Меню

Электрический ток в электролите представляет собой упорядоченное движение

Электрический ток в электролитах — механизм возникновения, законы и применение

Передача электротока

Электроток представляет собой упорядоченное движение свободных зарядов. Чтобы выяснить, как электрический ток проводится в растворах, следует понять, какие частицы являются его носителями. В твердых телах ток создается электронами. Носителями электрического тока в электролитах являются ионы. Эти частицы образуются в результате процесса распада (электрической диссоциации) молекул вещества под воздействием воды в растворах либо при нагревании и последующем появлении расплава.

Молекулы веществ распадаются благодаря разрыву ионных либо полярных ковалентных связей. Количество носителей заряда в электролите определяют концентрация и температура. Кроме того, степень распада молекул зависит от природы электролита. В результате они делятся на две группы:

  • слабые — не подвержены распаду либо этот процесс протекает крайне медленно;
  • сильные — в таких электролитах наблюдается быстрое расщепление молекул на ионы.

К первой группе принадлежит большая часть органических веществ — нерастворимые основания, слабые кислоты и плохо растворимые соли. Сильными электролитами являются щелочи, сильные кислоты и хорошо растворимые соли.

Электрическая диссоциация

Это основополагающий процесс для появления электротока в растворах, поэтому его необходимо рассмотреть более подробно. Все ионы, образующиеся при распаде молекул, можно разделить на 2 типа:

  1. Анионы. Имеют отрицательный заряд.
  2. Катионы. Обладают положительным зарядом.

Большинство свойств воды обусловлено полярностью молекул вещества. Говоря иначе, с точки зрения электротехники они являются диполями. Здесь следует вспомнить определение диполи — это система двух частиц, расположенных близко друг к другу. При этом их заряды противоположны по знаку, но одинаковы по модулю. Свойство полярности H2O объясняется геометрическим строением молекул вещества:

  • угол между центральными линиями атомов равен примерно 104,5 градуса;
  • электронны смещены в направлении кислорода.

Являясь диполями, молекулы воды способны создавать вокруг себя электрополе, которое воздействует не только на них, но и на частицы растворенного вещества.

Чтобы установить, какова природа процесса распада молекул на ионы, следует рассмотреть раствор поваренной соли. На внешней орбите атома натрия расположен лишь 1 электрон. Его связь с атомом слаба, поэтому он способен быстро уйти со своего места. У атома хлора на внешней орбите находится уже 7 электронов и до комплекта не хватает одной частицы. Благодаря этому при образовании кристалла NaCl внешний электрон натрия присоединяется к атому хлора. В итоге образуется диполь.

Взаимодействие двух видов диполей и способствуют активизации процесса растворения. Если в раствор электролита поместить 2 электрода — катод (отрицательный) и анод (положительный), то свободные ионы устремятся к ним. При этом направление их движения протекает по конкретным правилам:

  • катионы направятся к катоду;
  • анионы начинают двигаться в направлении анода.

Как только переносчики электротока достигают электродов, они теряют свой заряд, превращаясь в нейтральные, и оседают на поверхности электродов.

Законы Фарадея

Процесс протекания электротока в электролитах называется электролизом. Среди ученых его наиболее активно изучал известных химик и физик Майкл Фарадей в 1833 году. В результате ему удалось сформулировать 2 закона, названных в его часть:

  1. Первый закон. Масса вещества (m), образованная на одном из электродов, прямо пропорциональна заряду (Δq), проходящему через раствор. Формула выглядит так: m = K*Δq = K*I*Δt, где I — сила тока в электролите, Δt — время прохождения электротока через раствор, K — химический эквивалент вещества.
  2. Второй закон. Электрохимический эквивалент вещества (K) прямо пропорционален его химическому эквиваленту. K = C * M / Z, где C — коэффициент пропорциональности (величина постоянная), M — молярная масса вещества, Z — валентность вещества.

Сегодня электролиз нашел широкое применение в технике и промышленности. Например, этот процесс используется в щелочных и кислотных аккумуляторах. Для успешной сдачи экзамена учащимся необходимо кратко пояснить механизм возникновения свободных зарядов в электролитах, сформулировать законы Фарадея, а также рассказать об электрической диссоциации.

Источник

Электрический ток в электролитах

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: носители свободных электрических зарядов в жидкостях.

Электролитом мы называем раствор (или расплав) вещества, через который может идти электрический ток; при этом исходное вещество проводником тока не является.

Например, кристаллы поваренной соли не проводят ток. Дистиллированная вода — тоже диэлектрик. Однако при растворении соли в воде получается среда, через которую ток отлично проходит! Следовательно, солёная вода будет электролитом (Вот почему запрещено купаться во время грозы — в водоёмах всегда растворено некоторое количество солей. При ударе молнии по воде пойдёт электрический ток).

Электролитами оказываются растворы солей, кислот и оснований. Прохождение тока через эти растворы означает, что в них имеются свободные заряды. Откуда же они там берутся, если ни в воде, ни в исходном веществе свободных зарядов не было?

Электролитическая диссоциация

Механизм, обеспечивающий появление свободных зарядов в электролите, называется электролитической диссоциацией. Мы ограничимся рассмотрением электролитической диссоциации в растворах.

Вообще, диссоциация — это распад молекулы на составные части под влиянием тех или иных факторов.В процессе электролитической диссоциации молекулы растворяемого вещества распадаются на положительные и отрицательные ионы в результате действия электрических сил со стороны молекул воды.

Читайте также:  Кожа при повреждении током

Многие свойства воды объясняются тем, что её молекулы являются полярными, то есть в электрическом отношении ведут себя как диполи (напомним, что диполь — это система двух одинаковых по модулю и противоположных по знаку зарядов, расположенных на небольшом расстоянии друг от друга). Полярность молекул обусловлена их геометрическим устройством (рис. 1 (изображение с сайта howyourbrainworks.net)).

Рис. 1. Молекулы воды

Угол, образованный линиями центров атома кислорода и двух атомов водорода, составляет примерно . Кроме того, электронные оболочки смещены в сторону кислорода. В результате центры положительных и отрицательных зарядов оказываются пространственно разделёнными: «минусы» преобладают в кислородной части молекулы воды, а «плюсы» — в водородной части.

Будучи диполями, молекулы воды создают вокруг себя электрическое поле и действуют электрическими силами как друг на друга, так и на молекулы примесей (притягиваясь друг к другу противоположно заряженными частями, молекулы воды создают весьма прочные связи. Вот почему столь велики удельная теплоёмкость и удельная теплота парообразования воды — на разрыв этих связей требуется значительная энергия).

Почему же соли, кислоты и основания распадаются в воде на ионы? Всё дело в том, что молекулы этих веществ также являются полярными. Давайте вернёмся к нашему примеру с растворением поваренной соли .

У атома натрия на внешнем электронном уровне находится один электрон. Он слабо связан с атомом и всегда готов покинуть место своего обитания. У атома хлора на внешнем электронном уровне семь электронов — одного как раз не хватает до полного комплекта. Атом хлора всегда готов захватить себе недостающий электрон.

Поэтому при образовании молекулы внешний электрон атома натрия уходит к атому хлора, и в результате молекула становится полярной — она состоит из положительного иона и отрицательного иона . Эта молекула схематически изображена на рис. 2 (атом хлора крупнее, чем атом натрия).

Иными словами, с электрической точки зрения молекула также оказывается диполем.

Взаимодействие двух сортов диполей — молекул и — как раз и вызывает процесс растворения.

На рис. 3 мы видим, как протекает этот процесс (изображение с сайта intro.chem.okstate.edu). Более крупные зелёные шарики изображают ионы хлора, более мелкие серые — ионы натрия.

Рис. 3. Электролитическая диссоциация: растворение в воде

Левая часть рисунка показывает ситуацию до начала растворения. Крупица соли в виде небольшого кубического кристаллика (Кристаллическая решётка поваренной соли имеет кубическую структуру. В вершинах куба в шахматном порядке, крест-накрест расположены атомы натрия и хлора) только что оказалась в воде.

Сразу же начинается «электрическая атака» со стороны молекул воды. Отрицательно заряженные (кислородные) части молекул обращаются к положительным ионам натрия, а положительные (водородные) части молекулы воды — к отрицательным ионам хлора. Молекулы начинают «растягиваться» разнонаправленными электрическими силами притяжения к молекулам-диполям воды, и связь между ионами натрия и хлора, скрепляющая молекулу соли, ослабевает.

В конце концов эта связь становится настолько слабой, что удары соседних частиц, совершающих тепловое движение, разрушают молекулу . Она распадается на положительный ион и отрицательный ион .

В правой части рис. 3 мы видим результат такого распада: вырванные из кристаллической решётки ион хлора и ион натрия отправляются «в свободное плавание», окружённые прицепившимися к ним молекулами воды. Обратите внимание, что молекулы воды прилипли к отрицательному иону хлора своими положительными водородными частями, а к положительному иону натрия, наоборот, повернулись их отрицательные кислородные части.
Таким образом, при растворении соли в воде появляются свободные заряды: положительные ионы и отрицательные ионы (рис. 4 ). Это и является необходимым условием прохождения тока через раствор.

Рис. 4. Раствор в воде

Описанный выше процесс растворения совершенно аналогично протекает и в случае других примесей.Так, щёлочь распадается в водном растворе на положительные ионы калия и отрицательные ионы гидроксильной группы . Молекула серной кислоты при распаде даёт два положительных иона и отрицательно заряженный ион кислотного остатка В растворе медного купороса появляются положительные ионы меди и отрицательно заряженные ионы

Все ли молекулы растворяемого вещества распадутся на ионы? Это зависит от ряда условий.

Степенью диссоциации называется отношение числа распавшихся молекул к общему начальному числу молекул. При полном растворении вещества степень диссоциации равна .

Наряду с диссоциацией имеет место и обратный процесс: рекомбинация. А именно, две частицы противоположного знака могут встретиться и снова образовать нейтральную молекулу (рекомбинировать). С течением времени в растворе устанавливается состояние динамического равновесия: среднее число диссоциаций в единицу времени равно среднему числу рекомбинаций, в результате чего концентрация раствора остаётся неизменной (вспомните аналогичную ситуацию с насыщенным паром: при динамическом равновесии пара и жидкости среднее число вылетевших из жидкости молекул равно среднему числу молекул, вернувшихся обратно из пара в жидкость, так что концентрация насыщенного пара неизменна).

Процессы диссоциации-рекомбинации записываются в виде следующих уравнений, отражающих состояние динамического равновесия:

Изменение внешних условий может нарушить текущее динамическое равновесие и сместить его в ту или иную сторону. Например, при повышении температуры увеличивается скорость диссоциации, и концентрация положительных и отрицательных ионов в растворе возрастает.

Читайте также:  Как устроен источник переменного тока

Ионная проводимость

В металлах, как вы помните, имеется лишь один тип свободных зарядов — это свободные электроны. В электролитах ситуация иная: здесь возникают свободные заряды двух типов.

1. Положительные ионы, образовавшиеся из атомов металлов или водорода.

2. Отрицательные ионы — атомные или молекулярные кислотные остатки (например, или ), а также гидроксильная группа .

Второе отличие от металлов заключается в том, что носители свободных зарядов в электролите могут иметь заряд, равный по модулю как элементарному заряду , так и целому числу элементарных зарядов . Здесь — валентность атома или группы атомов; например, при растворении медного купороса имеем .

Если внешнего электрического поля нет, то свободные заряды электролита совершают лишь хаотическое тепловое движение наряду с окружающими молекулами. Но при наложении внешнего поля положительные и отрицательные ионы начинают упорядоченное движение.

Поместим в сосуд с электролитом два электрода; один из электродов присоединим к положительной клемме источника тока, а другой — к отрицательной (рис. 5 ). Когда речь идёт о прохождении тока через электролиты, положительный электрод называют анодом, а отрицательный — катодом (Имеется народная мудрость для запоминания знаков анода и катода: Андрей — парень положительный, Катька — девка отрицательная ;-)).

Рис. 5. Ионная проводимость электролита

В электрическом поле, возникшем между электродами, положительные ионы электролита устремляются к «минусу» катода, а отрицательные ионы — к «плюсу» анода. Таким образом, электрический ток в электролите образуется в результате встречного движения ионов: положительных — к катоду, отрицательных — к аноду. Поэтому проводимость электролитов называется ионной (в отличие от электронной проводимости металллов).

На положительном аноде имеется недостаток электронов. Отрицательные ионы, достигнув анода, отдают ему свои лишние электроны; эти электроны отправляются по цепи к «плюсу» источника.

Наоборот, на отрицательном катоде — избыток электронов. Положительные ионы, придя на катод, забирают у него электроны, и это количество ушедших электронов немедленно восполняется их доставкой на катод с «минуса» источника.

Таким образом, в той части цепи, которая состоит из источника тока и металлических проводников, возникает циркуляция электронов по маршруту «анод источник катод».

Цепь замыкается электролитом, где электрический ток обеспечивается двусторонним движением ионов.

Электролиз

Положительные и отрицательные ионы, будучи носителями свободных зарядов, в то же время являются частицами вещества. Поэтому важнейшее отличие тока в электролитах от тока в металлах состоит в том, что электрический ток в электролите сопровождается переносом вещества.

Явление переноса вещества при прохождении электрического тока через электролит называется электролизом. Законы электролиза были экспериментально изучены Фарадеем.

В процессе электролиза происходит разложение растворённого вещества на составные части и выделение этих частей на электродах. Так, в растворе медного купороса положительные ионы меди идут на катод, в результате чего катод покрывается медью. Кислотный остаток выделяется на аноде.

Естественным образом возникает вопрос о нахождении массы вещества, выделяющегося на электроде за определённое время . Эта масса, очевидно, совпадает с массой данного вещества, перенесённого током за время через электролит.

Пусть — масса одного иона этого вещества, — заряд иона ( — валентность вещества). Предположим, что за время через электролит прошёл заряд . Число ионов, пришедших на электрод, тогда равно . Масса выделившегося на электроде вещества равна суммарной массе пришедших ионов:

Величина является характеристикой вещества и называется его электрохимическим эквивалентом. Значения электрохимических эквивалентов различных веществ приводятся в таблицах.

При протекании через электролит постоянного тока за время проходит заряд . Подставляя это в формулу (1) , получим первую формулу Фарадея:

Первый закон Фарадея. Масса выделяющегося на электроде вещества пропорциональна силе тока, протекающего через электролит, и времени прохождения тока.

Теперь преобразуем выражение для электрохимического эквивалента, введя молярную массу вещества:

Подставляя это выражение в (2) , получим вторую формулу Фарадея:

Второй закон Фарадея. Масса выделяющегося на электроде вещества прямо пропорциональна молярной массе этого вещества и обратно пропорциональна его валентности.

В формуле (3) мы видим произведение двух констант и . Оно также является константой и называется постоянной Фарадея:

Формула (3) с постоянной Фарадея запишется так:

Источник

Электрический ток в электролитах

Электролитами принято называть проводящие среды, в которых протекание электрического тока сопровождается переносом вещества. Носителями свободных зарядов в электролитах являются положительно и отрицательно заряженные ионы. К электролитам относятся многие соединения металлов в расплавленном состоянии, а также некоторые твердые вещества. Однако основными представителями электролитов, широко используемыми в технике, являются водные растворы неорганических кислот, солей и оснований.

Прохождение электрического тока через электролит сопровождается выделением веществ на электродах. Это явление получило название электролиза.

Электрический ток в электролитах представляет собой перемещение ионов обоих знаков в противоположных направлениях. Положительные ионы движутся к отрицательному электроду (катоду), отрицательные ионы – к положительному электроду (аноду). Ионы обоих знаков появляются в водных растворах солей, кислот и щелочей в результате расщепления части нейтральных молекул. Это явление называется электролитической диссоциацией. Например, хлорид меди CuCl2 диссоциирует в водном растворе на ионы меди и хлора:

Читайте также:  При падении линии электропередач был поражен электрическим током сознание отсутствует грудная клетка

При подключении электродов к источнику тока ионы под действием электрического поля начинают упорядоченное движение: положительные ионы меди движутся к катоду, а отрицательно заряженные ионы хлора – к аноду (рис 1.15.1).

Достигнув катода, ионы меди нейтрализуются избыточными электронами катода и превращаются в нейтральные атомы, оседающие на катоде. Ионы хлора, достигнув анода, отдают по одному электрону. После этого нейтральные атомы хлора соединяются попарно и образуют молекулы хлора Cl2. Хлор выделяется на аноде в виде пузырьков.

Во многих случаях электролиз сопровождается вторичными реакциями продуктов разложения, выделяющихся на электродах, с материалом электродов или растворителей. Примером может служить электролиз водного раствора сульфата меди CuSO4 (медный купорос) в том случае, когда электроды, опущенные в электролит, изготовлены из меди.

Диссоциация молекул сульфата меди происходит по схеме

Нейтральные атомы меди отлагаются в виде твердого осадка на катоде. Таким путем можно получить химически чистую медь. Ион отдает аноду два электрона и превращается в нейтральный радикал SO4 вступает во вторичную реакцию с медным анодом:

Образовавшаяся молекула сульфата меди переходит в раствор.

Таким образом, при прохождении электрического тока через водный раствор сульфата меди происходит растворение медного анода и отложение меди на катоде. Концентрация раствора сульфата меди при этом не изменяется.

Электролиз водного раствора хлорида меди

Закон электролиза был экспериментально установлен английским физиком Майклом Фарадеем в 1833 году. Закон Фарадея определяет количества первичных продуктов, выделяющихся на электродах при электролизе:

Масса m вещества, выделившегося на электроде, прямо пропорциональна заряду Q, прошедшему через электролит:

Величину k называют электрохимическим эквивалентом.

Масса выделившегося на электроде вещества равна массе всех ионов, пришедших к электроду:

Здесь m и q – масса и заряд одного иона, – число ионов, пришедших к электроду при прохождении через электролит заряда Q. Таким образом, электрохимический эквивалент k равен отношению массы m иона данного вещества к его заряду q.

Так как заряд иона равен произведению валентности вещества n на элементарный заряд e (q = ne), то выражение для электрохимического эквивалента k можно записать в виде

Постоянная Фарадея численно равна заряду, который необходимо пропустить через электролит для выделения на электроде одного моля одновалентного вещества.

Закон Фарадея для электролиза приобретает вид:

Явление электролиза широко применяется в современном промышленном производстве.

Источник



Электрический ток в электролитах

Передача электричества

Электрический ток – это упорядоченное движение заряженных частиц. Носителями заряда электрического тока в электролитах являются ионы. Они образуются в результате распада (электролитической диссоциации) молекул вещества под действием молекул воды в растворе или при нагревании и образовании расплава.

Расщепление молекул происходит за счёт разрыва полярных ковалентных или ионных связей. Интенсивность диссоциации зависит от температуры и концентрации раствора. Также на степень диссоциации влияет природа электролита. В связи с этим выделяют:

  • слабые электролиты, распадающиеся частично или не распадающиеся вообще;
  • сильные электролиты, быстро распадающиеся на ионы.

К слабым электролитам относится большинство органических веществ, слабые кислоты, плохо растворимые соли и нерастворимые основания. Сильные кислоты, щёлочи, соли относятся к сильным электролитам.

Процесс электролитической диссоциации

Рис. 1. Процесс электролитической диссоциации.

Образованные в результате диссоциации ионы делятся на два типа:

  • катионы – положительно заряженные частицы;
  • анионы – отрицательно заряженные частицы.

Проводником электрического тока в электролитах является электрод. Он может быть анодом или катодом. Анод присоединён к положительному полюсу источника тока, катод – к отрицательному. Анод окисляет вещества, находящиеся в электролите, катод – восстанавливает.

Электроды

Рис. 2. Электроды.

Если в раствор электролита поместить два электрода – катод и анод – и включить электрический ток, то ионы начнут двигаться под действием электрического поля. Катионы устремятся к катоду, анионы – к аноду. Достигнув электродов, ионы нейтрализуются, превращаются в нейтральные атомы и оседают.

Процесс разложения вещества на составные части, которые оседают на электродах, называется электролизом.

Закон Фарадея

Процесс электролиза экспериментально изучил английский физик и химик Майкл Фарадей в 1833 году. Он сформулировал закон, согласно которому масса выделившегося на электроде вещества прямо пропорциональна прошедшему через электролит заряду. Этот закон закрепился в науке как первый закон Фарадея.

Майкл Фарадей

Рис. 3. Майкл Фарадей.

  • m – масса вещества;
  • Q – заряд;
  • k – электрохимический эквивалент;
  • I – сила тока;
  • t – время действия тока.

Согласно второму закону Фарадея масса выделившегося на электроды вещества прямо пропорциональна отношению молярной массы к валентности и равна электрохимическому эквиваленту.

  • m – масса выделившегося вещества;
  • k – электрохимический эквивалент;
  • M – молярная масса;
  • z – валентность вещества.

Электролиз используется в щелочных и кислотных аккумуляторах. С помощью электролиза можно защитить изделие металлическим покрытием.

Что мы узнали?

Электрический ток в электролитах передают ионы, образовавшиеся в результате электролитической диссоциации. Положительно заряженные ионы – катионы – движутся к отрицательно заряженному электроду – катоду. Отрицательно заряженные анионы устремятся к положительно заряженному электроду – аноду. Достигнув электрода, ионы нейтрализуются, превращаясь в атомы вещества, и оседают на электродах. Это явление было изучено Майклом Фарадеем и получило название электролиза.

Источник