I . В тех случаях, когда изменение напряжения происходит по синусоидальному закону, который выражается, как u = Um sin ωt , то изменение тока i также идет по синусоиде:

Цепь переменного тока с активным сопротивлением

Так что получается, что изменение напряжения и тока происходят по одинаковым законам. При этом через нулевое значение они проходят одновременно и своих максимальных значений также достигают одновременно. Из этого следует, что когда в электрическую цепь переменного тока подключается активное сопротивление R , то напряжение и ток совпадают по фазе.

Кривые ток напряжения мощности

Мощность, ток, напряжение

Если взять равенство Im = Um / R и каждую из его частей разделить на √2 , то в итоге получится ни что иное, как закон Ома, применимый для той цепи, которая рассматривается: I = U / R .

Читайте также:  Эдс источника тока 2 в а его внутреннее сопротивление 1 ом определите сопротивление внешней цепи

Таким образом, получается, что это основополагающий закон для той цепи, которая имеет в своем составе только активное сопротивление, с точки зрения математики имеет такую же форму, что и для цепи тока постоянного.

Электрическая мощность

Такой показатель, как электрическая мощность P для цепи, имеющей в своем составе активное сопротивление, равняется произведению мгновенного значения напряжения U на мгновенное значение силы тока i в любой момент времени. Из этого следует, что в цепях переменного тока, в отличие от цепей тока постоянного, мгновенная мощность P – величина непостоянная, а ее изменение происходит по кривой. Для того чтобы получить ее графическое представление, необходимо ординаты кривых напряжения U и силы тока i перемножить при разных углах ωt . Мощность изменяется по отношению к изменению тока с двойной частотой ωt . Это означает, что половине периода изменения напряжения и тока соответствует один период изменения мощности. Следует заметить, что абсолютно все значения, которые может принимать мощность, являются положительными величинами. С точки зрения физики это означает, что от источника к приемнику передается энергия. Своих максимальных значений мощность достигает тогда, когда ωt = 270° и ωt = 90° .

В практическом отношении о той энергии W , которую создает электрический ток, принято судить по средней мощности, выражаемой формулой Рср = Р , а не по мощности максимальной. Ее можно определить, перемножив на время протекания тока среднее значение мощности W = Pt .

Относительно линии АБ , соответствующей среднему значению мощности P , кривая мгновенной мощности симметрична. По этой причине

Если использовать закон Ома, то можно выразить активную мощность в следующем виде:

P = I2R или P = U2 / R .

Специалисты в области электротехники ту среднюю мощность, которую потребляет активное сопротивление, чаще всего именуют или просто мощностью, или активной мощностью, а для ее обозначения используется буква P .

Поверхностный эффект

Необходимо особо отметить такую особенность проводников, включенных в сеть переменного тока: их активное сопротивление во всех случаях оказывается больше, чем если бы они были включены в сеть тока постоянного. Причина этого состоит в том, что переменный ток не протекает равномерно распределяясь по всему поперечному сечению проводника, как ведёт себя постоянный ток, а выводится на его поверхность. Таким образом, получается, что при включении проводника в цепь переменного тока его полезное сечение оказывается значительно меньшим, чем при включении в цепь тока постоянного. Именно поэтому его сопротивление возрастает. В физике и электротехнике это явление называется поверхностным эффектом.

То, что переменный ток распределяется по сечению проводника неравномерно, объясняется действием электродвижущей силы самоиндукции. Она индуцируется в проводнике тем магнитным полем, которое создается током, проходящим по нему. Необходимо заметить, что действие этого магнитного поля распространяется не только на окружающее проводник пространство, но и на внутреннюю его часть. По этой простой причине те слои проводника, которые располагаются ближе к его центру, находятся под воздействием большего магнитного потока, чем те слои, что располагаются ближе к его поверхности. Соответственно, электродвижущая сила самоиндукции, которая возникает во внутренних слоях, существенно больше, чем та, что образуется в слоях внешних.

Электродвижущая сила самоиндукции является существенным препятствием для изменения тока, и поэтому он будет следовать преимущественно по поверхностным слоям проводника. Необходимо также отметить, что сопротивление активных проводников в цепях переменного тока существенно зависит от частоты: чем она больше, тем выше ЭДС самоиндукции, и поэтому ток в большей степени подвергается вытеснению на поверхность.

Источник



Электрическая цепь однофазного переменного тока с активным сопротивлением

§ 53. Активное сопротивление в цепи переменного тока

Сопротивление, включенное в цепь переменного тока, в котором происходит превращение электрической энергии в полезную работу или в тепловую энергию, называется активным сопротивлением.
К активным сопротивлениям при промышленной частоте (50 гц) относятся, например, электрические лампы накаливания и электронагревательные устройства.
Рассмотрим цепь переменного тока (рис. 56), в которую включено активное сопротивление. В такой цепи под действием переменного напряжения протекает переменный ток. Изменение тока в цепи, согласно закону Ома, зависит только от изменения напряжения, подключенного к ее зажимам. Когда напряжение равно нулю, ток в цепи также равен нулю. По мере увеличения напряжения ток в цепи возрастает и при максимальном значении напряжения ток становится наибольшим. При уменьшении напряжения ток убывает. Когда напряжение изменяет свое направление, ток также изменяет свое направление и т. д.

Из сказанного следует, что в цепи переменного тока с активным сопротивлением по мере изменения по величине и направлению напряжения одновременно пропорционально меняются величина и направление тока. Это значит, что ток и напряжение совпадают по фазе.
Построим векторную диаграмму действующих величин тока и напряжения для цепи с активным сопротивлением. Для этого отложим в выбранном масштабе по горизонтали вектор напряжения . Чтобы на векторной диаграмме показать, что напряжение и ток в цепи совпадают по фазе (φ = 0), откладываем вектор тока I по направлению вектора напряжения.
Сила тока в такой цепи определяется по закону Ома:

В этой цепи среднее значение мощности, потребляемой активным сопротивлением, выражается произведением действующих значения тока и напряжения.

Пример. К цепи переменного тока с активным сопротивлением r = 55 ом подключен генератор, максимальное значение напряжения которого Um = 310,2 в. Определить:
1) показание вольтметра, подключенного к зажимам генератора;
2) показание амперметра, включенного в цепь;
3) среднее значение мощности, потребляемой сопротивлением.
Решение . Известно, что электроизмерительные приборы, включенные в цепь переменного тока, измеряют действующие значения. Поэтому показание вольтметра, измеряющего напряжение,

Показание амперметра, измеряющего действующее значение тока,

Среднее значение активной мощности, потребляемой сопротивлением, Р = I U = 220 · 4 = 880 вт или Р = I 2 r = 4 2 · 55 = 16 · 55 = 880 вт.

Источник