Меню

Электродвижущая сила внутреннее сопротивление источника тока закон ома для полной замкнутой цепи

Электродвижущая сила внутреннее сопротивление источника тока закон ома для полной замкнутой цепи

31 дн. до
до конца учебного года

погода в Ярославле

ЭДС. Закон Ома для полной цепи.

Если свободные заряды перемещаются в электрической цепи по замкнутой траектории, то такую цепь называют полной или замкнутой.

При этом на каждом из участков такой цепи работа электростатических сил переходит в тепловую, механическую или энергию химических связей. Так как работа электростатических сил, перемещающих заряд по замкнутой траектории, всегда равна нулю, то только силы электростатического поля не могут обеспечить постоянное движение зарядов по замкнутой траектории.

1) химические реакции – в гальванических элементах (батарейках), аккумуляторах (сторонние силы возникают в результате химических реакций между электродами и жидким электролитом),

2) электромагнитной – в генераторах. При этом генераторы могут использовать а) механическую энергию – ГЭС, б) ядерную – АЭС, в) тепловую – ТЭС, г) приливов и отливов – ПЭС, д) ветровую – ВЭС и т.д. (силы, действующие на свободные заряды, перемещающиеся в магнитном поле).

3) использование фотоэффекта – фото-ЭДС в калькуляторах и солнечных батареях (в фотоэлементах сторонние силы возникают при действии света на электроны атомов, входящих в состав некоторых веществ),

4) пьезоэффект – пьезо-ЭДС, например, в пьезозажигалках,

5) контактная разность потенциалов – термо-ЭДС в термопарах и т.д.

Например, в цепи на рис. а, свободные заряды, перемещаются от тела А к телу Б под действием электростатических сил, а сторонние силы источника питания заставляют их возвращаться обратно – от Б к А.

Сторонние силы в источнике тока разделяют разноимённые электрические заряды друг от друга, совершая работу против электростатических (кулоновских сил). Контакт (полюс) источника тока, где в результате действия сторонних сил накапливается положительный заряд, называют положительным, а противоположно заряженный полюс – отрицательным, обозначая их так, как изображено на рис. б. Очевидно, что чем больший заряд накопится на полюсе источника тока, тем больше работы совершили сторонние силы по разделению зарядов, т.к. работа против кулоновских сил прямо пропорциональна величине заряда. Поэтому отношение работы, Аст , сторонних сил, перемещающих заряд q внутри источника тока от отрицательного полюса к положительному, не зависит от величины заряда и служит характеристикой источника тока, называемой электродвижущей силой (ЭДС) источника,

Как и разность потенциалов, ЭДС в СИ измеряют в вольтах.

Сопротивление источника тока или внутреннее сопротивление тоже является его важной характеристикой. Внутренним сопротивлением гальванического элемента, например, является сопротивление электродов и электролита, находящегося между ними. Внешним участком замкнутой цепи называют её участок, подсоединённый снаружи к источнику тока (см. рис. а).

Чтобы определить, как зависит сила тока от ЭДС источника в цепи, изображённой на рис. а, нарисуем эквивалентную схему (см. рис. в), где R соответствует сопротивлению проводника между А и Б, (внешняя цепь), а r – внутреннему сопротивлению источника тока. Согласно закону Джоуля-Ленца работа Аполн тока, протекающего по замкнутой цепи, за интервал времени t равна: Аполн = I 2. R . t + I 2. r . t . Из закона сохранения энергии следует, что работа тока должна быть равна работе сторонних сил Астор = Ɛ . q = Ɛ . It . Приравняв Аполн и Астор , получаем следующее выражение для

1) Напряжение на зажимах источника, а соответственно и во внешней цепи

2) Если внешнее сопротивление замкнутой цепи равно нулю, то такой режим источника тока называется коротким замыканием.

Источник

Закон Ома для полной цепи

Если закон Ома для участка цепи знают почти все, то закон Ома для полной цепи вызывает затруднения у школьников и студентов. Оказывается, все до боли просто!

Идеальный источник ЭДС

Давайте вспомним, что такое ЭДС. ЭДС – это что-то такое, что создает электрический ток. Если к такому источнику напряжения подцепить любую нагрузку (хоть миллиард галогенных ламп, включенных параллельно), то он все равно будет выдавать такое же напряжение, какое-бы он выдавал, если бы мы вообще не цепляли никакую нагрузку.

Короче говоря, какая бы сила тока не проходила через цепь резистора, напряжение на концах источника ЭДС будет всегда одно и тоже. Такой источник ЭДС называют идеальным источником ЭДС.

Но как вы знаете, в нашем мире нет ничего идеального. То есть если бы в нашем аккумуляторе был идеальный источник ЭДС, тогда бы напряжение на клеммах аккумулятора никогда бы не проседало. Но оно проседает и тем больше, чем больше силы тока потребляет нагрузка. Что-то здесь не так. Но почему так происходит?

Внутреннее сопротивление источника ЭДС

Дело все в том, что в аккумуляторе “спрятано” сопротивление, которое условно говоря, цепляется последовательно с источником ЭДС аккумулятора. Называется оно внутренним сопротивлением или выходным сопротивлением. Обозначается маленькой буковкой “r “.

Выглядит все это в аккумуляторе примерно вот так:

Итак, что у нас получается в чистом виде?

Лампочка – это нагрузка, которая обладает сопротивлением. Значит, еще больше упрощаем схему и получаем:

Имеем идеальный источник ЭДС, внутреннее сопротивление r и сопротивление нагрузки R. Вспоминаем статью делитель напряжения. Там говорится, что напряжение источника ЭДС равняется сумме падений напряжения на каждом сопротивлении.

На резисторе R падает напряжение UR , а на внутреннем резисторе r падает напряжение Ur .

Теперь вспоминаем статью делитель тока. Сила тока, протекающая через последовательно соединенные сопротивления везде одинакова.

Вспоминаем алгебру за 5-ый класс и записываем все то, о чем мы с вами сейчас говорили. Из закона Ома для участка цепи получаем, что

Закон Ома для полной цепи

Итак, последнее выражение носит название “закон Ома для полной цепи”

закон Ома для полной цепи формула

Е – ЭДС источника питания, В

R – сопротивление всех внешних элементов в цепи, Ом

I – сила ток в цепи, А

r – внутреннее сопротивление источника питания, Ом

Просадка напряжения

Итак, знакомьтесь, автомобильный аккумулятор!

автомобильный аккумулятор

Для дальнейшего его использования, припаяем к нему два провода: красный на плюс, черный на минус

Читайте также:  Что такое сила электрического тока в физике определение

Наш подопечный готов к бою.

Теперь берем автомобильную лампочку-галогенку и тоже припаяем к ней два проводка с крокодилами. Я припаялся к клеммам на “ближний” свет.

Первым делом давайте замеряем напряжение на клеммах аккумулятора

12,09 вольт. Вполне нормально, так как наш аккумулятор выдает именно 12 вольт. Забегу чуток вперед и скажу, что сейчас мы замерили именно ЭДС.

Подключаем галогенную лампу к аккумулятору и снова замеряем напряжение:

Видели да? Напряжение на клеммах аккумулятора просело до 11,79 Вольт!

А давайте замеряем, сколько потребляет тока наша лампа в Амперах. Для этого составляем вот такую схемку:

Желтый мультиметр у нас будет замерять напряжение, а красный мультиметр – силу тока. Как замерять с помощью мультиметра силу тока и напряжение, можно прочитать в этой статье.

Смотрим на показания приборов:

Как мы видим, наша лампа потребляет 4,35 Ампер. Напряжение просело до 11,79 Вольт.

Давайте вместо галогенной лампы поставим простую лампочку накаливания на 12 Вольт от мотоцикла

Лампочка потребляет силу тока в 0,69 Ампер. Напряжение просело до 12 Вольт ровно.

Какие выводы можно сделать? Чем больше нагрузка потребляет силу тока, тем больше просаживается напряжение на аккумуляторе.

Как найти внутреннее сопротивление источника ЭДС

Давайте снова вернемся к этой фотографии

Так как у нас в этом случае цепь разомкнута (нет внешней нагрузки), следовательно сила тока в цепи I равняется нулю. Значит, и падение напряжение на внутреннем резисторе Ur тоже будет равняться нулю. В итоге, у нас остается только источник ЭДС, у которого мы и замеряем напряжение. В нашем случае ЭДС=12,09 Вольт.

Как только мы подсоединили нагрузку, то у нас сразу же упало напряжение на внутреннем сопротивлении и на нагрузке, в данном случае на лампочке:

Сейчас на нагрузке (на галогенке) у нас упало напряжение UR=11,79 Вольт, следовательно, на внутреннем сопротивлении падение напряжения составило Ur=E-UR=12,09-11,79=0,3 Вольта. Сила тока в цепи равняется I=4,35 Ампер. Как я уже сказал, ЭДС у нас равняется E=12,09 Вольт. Следовательно, из закона Ома для полной цепи высчитываем, чему у нас будет равняться внутреннее сопротивление r

Вывод

Внутреннее сопротивление бывает не только у различных химических источников напряжения. Внутренним сопротивлением также обладают и различные измерительные приборы. Это в основном вольтметры и осциллографы.

Дело все в том, что если подключить нагрузку R, сопротивление у которой будет меньше или даже равно r, то у нас очень сильно просядет напряжение. Это можно увидеть, если замкнуть клеммы аккумулятора толстым медным проводом и замерять в это время напряжение на клеммах. Но я не рекомендую этого делать ни в коем случае! Поэтому, чем высокоомнее нагрузка (ну то есть чем выше сопротивление нагрузки R ), тем меньшее влияние оказывает эта нагрузка на источник электрической энергии.

Вольтметр и осциллограф при замере напряжения тоже чуть-чуть просаживают напряжение замеряемого источника напряжения, потому как являются нагрузкой с большим сопротивлением. Именно поэтому самый точный вольтметр и осциллограф имеют ну очень большое сопротивление между своими щупами.

Источник

Электродвижущая сила. Закон Ома для полной цепи

date image2015-04-08
views image14037

facebook icon vkontakte icon twitter icon odnoklasniki icon

Внутри источника тока происходит разделение зарядов: на одном полюсе накапливается положительный заряд, на другом – отрицательный.

Силы, совершающие работу по разделению зарядов, называются сторонни е.

Электродвижущей силой источника (ЭДС) называется величина равная отношению работы сторонних сил Аст по перемещению заряда вдоль замкнутой цепи к величине этого заряда q.

ЭДС обозначается буквой ; измеряется в Вольтах.

Закон Ома для полной цепи : Сила тока в полной цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна сумме внешнего и внутреннего сопротивлений цепи.

Механическое движение и его относительность. Системы отсчёта. Скорость и перемещение при прямолинейном равномерном движении

Механическим движением называется изменение положения тела в пространстве относительно других тел с течением времени.

Примеры: движение автомобиля, Земли вокруг Солнца, облаков на небе и др.

Механическое движение относительно : тело может покоиться относительно одних тел, и двигаться относительно других. Пример: водитель автобуса покоится относительно самого автобуса, но находится в движении вместе с автобусом относительно земли.

Для описания механического движения выбирают систему отсчёта.

Системой отсчёта называется тело отсчёта, связанная с ним система координат и прибор для измерения времени (напр. часы).

В механике часто телом отсчёта служит Земля, с которой связывают прямоугольную декартову систему координат (XYZ).

Линия, по которой движется тело, называется траекторией .

Прямолинейным называется движение, если траектория тела – прямая линия.

Длину траектории называют путем . Путь измеряется в метрах.

Перемещение – это вектор, соединяющий начальное положение тела с его конечным положением. Обозначается , измеряется в метрах.

Скорость – это векторная величина, равная отношению перемещения за малый промежуток времени к величине этого промежутка. Обозначается , измеряется в м/с.

Равномерным называется такое движение, при котором тело за любые равные промежутки времени проходит одинаковые пути. При этом скорость тела не меняется.

При этом движении перемещение и скорость вычисляются по формулам:

Если тела за равные промежутки времени проходит неодинаковые пути, то движение будет неравномерным .

При таком движении скорость тела либо увеличивается, либо уменьшается.

Процесс изменения скорости тела характеризуется ускорением.

Ускорением называется физическая величина, равная отношению очень малого изменения вектора скорости ? к малому промежутку времени ?t, за которое произошло это изменение: .

Ускорение обозначается буквой измеряется в м/с 2 .

Направление вектора совпадает с направлением изменения скорости.

При равноускоренном движении с начальной скоростью ускорение равно

Отсюда скорость равноускоренного движения равна .

Перемещение при прямолинейном равноускоренном движении вычисляется по формуле:

Вопрос 2. Газы становятся проводниками лишь тогда, когда они каким-то образом ионизированы. Процесс ионизации газов заключается в том, что под действием каких-либо причин от атома отрывается один или несколько электронов. В результате этого вместо нейтрального атома возникают положительный ион и электрон. Распад молекул на ионы и электроны называется ионизацией газа. Часть образовавшихся электронов может быть при этом захвачена другими нейтральными атомами, и тогда появляются отрицательно заряженные ионы.

Читайте также:  Сила взаимодействия токов двух параллельных проводников с током

Таким образом, в ионизованном газе имеются носители зарядов трех сортов: электроны, положительные ионы и отрицательные. Отрыв электрона от атома требует затрат определенной энергии — энергии ионизации Wi. Энергия ионизации зависит от химической природы газа и энергетического состояния электрона в атоме. Так, для отрыва первого электрона от атома азота затрачивается энергия 14,5 эВ, а для отрыва второго электрона — 29,5 эВ, для отрыва третьего — 47,4 эВ. Факторы, вызывающие ионизацию газа называются ионизаторами. Различают три вида ионизации: термоионизацию, фотоионизацию и ударную ионизацию.

Термоионизация происходит в результате столкновения атомов или молекул газа при высокой температуре, если кинетическая энергия относительного движения сталкивающихся частиц превышает энергию связи электрона в атоме.

Фотоионизация происходит под действием электромагнитного излучения (ультрафиолетового, рентгеновского или γ-излучения), когда энергия, необходимая для отрыва электрона от атома, передается ему квантом излучения.

Ионизация электронным ударом (или ударная ионизация) — это образование положительно заряженных ионов в результате столкновений атомов или молекул с быстрыми, обладающими большой кинетической энергией, электронами. Процесс ионизации газа всегда сопровождается противоположным процессом восстановления нейтральных молекул из разноименно заряженных ионов вследствие их электрического притяжения. Это явление называется рекомбинацией. При рекомбинации выделяется энергия, равная энергии, затраченной на ионизацию.

Это может вызвать, например, свечение газа. Если действие ионизатора неизменно, то в ионизованном газе устанавливается динамическое равновесие, при котором в единицу времени восстанавливается столько же молекул, сколько их распадается на ионы. При этом концентрация заряженных частиц в ионизованном газе остается неизменной. Если же прекратить действие ионизатора, то рекомбинация начнет преобладать над ионизацией и число ионов быстро уменьшится почти до нуля. Следовательно, наличие заряженных частиц в газе — явление временное (пока действует ионизатор). При отсутствии внешнего поля заряженные частицы движутся хаотически.

Газовый разряд

При помещении ионизированного газа в электрическое поле на свободные заряды начинают действовать электрические силы, и они дрейфуют параллельно линиям напряженности: электроны и отрицательные ионы — к аноду, положительные ионы — к катоду. На электродах ионы превращаются в нейтральные атомы, отдавая или принимая электроны, тем самым замыкая цепь. В газе возникает электрический ток. Электрический ток в газах — это направленное движение ионов и электронов.

Электрический ток в газах называется газовым разрядом .

Полный ток в газе складывается из двух потоков заряженных частиц: потока, идущего к катоду, и потока, направленного к аноду. В газах сочетается электронная проводимость, подобная проводимости металлов, с ионной проводимостью, подобной проводимости водных растворов или расплавов электролитов. Таким образом, проводимость газов имеет ионно-электронный характер.

Несамостоятельный разряд. Рассмотренный выше механизм прохождения электрического тока через газы при постоянном воздействии на газ внешнего ионизатора представляет собой несамостоятельный разряд, так как при прекращении действия ионизатора прекращается и ток в газе.

Несамостоятельный разряд — это разряд, который зависит от наличия ионизатора. Если после достижения насыщения продолжать увеличивать разность потенциалов между электродами, то сила тока при достаточно большом напряжении станет резко возрастать . Это означает, что в газе появляются дополнительные ионы сверх тех, которые образуются за счет действия ионизатора. Сила тока может возрасти в сотни и тысячи раз, а число заряженных частиц, возникающих в процессе разряда, может стать таким большим, что внешний ионизатор будет уже не нужен для поддержания разряда. Поэтому ионизатор можно теперь убрать. Поскольку разряд не нуждается для своего поддержания во внешнем ионизаторе, его называют самостоятельным разрядом.

Виды самостоятельного разряда

В зависимости от давления газа, напряжения, приложенного к электродам, формы и характера расположения электродов различают следующие типы самостоятельного разряда: тлеющий, коронный, дуговой и искровой.

Тлеющий разряд наблюдается при пониженных давлениях газа (порядка 0,1 мм рт. ст.). Для возбуждения такого разряда достаточно напряжения между электродами в несколько сотен (а иногда и значительно меньше) вольт. Тлеющий разряд используют в газоразрядных трубках для освещения и рекламы. Красное свечение возникает при наполнении трубки неоном. Положительный столб в аргоне имеет синевато-зеленоватый цвет. В лампах дневного света используют разряд в парах ртути.

Искровой разряд можно получить, если постепенно увеличивать напряжение между двумя электродами. При некотором напряжении возникает электрическая искра. Примером гигантского искрового разряда является молния. Она возникает либо между двумя заряженными облаками, либо между заряженным облаком и Землей. Сила тока в молнии достигает 500000 ампер, а разность потенциалов между облаком и Землей — 1 млрд. вольт. Длина светящегося канала может достигать 10 км, а его диаметр — 4 м.

Если после зажигания искрового разряда постепенно уменьшать сопротивление цепи, то сила тока в искре будет увеличиваться, и возникнет новая форма газового разряда, называемого дуговым. В настоящее время электрическую дугу, горящую при атмосферном давлении, чаще всего получают между специальными угольными электродами. Ее температура при атмосферном давлении около 4000 °С. Электрическая дуга является мощным источником света и широко применяется в проекционных, прожекторных и других осветительных установках. Вследствие высокой температуры дуга широко применяется для сварки и резки металлов. Высокую температуру дуги используют также при устройстве дуговых электрических печей, играющих важную роль в современной электрометаллургии.

Коронный разряд наблюдается при сравнительно высоких давлениях газа (например, при атмосферном давлении) в резко неоднородном электрическом поле. Так, например, коронный разряд можно получить около тонкой проволоки. При этом возле нее наблюдается свечение, имеющее вид оболочки или короны, окружающей проволоку, откуда и произошло название разряда. Коронный разряд используется в технике для устройства электрофильтров, предназначенных для очистки промышленных газов от твердых и жидких примесей. В природе коронный разряд возникает иногда под действием атмосферного электрического поля на ветках деревьев, верхушках мачт (так называемые огни святого Эльма). Коронный разряд может возникнуть на тонких проводах, находящихся под напряжением.

Читайте также:  Защита от токов короткого замыкания для блока питания

Понятие о плазме

Плазма — это частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы. Поэтому в целом плазма является электрически нейтральной системой. Степень ионизации плазмы α определяется отношением числа ионизированных атомов к их общему числу. В зависимости от степени ионизации плазма подразделяется на слабо ионизированную (α — доли процента), частично ионизированную (α — несколько процентов) и полностью ионизированную (α = 100%). Слабо ионизированной плазмой является ионосфера — верхний слой земной атмосферы.

В состоянии полностью ионизированной плазмы находится Солнце, горячие звезды. Солнце и звезды представляют собой гигантские сгустки горячей плазмы, где температура очень высокая, порядка 106 — 107 К. Искусственно созданной плазмой различной степени ионизации является плазма в газовых разрядах, газоразрядных лампах. Существование плазмы связано либо с нагреванием газа, либо с излучением различного рода, либо с бомбардировкой газа быстрыми заряженными частицами.

Ряд свойств плазмы позволяет рассматривать ее как особое состояние вещества. Плазма — самое распространенное состояние вещества. Плазма существует не только в качестве вещества звезд и Солнца, она заполняет и космическое пространство между звездами и галактиками. Верхний слой атмосферы Земли также представляет собой слабо ионизированную плазму. Управление движением плазмы в электрических и магнитных полях является основой ее использования как рабочего тела в различных двигателях для непосредственного превращения внутренней энергии в электрическую — плазменные источники электроэнергии, магнитогидродинамические генераторы.

Для космических кораблей перспективно использование маломощных плазменных двигателей. Мощная струя плотной плазмы, получаемая в плазмотроне, широко используется для резки и сварки металлов, бурения скважин, ускорения многих химических реакций. Проводятся широкомасштабные исследования по применению высокотемпературной плазмы для создания управляемых термоядерных реакций.

Движение по окружности с постоянной по модулю скоростью

Криволинейное движение – движение, траекторией которого является кривая линия. Вектор скорости в любой точке направлен по касательной к траектории. Любой участок криволинейного движения приближённо можно представить в виде дуги окружности.

Движение по окружности с постоянной по модулю скоростью – простейший вид криволинейного движения. Это движение с переменным ускорением. Траектория движения – окружность. Вектор скорости всегда направлен по касательной к окружности. Величина скорости постоянная, направление скорости всё время меняется. Ускорение при движении по окружности называют центростремительным. Оно всегда, в каждой точке, направлено к центру окружности. Центростремительное ускорение не меняет модуля скорости, но изменяет направление скорости. Величины, характеризующие движение по окружности с постоянной по модулю скоростью.

Период Т (с) – время одного полного оборота. Частота v (Гц, греческая буква «ню») – число полных оборотов за 1 с. Эти два параметра также встретятся вам в теме «Колебания и волны», формулы будут те же . Формулу ускорения надо запомнить сейчас. Всё остальное выводится из математических соображений: надо знать формулу длины окружности, что такое угол в градусах и в радианах.

Источник



III. Основы электродинамики

Тестирование онлайн

Закон Ома для замкнутой цепи

Замкнутая (полная) электрическая цепь состоит из источника тока и сопротивления.

Источник тока имеет ЭДС () и сопротивление (r), которое называют внутренним. ЭДС (электродвижущая сила) — работа сторонних сил по перемещению положительного заряда по замкнутой цепи (физический смысл аналогичен напряжению, потенциалу). Полное сопротивление цепи — R+r.

1) Напряжение на зажимах источника, а соответственно и во внешней цепи

,
где величина падение напряжения внутри источника тока.

2) Если внешнее сопротивление замкнутой цепи равно нулю, то такой режим источника тока называется коротким замыканием.

Коэффициент полезного действия

Мощность, выделяемая на внешнем участке цепи, называется полезной

При условии R=r мощность, выделяемая во внешней цепи, максимальная для данного источника и равна

Полная мощность — сумма полезной и теряемой мощности

Коэффициент полезного действия источника тока — отношение полезной мощности к полной

Источник ЭДС

Для существования постоянного тока в цепи необходимо непрерывно разделять электрические заряды, которые под действием сил Кулона стремятся соединиться. Для этого необходимы сторонние силы. ЭДС характеризует действие этих сторонних сил. А сама эта работа осуществляется внутри источников ЭДС. Электрические заряды внутри источников ЭДС движутся против кулоновских сил под воздействием сторонних сил.

Сравнивая электрический ток с течением жидкости в трубах, можно сказать, что источник работает, как насос, который подает воду из нижнего резервуара в верхний, из которого она под действием силы тяжести стекает в нижний резервуар.

В быту «источником тока» часто неточно называют любой источник электрического напряжения (батарею, генератор, розетку), но в строго физическом смысле это не так, более того, обычно используемые в быту источники напряжения по своим характеристикам гораздо ближе к источнику ЭДС, чем к источнику тока из-за наличия внутреннего сопротивления.

В настоящее время выпускают множество различных источников ЭДС — от маленьких батареек для часов до генераторов.

Внутри источника тока происходит разделение зарядов из-за процессов, происходящих внутри источника, например, химических процессов.

Гальванический элемент — химический источник тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите (батарейки, аккумуляторы).

Генераторы — создают ток за счет расходования механической энергии.

Термоэлементы — используют энергию теплового движения заряженных частиц.

Фотоэлементы — создают ток за счет энергии света.

Соединение источников тока*

Рассмотрим n одинаковых источников ЭДС

Правила Кирхгофа**

Для расчета сложных разветвленных цепей, которые нельзя свести к эквивалентной цепи, используют правила Кирхгофа:

1) Алгебраическая сумма сил токов, сходящихся в узле равна нулю.

2) Алгебраическая сумма падений напряжений в любом простом замкнутом контуре равна алгебраической сумме ЭДС, которые есть в этом контуре.

Источник