Меню

Фаза переменного тока сдвиг фаз это

БЛОГ ЭЛЕКТРОМЕХАНИКА

Студенческий блог для электромеханика. Обучение и практика, новости науки и техники. В помощь студентам и специалистам

  • главная
  • инфо
  • блог
  • словарь электромеханика
  • электроника
  • крюинговые компании
    • Одесса/Odessa
    • Николаев/Nikolaev
  • Обучение
    • Предметы по специальности
      • АГЭУ
      • АСЭЭС
      • Диагностика и обслуживание судовых технических средств
      • Мехатронные системы
      • Микропроцессоры
      • Моделирование электромеханических систем
      • МПСУ
      • САЭП
      • САЭЭС
      • СДВС
      • СИВС
      • Силовая электроника
      • Судовые компьютерные ceти
      • СУЭ и ОСУ
      • ТАУ
      • Технология судоремонта
      • ТЭП
      • ТЭЭО и АС
    • Общие предметы
      • Безопасность жизнедеятельности
      • Высшая математика
      • Ділова українська мова
      • Интеллектуальная собственность
      • Культурология
      • Материаловедение
      • Охрана труда
      • Политология
      • Системы технологий
      • Судовые вспомогательные механизмы
      • Судовые холодильные установки
    • I курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • II курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • III курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • IV курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
    • V курс
      • конспекты
      • ргр
      • контрольные
      • лабораторные
      • курсовые
      • зачёты
      • экзамены
  • Теория
    • английский
    • интернет-ресурсы
    • литература
    • тематические статьи
  • Практика
    • типы судов
    • пиратство
    • видеоуроки
  • мануалы
  • морской словарь
  • технический словарь
  • история
  • новости науки и техники
    • авиация
    • автомобили
    • военная техника
    • робототехника

30.03.2013

Сдвиг фаз. Действующее значение переменного тока

На рис. 1 представлены графики ряда синусоидальных токов и напряжений частотой 50 гц.

При рассмотрении рисунка можно обнаружить, что ток i1 и напряжение u3 имеют максимальные (при одинаковом направлении) и нулевые значения всегда одновременно, все остальные токи и напряжения имеют максимальные значения в другие (разные) моменты времени.

Это значит, что для первого тока сдвиг фаз между током и напряжением равен нулю, а между остальными токами и напряжениями не равен нулю.

Рассмотрим синусоидальные токи i1 и i2, мгновенные значения которых представлены на рис. 2 перпендикулярами, опущенными из концов вращающихся отрезков ОА1 и ОА2 на прямую ВБ.

В тот момент, когда ток i2 имеет максимальное значение, ток i1 еще продолжает расти. Так как отрезки ОА1 и ОА2 вращаются с одинаковой постоянной скоростью, время достижения максимального значения током i1 будет отставать от времени достижения максимального значения током i2 (ток i1 отстает от тока i2 или ток i2 опережает ток i1).

Это отставание будет определяться углом между отрезками ОА1 и OА2. Угол А1ОА2 неизменен во времени. Он называется углом сдвига фаз между токами i1 и i2. Аналогично объясняется наличие угла сдвига фаз между током и напряжением.

Мы видели, что переменный ток в процессе изменения увеличивается и уменьшается и только два раза за период достигает максимальной величины. Естественно, что, протекая в проводнике, переменный ток выделяет в нем меньше тепла, чем постоянный ток, численно равный амплитудному (максимальному) значению тока. Величина постоянного тока, выделяющего в проводнике такое же количество тепла, как данный переменный ток, называется действующей величиной переменного тока.

Действующую величину переменного тока обозначают буквой I.

Установлено, что действующая величина переменного синусоидального тока равна его максимальному значению, деленному на корень из 2,

По аналогии, действующее значение переменного напряжения

Источник

Фаза сигнала переменного тока

Всё начинает усложняться, когда нам нужно связать два или более напряжения или тока переменного тока, которые «не идут в ногу» друг с другом. Под «не идут в ногу» я подразумеваю, что два сигнала не синхронизированы: их пики и нулевые точки не попадают в одни и те же моменты времени. График на рисунке ниже иллюстрирует пример этого.

Рисунок 1 Два сигнала, не совпадающие друг с другом по фазе Рисунок 1 – Два сигнала, не совпадающие друг с другом по фазе

Две волны, показанные выше (А и В), имеют одинаковую амплитуду и частоту, но «не идут в ногу» друг с другом. Техническими терминами это называется сдвигом фазы. Ранее мы видели, как можно построить «синусоидальную волну», рассчитав тригонометрическую функцию синуса для углов в диапазоне от 0 до 360 градусов, полный круг. Начальная точка синусоидальной волны была нулевой амплитуды при нулевых градусах, продвигающейся до полной положительной амплитуды при 90 градусах, до нулевой амплитуды при 180 градусах, до полной отрицательной амплитуды при 270 градусах и обратно в начальную точку с нулем при 360 градусах. Мы можем использовать эту шкалу углов на горизонтальной оси графика, чтобы определить, насколько сигналы различаются по фазе. Рисунок ниже.

Читайте также:  Расчет цепей постоянного тока емкость

Рисунок 2 Волна А опережает волну В на 45 Рисунок 2 – Волна А опережает волну В на 45°

Сдвиг фазы между этими двумя сигналами составляет около 45 градусов, волна «А» опережает волну «В». Чтобы лучше проиллюстрировать эту концепцию, на следующих графиках приведен ряд примеров сдвигов фаз.

Рисунок 3 Сдвиг фазы = 90. A опережает B Рисунок 3 – Сдвиг фазы = 90°.
«A» опережает «B» Рисунок 4 Сдвиг фазы = 90. B опережает A Рисунок 4 – Сдвиг фазы = 90°.
«B» опережает «A» Рисунок 5 Сдвиг фазы = 180. A и B представляют собой зеркальные отражения друг друга Рисунок 5 – Сдвиг фазы = 180°.
«A» и «B» представляют собой зеркальные отражения друг друга Рисунок 6 Сдвиг фазы = 0. A и B идеально синхронизированы друг с другом Рисунок 6 – Сдвиг фазы = 0°.
«A» и «B» идеально синхронизированы друг с другом

Поскольку сигналы в приведенных выше примерах имеют одинаковую частоту, они будут расходиться по фазе на одну и ту же величину в любой момент времени. По этой причине мы можем выразить сдвиг фазы для двух или более сигналов одной и той же частоты как постоянную величину для всей волны, а не просто как значение сдвига между двумя любыми конкретными точками на формах сигналов. То есть можно с уверенностью сказать что-то вроде: «напряжение «A» отличается по фазе от напряжения «B» на 45 градусов». Про ту волну, которая находится впереди, можно сказать что она «опережает», а про ту волну, которая находится позади, можно сказать что она «отстает».

Сдвиг фазы, как и напряжение, всегда является относительным измерением, то есть между двумя сигналами. На самом деле не существует такого понятия, как сигнал с абсолютным значением фазы, потому что не известен универсальный эталон для фазы. Обычно при анализе цепей переменного тока в качестве эталона фазы используется сигнал напряжения источника питания, причем это напряжение указывается как «ххх вольт при 0 градусах». Любое другое напряжение или ток переменного тока в этой цепи будет иметь свой сдвиг фазы, выраженный относительно этого источника напряжения.

Это то, что делает вычисления цепей переменного тока более сложными, чем цепей постоянного тока. При применении закона Ома и законов Кирхгофа величины переменного напряжения и тока должны отражать как амплитуду, так и сдвиг фазы. Математические операции сложения, вычитания, умножения и деления должны оперировать этими величинами амплитуды, а также сдвига фазы. К счастью, существует математическая система счисления, называемая комплексными числами, идеально подходящая для этой задачи представления амплитуды и фазы.

Поскольку тема комплексных чисел настолько важна для понимания цепей переменного тока, следующая глава будет посвящена только этой теме.

Резюме

  • Сдвиг фазы – это когда два или более сигналов не синхронизированы друг с другом.
  • Величина сдвига фазы между двумя волнами может быть выражена в градусах, и это значение в градусах может быть определено по горизонтальной оси графика формы волны, используемого при построении тригонометрической функции синуса.
  • Опережающий сигнал определяется как один сигнал, опережающий другой по нарастанию. Отстающий сигнал – тот, который позади другого. Пример: Рисунок 7 Сдвиг фазы = 90. A опережает B, B отстает от A Рисунок 7 – Сдвиг фазы = 90°.
    «A» опережает «B», «B» отстает от «A»
  • Расчеты для анализа цепей переменного тока, чтобы быть полностью точными, должны учитывать как амплитуду, так и сдвиг фазы сигналов напряжения и тока. Это требует использования математической системы, называемой комплексными числами.

Источник

Сдвиг фаз переменного тока и напряжения

Мощность постоянного тока, как мы уже знаем, равна про­изведению напряжения на силу тока. Но при постоянном токе направления тока и напряжения всегда совпадают. При пере­менном же токе совпадение направлений тока и напряжения имеет место только в случае отсутствия в цепи тока конденса­торов и катушек индуктивности.

Читайте также:  Коммутация тока в однофазном мостовом выпрямителе

Для этого случая формула мощности

Мощность при отсутсвии сдвига фаз

На рисунке 1 представлена кривая изменения мгновенных значений мощности для этого случая (направление тока и напряжения совпадают). Обратим внимание на то обстоятельство, что направления векторов напряжения и тока в этом случае совпадают, то есть фазы тока и напряжения всегда одинаковы.

Нулевой сдвиг фаз

Рисунок 1. Сдвиг фаз тока и напряжения. Сдвига фаз нет, мощность все время положительная.

При наличии в цепи переменного тока конденсатора или катушки индуктивности, фазы тока и напряжения совпадать не будут.

О причинах этого несовпадения читайте в моем учебники для емкостной цепи и для индуктивной цепи, а сейчас установим, как будет оно влиять на величину мощности переменного тока.

Представим себе, что при начале вращения радиусы-век­торы тока и напряжения имеют различные направления. Так как оба вектора вращаются с одинаковой скоростью, то угол между ними будет оставаться неизменным во все время их вращения. На рисунке 2 изображен случай отставания вектора тока Im от вектора напряжения Um на угол в 45°.

Сдвиг фаз равен 45 градусов

Рисунок 2. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 45, мощность в некоторые периоды времени становиться отрицательной.

Рассмот­рим, как будут изменяйся при этом ток и напряжение. Из по­строенных синусоид тока и напряжения видно, что когда напряжение проходит через ноль, ток имеет отрицательное значение.

Затем напряжение достигает своей наибольшей ве­личины и начинает уже убывать, а ток хотя и становится по­ложительным, но еще не достигает наибольшей величины и продолжает возрастать. Напряжение изменило свое направле­ние, а ток все еще течет в прежнем направлении и т. д. Фаза тока все время запаздывает по сравнению с фазой напряже­ния. Между фазами напряжения и тока существует постоян­ный сдвиг, называемый сдвигом фаз.

Действительно, если мы посмотрим на рисунок 2, то заме­тим, что синусоида тока сдвинута вправо относительно сину­соиды напряжения. Так как по горизонтальной оси мы откла­дываем градусы поворота, то и сдвиг фаз можно измерять в градусах. Нетрудно заметить, что сдвиг фаз в точности равен углу между радиусами-векторами тока и напряжения.

Вследствие отставания фазы тока от фазы напряжения его направление в некоторые моменты не будет совпадать с на­правлением напряжения. В эти моменты мощность тока будет отрицательной, так как произведение положительной величи­ны на отрицательную величину всегда будет отрицательным. Эта значит, что внешняя электрическая цепь в эти моменты становится не потребителем электрической энергии, а источни­ком ее. Некоторое количество энергии, поступившей в цепь во время части периода, когда мощность была положительной, возвращается источнику энергии в ту часть периода, когда мощность отрицательна.

Чем больше сдвиг фаз, тем продолжительнее становятся части периода, в течение которых мощность делается отрица­тельной, тем, следовательно, меньше будет средняя мощность тока.

При сдвиге фаз в 90° мощность в течение одной четверти периода будет положительной, а в течение другой четверти периода — отрицательной. Следовательно, средняя мощность тока будет равна нулю, и ток не будет производить никакой работы (рисунок 3).

Читайте также:  Где взять рюкзак в тока бока с вишней

Сдвиг фаз 90 градусов

Рисунок 3. Сдвиг фаз тока и напряжения. Фазы тока и напряжения сдвинуты на 90, мощность в течении одной четвери периода положительна, а в течении другой отрицательна. В среднем мощьноть равна нулю.

Теперь ясно, что мощность переменного тока при наличии сдвига фаз будет меньше произведения эффективных значений тока и напряжения, т. е. формулы

moschnost-formula-no

в этом случае будут неверны

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник



Сдвиг фаз у переменных токов

Сдвиг фаз у переменных токовПеременные токи одинаковой частоты могут отличаться друг от друга не только по амплитуде, но и по фазе, т. е. могут быть сдвинуты по фазе.

Если два переменных тока одновременно достигают амплитудных значений и одновременно проходят через нулевые значения, то эти токи совпадают по фазе. В этом случае сдвиг фаз между токами равен нулю (рис. 1, а).

Однако возможны случаи, когда амплитудные (и нулевые) значения данных токов не совпадают друг с другом по времени, т. е. имеется тот или иной сдвиг фаз, не равный нулю. На рис. 1, б показаны токи, сдвинутые по фазе на четверть периода (T/4).

Сдвиг фаз обычно обозначают греческой буквой φ и часто выражают в градусах, считая весь период равным 360°, подобно тому, как один полный оборот соответствует 360°. Таким образом, сдвиг фаз на четверть периода обозначают φ = 90°, а при сдвиге фаз на половину периода пишут φ = 180е.

Различные сдвиги фаз между двумя переменными токами

Рис. 1. Различные сдвиги фаз между двумя переменными токами

Связь между периодом переменного тока T и углом 360° можно установить из опыта, в котором получают переменную синусоидальную ЭДС при равномерном вращении витка (или катушки) в однородном магнитном поле. В этом случае за один оборот витка, т. е. за время его поворота на угол 360°, ЭДС совершает одно полное синусоидальное колебание. Таким образом, действительно период T соответствует углу 360°.

Это же следует из математического выражения для переменного тока, т. е. из его уравнения. Если переменный ток начал свои изменения от нулевой фазы, когда t = 0, ωt = 0 и sin ωt = 0, то по прошествии одного периода получится

В этот момент фазовый угол составляет 2π радиан или 360°, и, следовательно, sin ωt = sin 2π = sin 360° = 0. При изменении угла от 0 до 2π радиан, или до 360°, синус совершает полный цикл своих изменений. Соответственно этому переменный ток совершает одно полное колебание.

Следует помнить, что только токи одной и той же частоты могут иметь вполне определенный сдвиг фаз. При различной частоте токов сдвиг фаз между ними не является постоянным, а все время меняется. Например, для токов i1 и i2 изображенных на рис. 2 и имеющих частоты, отличающиеся друг от друга в два раза, сдвиг фаз в моменты времени, изображенные точками 0, 1, 2, 3, 4, равен соответственно 0; 90; 180; 270; 360°, т. е. на протяжении одного периода тока i1 значение φ изменяется от 0 до 360°.

Переменный сдвиг фаз между токами различной частоты

Рис. 2. Переменный сдвиг фаз между токами различной частоты

Все сказанное о сдвиге фаз между токами относится также к напряжениям и электродвижущим силам. В дальнейшем мы рассмотрим случаи, когда будет существовать сдвиг фаз между напряжением и током.

Источник