Меню

Физические приборы для измерения силы тока

Измерение силы тока

Время на чтение:

В процессе эксплуатирования электрической сети или какого-то электроприбора, необходимо проводить измерение силы тока. Домашним мастерам будет полезно узнать, как определить мощность электронного оборудования, и какие устройства для этого применяют. Также стоит знать о защите при работе с электроникой под напряжением.

Устройства для измерения

Измерительные аппараты применяются в разных областях домашнего хозяйства и в промышленных масштабах. Чаще приборы эксплуатируются на крупных предприятиях, которые связаны с распределением тепловой регенерации, электроэнергии. Современный рынок товаров и услуг предлагает потребителю огромное количество моделей.

Важно знать параметры электричества

Силу электротока интересно сравнивать с водным потоком. В стародавние времена реки загораживали бревнами, чтобы обеспечить напор, который бы вертел мельничное колесо. С увеличением скорости вращения, эффективность мельницы возрастала. Также и сила электротока характеризует ЭДС, производимую электричеством.

От большой силы тока нагреется проводка

Например, лампа, при повышении силы электричества в токовой цепи, будет светить более ярко. Поэтому необходимо знать, как называется прибор для измерения силы тока и мощности.

Мощность напрямую оказывает влияние на то, как электричество будет воздействовать на человеческий организм при касании. Сила тока (СТ) демонстрирует нагрузку на провод. Максимум токовой пропускной способности провода зависит от электропроводности и площади токопровода в сечении. Когда СТ окажется очень значительной, электропровод или электрический кабель будет перегреваться.

Важно! Это может спровоцировать плавку изоляционного слоя и, как результат — электрического замыкания.

Вот почему электропроводке всегда создают защиту от высоких нагрузок специальными выключателями (автомат) или предохраняющими элементами.

По значениям можно искать неисправности

С особенным трепетом к этому необходимо отнестись обладателям жилья со старой электропроводкой. При использовании всё большего числа приборов, аппаратов, провода подвергаются нагруженному состоянию.

По отношению значений СТ в разных цепях электрических устройств, можно говорить об их работе. Так, в фазах двигателя должны протекать электрические токи равнозначной мощности. В том случае, когда наблюдается разница, значит двигатель функционирует неправильно. Также можно видеть состояние работы нагревателя или системы «тёплый пол» — измеряется СТ во всех комплектующих.

Работа приборов основана на разных принципах

Амперметры

Измерить можно при помощи одной из разновидностей этого прибора:

  • Электромагнитный. Внутри расположена катушка, по ней идет электроток и создает ЭДС. Оно затягивает в катушку металлический сердечник, который связан со стрелочкой. Чем выше будет СТ, тем активнее будет затягиваться сердечник и больше будет отклоняться стрелочка аппарата.
  • Тепловой. В устройстве присутствует натянутая нить из металла, она связана со стрелочкой. Идущий электроток провоцирует нагревание нити, его уровень зависит от СТ. А чем активнее нагрев, тем нить становится длиннее, и больше отклонится стрелочка аппарата.
  • Магнитоэлектрический. В устройстве присутствует магнитное поле, где симметрично располагается объединенная со стрелочкой электроприбора рамка с проволочной намоткой. При проходе через намотку электротока, конструкция под воздействием поля развернется на определенный угол, зависящий от СТ. А от угла поворачивания определяется расположение стрелочки, которая отмечает на шкале данные силы электротока.
  • Электродинамичный. Внутри электроприбора имеются 2 катушки. Одна нестационарная. Когда по катушкам идет электроток (из-за формирующихся при этом электрических полей) подвижная повернется по отношению ко второй, и при этом уводит за собой стрелочку. От СТ зависит угол отклонения.
  • Индукционный. Электроток идет через обмотки не двигающихся катушек, объединенных магнит-системой. В процессе формируется магнитное поле (вращается, бежит), действующее с определенной силой (в зависимости от СТ) на двигающийся цилиндрический или дисковой элемент из металла, связанный со счетчиком электроприбора.
  • Электронный или цифровой. Во внутренней части расположена электрическая схема, данные выводятся на ЖК-дисплей.

Цифровые модели удобнее

Мультиметр

Так именуют универсальный измеритель значений электротока. Он может функционировать, как амперметр. Результаты замеров выводятся на ЖК-экране. Для функционирования необходимо электропитание от аккумулятора.

Механику можно использовать без батареек

Тестер

По типу работы, прибор аналоговый. Итоги замеров можно видеть на механическом табло за защитным стеклом при помощи стрелочки, аккумуляторы нужны только при присутствии омметра.

Удобно мерить без вмешательства в схему

Токоизмерительные клещи

Они наиболее практичные. Ими зажимают места испытуемого проводника, после чего электроприбор покажет силу идущего в нем электротока. При этом важно принять во внимание, что кольцо должно быть исключительно в пределах проверяемого провода. Если закрепить несколько жил, аппарат покажет геометрию токов в них.

Первые три устройства для осуществления замеров подразумевают присутствие в цепи токовой нагрузки. Монтируются обязательно в разрыв электропровода. Для 1 фазы электросети, это подразумевает и фазу, так и «0». Для 3 фаз — исключительно фаза, потому что в «0» протекает геометрия токов всех фаз (при одной и той же нагрузке равняется 0).

Необходимо правильное подключение

Присутствует два обстоятельства:

  • Различие вольтметра (чтобы определять электрическое напряжение) от амперметра состоит в том, что его запрещено применять без токовой нагрузки, иначе будет коротить.
  • Щупами устройства разрешено прикасаться только к электропроводам или контактам, когда нет электричества, то есть проверяемая электролиния должна быть не под напряжением. Иначе между рядом расположенным щупом и проводящей ток жилой скорее всего будет наблюдаться дуга, которой хватит для плавки металлических элементов. Все измерители имеют диапазоны, которыми можно отрегулировать чувствительность.

На заметку. Электроток, потребляемый отдельными электроприборами, такими как телевизор и ПК, сберегающие энергию лампочки и светодиоды не синусоидальные. Некоторые измерители, принцип работы которых сориентирован на переменное электрическое напряжение, могут показывать СТ ошибочно.

Как не травмироваться при замерах?

Чтобы перестраховаться, если имеются сомнения, лучше ознакомиться с инструкцией к электроприбору и проверить верность подсоединения. Выполняя замеры, важно помнить о мерах защиты при работе с электротоком. Травмирование может случиться даже при работе с незначительной токовой мощности аппаратами. Особенно в условиях с высокой влажностью. Необходимо работать в прорезиненной спецодежде.

Для исследования СТ, ученые придумали измеряющие электроприборы. Из-за незначительного внутреннего сопротивления, эти измерители не оказывают влияние на параметры электротока в измеряемой токовой цепи. Приборы активно применяются на промобъектах и дома.

Источник

Измерение силы тока: обзор измерительных приборов и краткое руководство к их применению

мультиметр

Из данной статьи вы узнаете, что понимается под этим термином и какие инструменты используются для этой цели.

Заодно поговорим о мерах безопасности при проведении подобных работ.

Единица измерения силы тока

Силой тока в физике принято называть величину заряда, пересекающего поперечное сечение проводника за единицу времени. Единица измерения — ампер (А). Силу в 1 А имеет такой ток, при котором за 1-у секунду через сечение проводника проходит заряд в 1 кулон (Кл).

Чем более сильным был напор, тем более производительную мельницу можно было привести с его помощью в движение.

Точно так же и сила тока характеризует работу, которую может выполнить электричество. Простой пример: лампочка при увеличении силы тока в цепи будет гореть ярче.

Зачем нужно знать, какой силы ток протекает в проводнике? От силы тока зависит то, как он будет действовать на человека при случайном контакте с токоведущими частями. Производимый электричеством эффект отобразим в таблице:

Сила тока, А (переменный с частотой 50 Гц) Эффект
Менее 0,5 мА является незаметным для человека
От 0,5 до 2 мА Появляется нечувствительность к различным раздражителям
От 2 до 10 мА Болевые ощущения, спазм мышц
От 10 мА до 20 мА Усиленные спазмы, некоторые ткани повреждаются. При силе тока от 16 мА человек теряет способность разжать или отдернуть руку, чтобы разомкнуть контакт с токоведущей частью
От 20 мА до 100 мА Дыхательный паралич
От 100 мА до 3 А Фибрилляция сердца, нужны безотлагательные меры по реанимированию пострадавшего
Свыше 3 А Сильные ожоги, остановка сердца (при кратковременном воздействии возможность реанимирования сохраняется)
Читайте также:  Как найти направление вектора если известно направление тока в проводнике

А вот еще несколько причин:

  1. Сила тока характеризует нагрузку на проводник. Максимальная пропускная способность последнего зависит от материала и площади поперечного сечения. Если сила тока окажется слишком большой, провод или кабель будет сильно греться. Это может привести к расплавлению изоляции с последующим коротким замыканием. Вот почему проводку всегда защищают от перегрузок автоматическими выключателями или предохранителями. С особым вниманием к протекающей в проводах силе тока следует отнестись владельцам квартир и домов со старой проводкой: ввиду применения все большего количества электроприборов она часто оказывается в перегруженном состоянии.
  2. По соотношению значений силы тока в различных цепях электроприбора можно сделать вывод о его исправности. Например, в фазах электродвигателя должны протекать токи равной силы. Если наблюдаются расхождения, значит двигатель неисправен либо работает с перегрузкой. Таким же способом определяется состояние нагревательного прибора или электрического «теплого пола»: замеряется сила тока во всех составляющих устройства.

Работа электричества, точнее говоря его мощность (количество работы за единицу времени), зависит не только от силы тока, но и от напряжения. Собственно говоря, произведение этих величин и определяет мощность:

W = U * I,

  • W – мощность, Вт;
  • U – напряжение, В;
  • I – сила тока, А.

Таким образом, зная напряжение в сети и мощность прибора, можно рассчитать, какая сила тока будет через него протекать при условии исправного состояния: I = W/U. К примеру, если известно, что мощность обогревателя составляет 1,1 кВт и работает он от обычной сети напряжением 220 В, то сила тока в нем составит: I = 1100 / 220 = 5 А.

измеряем силу тока

Формула измерения силы тока

При этом нужно учитывать, что согласно законам Кирхгофа сила тока в проводе до разветвления представляет собой сумму токов в ветвях. Поскольку в квартире или доме все приборы подключаются по параллельной схеме, то если, допустим, одновременно работают два прибора с током в 5 А, то в подводящем проводе и в общем нулевом будет протекать ток силой в 10 А.

Обратная операция, то есть расчёт мощности потребителя путем перемножения измеренной силы тока на напряжение, не всегда дает правильный результат. Если в устройстве-потребителе имеются обмотки, как например в электродвигателях, которым присуще индуктивное сопротивление, часть мощности будет расходоваться на преодоление этого сопротивления (реактивная мощность).

Источник

8.1 Основные типы приборов, измеряющих напряжение и силу тока

8.1 Основные типы приборов, измеряющих напряжение и силу тока

Напряжение и силу тока измеряют приборами непосредственной оценки или приборами, использующими метод сравнения (компенсаторами).По структурному построению всевозможные приборы ,измеряющие напряжение и силу тока, условно можно разделить на три ос­новных типа:

Для измерения напряжения и силы тока 5…20 лет назад (иногда еще и в настоящее время) широко применялись электромеханические приборы. При­боры этих систем часто входят в состав и других, более сложных, средств измерений.

По физическому принципу, положенному в основу построения и конст­руктивному исполнению, эти приборы относятся к группе аналоговых средств измерения, показания которых являются непрерывной функцией из­меряемой величины.

Электромеханические приборы непосредственной оценки измеряемой величины представляют класс приборов аналогового типа, обладающих рядом положительных свойств: просты по устройству и в эксплуатации, обладают высокой надежностью и на переменном токе реагируют на среднее квадратическое значение напряжения. Последнее обстоятельство позволяет измерять наиболее информативные параметры сигнала без ме­тодических ошибок. Электромеханические измерительные приборы строят по обобщенной структурной схеме, показанной на рис. 8.2.

Измерительная схема электромеханического прибора состоит из совокупности сопротивлений, индуктивностей, емкостей и других элементов

Рис. 8.2. Структурная схема электромеханического прибора

электрической цепи прибора и осуществляет количественное или качествен­ное преобразование входной величины х в электрическую величину х’, на которую реагирует измерительный механизм. Последний преобразует элек­трическую величину х’ в механическое угловое или линейное перемещение , значение которого отражается на шкале отсчетного устройства, проградуированной в единицах измеряемой величины N(x). Для этого необходимо чтобы каждому значению измеряемой величины соответствовало одно и только одно определенное отклонение . При этом параметры схемы и измерительного механизма не должны меняться при изменении внешних условий: температуры окружающей среды, частоты питающей сети и дру­гих факторов.

Классификацию электромеханических приборов производят на основании типа измерительного механизма. Наиболее распространенными в прак­тике радиотехнических измерений являются следующие системы: магнитоэлектрическая, электромагнитная, электродинамическая, элек­тростатическая.

—магнитоэлектрическая измерительная система;

—электромагнитная измерительная система;

—электродинамическая измерительная система;

—электростатическая измерительная система;

Условное обозначение типа измерительной системы наносится на шкале прибора или средства измерения.

Магнитоэлектрическая система. В этой системе измеритель­ный механизм состоит из проволочной рамки с протекающим в ней током, помещенной в поле постоянного магнита (магнитопровода). Поле в зазоре, где находится рамка, равномерно за счет особой конфигурации магнитопро­вода. Под воздействием тока рамка вращается в магнитном поле, угол пово­рота ограничивают специальной пружиной, поэтому передаточная функция (часто называемая уравнением шкалы) линейна:

где 0 удельное потокосцепление, определяемое параметрами рамки и магнитной индукцией; W—удельный противодействующий момент, созда­ваемый специальной пружиной,

1 – рамка с измеряемым током и стрелкой;2 – неподвижный сердечник;

3 – полюсные наконечники;4 – возвратная пружина

На основе магнитоэлектрического механизма создаются вольтметры, амперметры, миллиамперметры и другие измерительные приборы, и их структурное построение главным образом определяется измерительной схемой. Измерительные приборы магнитоэлектрической системы имеют достаточно высокую точность, сравнительно малое потребление энергии из измерительной цепи, высокую чувствительность, но работают лишь на постоянном токе.

Для расширения пределов измерения токов амперметрами и напряжений вольтметрами применяют шунты и добавочные сопротивления, которые включают соответственно параллельно и последовательно индикаторам в схемы этих приборов.

Основное использование переносные, лабораторные, многопредельные амперметры и вольтметры постоянного тока.Класс точности 0,05 … 0,5,потребляемая мощность Рсоб 10-5 … 10-4 Вт.

Гальванометры. Особую группу измерителей тока составляют высоко чувствительные магнитоэлектрические приборы — нуль-индикаторы, схемы сравнения, или указатели равновесия, называемые гальванометрами. Их задача показать наличие или отсутствие тока в цепи, поэтому они работают в начальной точке шкалы и должны обладать большой чувствительностью. Гальванометры снабжают условной шкалой и не нормируют по классам точ­ности.

Чувствительность гальванометров выражается в мм или делениях (на­пример, Si 109 мм/А). Такая высокая чувствительность достигается за счет особой конструкции прибора.

Поскольку чувствительность гальванометров очень высока, их градуиро-вочная характеристика нестабильна и зависит от совокупности внешних влияющих факторов. Поэтому при выпуске на производстве чувствительные гальванометры не градуируют в единицах измеряемой физической величины и им не присваивают классы точности. В качестве же метрологических ха­рактеристик гальванометров обычно указывают их чувствительность к току или напряжению и сопротивление рамки.

Современные гальванометры позволяют измерять токи 10 -5 … 10 -12 А и напряжения до 10 -4 В.

Электромагнитная система. Принцип действия электромагнит­ной системы основан на взаимодействии катушки с ферромагнитным сердеч­ником. Ферромагнитный сердечник втягивается в катушку при любой поляр­ности протекающего по ней тока. Это обусловлено тем, что ферромагнетик располагается в магнитном поле катушки так, что поле усиливается. Следова­тельно, прибор электромагнитной системы может работать на переменном токе. Однако электромагнитные приборы являются всё-таки низкочастотны­ми, так как с ростом частоты сильно возрастает индуктивное сопротивление катушки.

Читайте также:  Bn44 00422b ограничить ток подсветки

Уравнение шкалы или передаточная функция электромагнитной измерительной системы выражается как:

2 ,

где 2 =dt;

– индуктивность катушки

Достоинствами приборов электромагнитной системы являются простота конструкции, способность выдерживать значительные перегрузки, возмож­ность градуировки приборов, предназначенных для измерений в цепях пере­менного тока, на постоянном токе. К недостаткам приборов этой системы можно отнести большое собственное потребление энергии, невысокую точ­ность, малую чувствительность и сильное влияние магнитных полей.

На практике применяют амперметры электромагнитной системы с преде­лами измерения от долей ампера до 200 А, и вольтметры — от долей вольта до сотен вольт. Основное использование в виде щитовых и лабораторных переносных низкочастотных амперметров и вольтметров (f = 0 … 5 кГц).Класс точности 0,5 … 2,5,потребляемая мощность Рсоб =1 … 6 Вт.

Электродинамическая система — измерительный механизм содержит две измерительные катушки: неподвижную и подвижную. Принцип действия основан на взаимодействии катушек, электромагнитные поля кото­рых взаимодействуют в соответствии с формулой:

cos ,

где Mвр — вращающий момент; I1 — ток через неподвижную катушку;I 2 —

ток через подвижную катушку; — фазовый сдвиг между синусоидальными токами; М— коэффициент взаимной индуктивности катушек.

На основе электродинамического механизма в зависимости от схемы соеди­нения обмоток могут выполняться вольтметры, амперметры, ваттметры. Досто- инством электродинамических вольтметров и амперметров является высокая точность на переменном токе. Предел основной приведенной погрешности может быть 0,1.. .0,2 %, что является наилучшим достижимым показателем для измерителыахх приборов переменного тока. По другим показателям электродинамиче­ские приборы близки к электромагнитным. Электродинамические приборы ис­пользуются как образцовые лабораторные низкочастотные высокого класса точности измерительные приборы.

Класс точности 0,1 … 0,2,потребляемая мощность Рсоб = 1 Вт., частотный диапазон 0 … 5кГц.

1 – неподвижная катушка

2 – подвижная катушка

Электростатические приборы — принцип действия электро­статического механизма основан на взаимодействии электрически заряженных проводников. Подвижная алюминиевая пластина, закрепленная вместе со стрелкой, перемещается, взаимодействуя с неподвижной пластиной. Ограничение движения (как и в других электромеханических системах) осуществляется за счет пружинки. Электростатические приборы по принципу действия меха­низма являются вольтметрами. Достоинства этих приборов: широкий частот­ный диапазон (до 30 МГц) и малая мощность, потребляемая из измерительной цепи. Приборы измеряют среднее квадратическое значение напряжения.

Уравнение рамки записывается в виде:

, dt, С – емкость между пластинами.

Основное использование в качестве высокочастотных лабораторных и высоковольтных вольтметров. Класс точности 0,5 … 1,5,потребляемая мощность Рсоб 1 мВт, частотный диапазон 0 … 30 МГц.

8.1 Магнитоэлектрические приборы с преобразователями

переменного тока в постоянный

Описанные выше приборы не решают многих проблем, возникающих при измерении на переменном токе: электромагнитный и электродинамический— низкочастотны, электростатический обладает низкой чувствительностью. Приме­нение магнитоэлектрического механизма в сочетании с преобразователем позво­ляет существенно расширить возможности измерений на переменном токе. По типу преобразователя данные приборы делятся на выпрямительные и термоэлек­трические.

Выпрямительные приборы.Представляют собой сочетание измерительного механизма магнитоэлектрической системы с выпрямителем на полупроводниковых диодах.

Схемы соединений диодов с измерительными механизмами можно разделить на две основные групы: однополупериодные и двухполупериодные.

Наиболее распространены приборы с двухполупериодными схемами выпрямления.

а – трансформаторная; б – мостовая; в, г – мостовая с заменой двух диодов резисторами.

При измерении переменного тока мгновенное значение вращающего момента М(t)=Bsωi, где i -мгновенное значение тока, протекающего через измерительный механизм.

Из-за инерционности подвижной части отклонение её определяется средним значением вращающего момента МСР. Для схемы с однополупериодным выпрямлением если ток , средний за период

вращающий момент равен

, где ICP – средневыпрямленное значение синусоидального тока; T – период.

Для схемы с двухполупериодным выпрямлением вращающий момент увеличивается вдвое.

Угол поворота подвижной части при одно- и двухполупериодном выпрямлении соответственно равен

В силу того, что магнитоэлектрическая измерительная система реагирует на постоянный (средневыпрямленный) ток, показания прибора будут пропорциональны средневыпрямленному значению переменного тока или напряжения. Данное обстоятельство является очень существенным, так как приборы проградуированы всредних квадратических значениях синусоидального тока. Это значит, что на шкале прибора представлено не то значение, на которое реагирует прибор (т.е. средневыпрямленное),а величина, умноженная на коэффициент формы синусоиды Кф= 1,11.

При измерении параметров переменного негармонического сигнала; практически всегда возникает методическая погрешность. Например, при градуировке измерительного прибора на синусоидальном токе точке шкалы 100 В соответствовало средневыпрямленное значение напряжения 90 В. Если на этот измерительный прибор подать напряжение, имеющее форму меандра с амплитудой 90В (напомним, что у такого сигнала: Ка = Кф = 1, т.е. Um = U = U ср.в = 90 В), его показания также будут около 100 В (1,11 U ср.в) и абсолютная погрешность измерения напряжения составит △= 100-90=10В.

Выпрямительные приборы при­меняются как комбинированные измерители постоянного и пере­менного тока и напряжения с пре­делами измерения тока от 1 мА до 600 А, напряжения от 0,1 до 600 В.

Достоинствами выпрямительных приборов являются высокая чуст-вительность, малое собственное потребление энергии и возможность измерения в широком диапазоне частот. Частотный диапазон выпрямительных приборов определяется применяемыми диодами. Так, использование точечных кремниевых диодов обеспечивает измерение переменных токов и напряжений на частотах 50… 105 Гц. Основными источниками погрешностей приборов являются изменения параметров диодов с течением времени, влияние окружающей температуры, а также отклонение формы кривой измеряемого тока или напряжения от той, при которой произведена градуировка прибора. Выпрямительные приборы выполняются в виде многопредельных и многоцелевых лабораторных измерительных приборов .К этому типу измерительных приборов относится так называемыйтестер.

Наименьшие пределы измерения переменных токов и напряжений 0,25-0,3 мА и 0,25-0,3 В , малое собственное потребление мощности, широкий частотный диапазон ( до 10-20 кГц).

Недостатки: невысокая точность ( классы точности 1,0-2,5 ); зависимость показаний от формы кривой измеряемой величины.

Область применения: многопредельные ампервольтметры выпрямительные фазометры и самопишущие частотомеры.

Термоэлектрические приборы.Представляют собой сочетание измерительного механизма магнитоэлектрической системы и одного или нескольких термоэлектрических преобразователей.

а) контактная схема термоэлектрических преобразователей

Термоэлектрическая измерительная система — строится на основе терме электрического преобразователя и магнитоэлектрического микроамперметра. Термопреобразователь включает нагреватель, по которому протекает изме- ряемый ток, и термопару, на концах которой возникает термоЭДС. В цепь термопары включен микроамперметр, измеряющий термоток. Рабочий спай термопары находится в тепловом контакте с нагревателем. Нагреватель пред- ставдяет собой тонкую проволоку из металлического сплава с высоким удельным сопротивлением (нихром, манганин). Еще более тонкие проволоч- ки из термоэлектродных материалов применяют для изготовления термопар.

При прохождении измеряемого тока через нагреватель, место его контакта с термопарой нагревается до температуры нагрева, а холодный спай остается при температуре окружающей среды.

Термо-ЭДС, развиваемая термоэлектрическим преобразователем, пропорциональна количеству теплоты, выделяемой измеряемым током в месте присоединения спая. Количество теплоты в свою очередь пропорционально квадрату измеряемого тока. Значение тока I0, протекающего через измерительный механизм может быть определенно как I0=E/r, где E – термо-ЭДС; R – полное сопротивление цепи постоянного тока. Следовательно, показания термоэлектрического прибора пропорциональны квадрату действующего значения тока в нагревателе, т.е. , где k – постоянный коэффициент, зависящий от конструкции и типа термоэлектрического преобразователя и параметров измерительного механизма.

Функционирование прибора основано на тепловом действии тока, и поэтому магнитоэлектрический прибор с термоэлектрическим преобразователем измеряет среднее квадратическое значение переменного тока любой формы.

Термоэлектрические приборы применяют в основном для измерения токов. В качестве вольтметров они практически не используются, так как их входное сопротивление чрезвычайно мало. Достоинством термоэлектрических приборов является широкий частотный диапазон (до 10 МГц). Недостатки: невысокая чувствительность, низкий класс точности (1,5… 4,0), большое потребление энергии из измерительной цепи, малая перегрузочная способность, неравномерная шкала.

Читайте также:  Как образуется положительный ток

Источник



Как измерить силу электрического тока в цепи?

В процессе эксплуатации различного оборудования возникает необходимость проверки основных электрических параметров его работы. Это нужно как для проверки определенных характеристик, так и для ремонтных работ. Одним из наиболее сложных и опасных измерений является определение величины токовой нагрузки. Поэтому для всех начинающих электриков будет актуально узнать, как измерить силу электрического тока в цепи правильно и безопасно.

Используемые приборы

Измерить силу тока можно различными способами, однако далеко не все из них применимы в повседневной жизни. К примеру, различные измерительные трансформаторы, подключаемые в цепь, крайне неудобно переносить по дому и даже хранить на полке в гараже. Поэтому актуальными средствами измерительной техники являются амперметры, мультиметры и клещи. Далее рассмотрим детально особенности работы и применения каждого из них.

Амперметр

Это один из наиболее простых измерительных приборов, который реагирует на изменение токовой нагрузки. С электротехнической точки зрения амперметр представляет собой нулевой или бесконечно малое сопротивление. Поэтому в случае приложения напряжения только к прибору, в нем возникнет ток короткого замыкания, из-за чего амперметр включается в цепь последовательно замеряемой нагрузке. Для наглядности стоит пояснить, что измерить силу тока в розетке нельзя, так как без нагрузки (в случае разомкнутой цепи) ток в ней не протекает, на контактах розетки присутствует только напряжение, поэтому подключение амперметра напрямую приведет к замыканию.

Под электрическим током подразумевается направленное движение заряженных частиц, которое проходит через поперечное сечение проводника за определенную единицу времени. Поэтому запомните, что токовая нагрузка возникает лишь от включения бытового электроприбора к источнику питания. Включение амперметра отдельно к точке электроснабжения или отдельно к рабочему двухполюснику никоим образом не даст информации о силе тока. Если рассмотреть пример на схеме, то чтобы замерить амперы вы должны включить прибор в линию последовательно к объекту измерения:

Пример подключения амперметра

Рис. 1. Пример подключения амперметра

Как видите, основная сложность заключается в том, что процесс измерения происходит непосредственно в момент протекания электрической энергии, соответственно, велика вероятность поражения электрическим током в случае нарушения технологии.

Чтобы избежать плачевных последствий, необходимо соблюдать такие правила:

  • Подключение производится только при отсутствии напряжения;
  • Измерительные провода должны быть заизолированы, а места подключения удалены от человека, при необходимости исключена возможность прикосновения к ним;
  • Выведение амперметра из цепи измерения тока также выполняется при снятом напряжении.

Так как амперметр является узконаправленным прибором для измерения силы тока, его редко кто хранит у себя дома. Поэтому если вы хотите приобрести приспособление, куда выгоднее обзавестись мультиметром, который обладает значительно более широким функционалом.

Мультиметр

Этот прибор также называют тестером, Ц-эшкой, поэтому в обиходе можно встретить разные поколения мультиметра. Принцип использования мультиметра в качестве средства для измерения тока в цепи полностью аналогично амперметру, как по схеме включения, так и по предъявляемым мерам предосторожности. Однако следует отметить, что мультиметр мультиметру рознь, поэтому перед включением тестера обязательно посмотрите, подходит ли он, чтобы измерить ток в вашем случае.

Из конструктивных особенностей сразу отметим:

  • Диапазон измерения – выставляется переключателем на определенную величину силы тока. Выбирается таким, чтобы предполагаемая нагрузка его не превышала, но была соизмеримой.
  • Род тока – переменный или постоянный, заметьте, что некоторые модели мультиметров предоставляют возможность измерить только один вариант.
  • Разделение на слаботочные и силовые измерения – такие приборы имеют отдельную шкалу на мА, мкА и отдельную для А. Также в них могут располагаться отдельные разъемы, чтобы подключить щупы.
  • Наличие защиты от перегрузки при подключении измерительных устройств, обозначается отметкой unfused. Которая свидетельствует о наличии предохранителя, способного предотвратить выход со строя мультиметра от протекания чрезмерной силы тока.

По способу отображения информации все мультиметры подразделяются на циферблатные и дисплейные. Первые из них – довольно устаревшая модель, ориентироваться по ним смогут только искушенные электрики, знакомые с основами метрологии. Новичок же может запутаться в показаниях на шкале, цене деления или какими единицами измеряется нагрузка. Поэтому применение цифрового прибора куда проще и удобнее, на дисплее отображается конкретное число.

Токоизмерительные клещи

Это наиболее удобный прибор, так как чтобы измерить силу тока токоизмерительными клещами, нет нужды разрывать цепь. Конструктивно клещи представляют собой разъемный магнитопровод, в который и помещается проводник, на котором вы хотите померить силу тока. Токоизмерительные клещи имеют схожесть с тем же мультиметром, а в более продвинутых моделях вы встретите такой же переключатель с функцией определения мощности, напряжения, сопротивления, силы тока и разъемы для подключения щупов.

Как измерить силу тока в цепи

Для измерения электрического тока в цепи куда удобнее использовать современные устройства – мультиметры или клещи, особенно для одноразовых операций. А вот стационарный амперметр подойдет для тех ситуаций, когда вы планируете постоянно контролировать силу тока, к примеру, для контроля заряда батарейки или аккумулятора в автомобиле.

Постоянного тока

Разрыв электрической цепи организовывается до начала измерений при отключенном напряжении. Даже в низковольтных цепях вы можете вызвать замыкание батарейки, которое моментально приведет к потере электрического заряда. Далее рассмотрим пример измерения в цепи постоянного тока с помощью мультиметра, для этого:

Использование мультиметра для измерения постоянного тока

Рис. 2. Использование мультиметра для измерения постоянного тока

  • подключите щупы к соответствующим вводам в тестер – черный в COM, красный в разъем с пометкой mA, A или 10A, в зависимости от устройства;
  • при помощи «крокодилов» соедините щупы тестера с цепью измерения последовательно;
  • установите переключателем нужный род тока и предел измерений;
  • можете подключить нагрузку и произвести измерения, на дисплее мультиметра отобразится искомое значение.

Но заметьте, подключать мультиметр следует на короткий промежуток времени, так как он может перегреться и выйти со строя.

Переменного тока

Цепь переменного напряжения может измеряться как мультиметром, так и токоизмерительными клещами. Но, в связи с опасностью переменного бытового напряжения для жизни человека, эту процедуру целесообразнее выполнять клещами без измерительных щупов и без разрыва цепи.

Использование клещей для измерения переменного тока

Рис. 3. Использование клещей для измерения переменного тока

Для этого вам нужно:

  • переключить ручку в положение переменных токов на нужную позицию нагрузки, если она изначально неизвестна, то сразу выбирают максимальный диапазон;
  • нажать боковую скобу, которая разомкнет клещи;
  • поместить внутрь клещей токоведущую жилу и отпустить кнопку.
  • данные измерений отобразятся на дисплее, при необходимости их можно зафиксировать соответствующей кнопкой.

Производить измерения можно как на изолированных, так и на оголенных жилах. Но заметьте, в область обхвата должен попадать только один проводник, сразу в двух измерить не получится.

Реальные примеры измерения тока

Далее рассмотрим несколько вариантов того, как подключить измерительный прибор в бытовых нуждах. При замерах батареек вам необходимо один щуп приложить к контакту батарейки, а второй к контакту нагрузки, второй контакт нагрузки подключается к свободной клемме батарейки.

Измерение силы тока в цепи батарейки

Рис. 4. Измерение силы тока в цепи батарейки

Если вы хотите проверить токовую нагрузку в обмотках трехфазного электродвигателя, измерительный прибор подключается поочередно в каждую фазу или если у вас есть три амперметра, можете использовать их одновременно. Для этого щупы подключаются одним концом к выводам обмоток в борно, а вторым, к питающему проводу соответствующей фазы.

Измерение силы тока в цепи электродвигателя

Рис. 5. Измерение силы тока в цепи электродвигателя

Способы на видео


Источник