Меню

Формула для вычисления падения напряжения

Расчет падения напряжения в кабеле формула и причины

Доброго дня, уважаемые гости и читатели нашего блога! Сегодня мы хотели бы рассказать Вам о том, как выбрать электрический провод для системы энергоснабжения объекта так, чтобы

не пришлось кусать локти, сетуя на скачки напряжения или нехватку мощности для одновременного питания всего комплекса оборудования.

Основной акцент в этом деле делаем на диаметр провода для проходящего по нему тока, и расчет падения напряжения в кабеле как раз и призван решить эту задачу.

Давайте вместе выясним, как производится расчет, а также узнаем, каким образом можно увеличить показатель силового напряжения электрической сети, повысив тем самым безопасность электроустановок.

Что нам нужно знать?

Содержание

  1. Что нам нужно знать?
  2. Причины падения напряжения
  3. Результат падения напряжения
  4. Рассчитываем падение напряжения
  5. Приведем пример.
  6. Как уменьшить падение напряжения в электрической сети
  7. Как уменьшить потери в кабеле

Всем известно, что кабельная проводка передает электроэнергию от источника – линии электропередачи – к конечному потребителю – жилым, административным зданиям, строительным объектам и т.п.

При движении тока по металлическому проводу часть энергии теряется в нем из-за сопротивления току самого металла.

Поэтому потребителю достается не та часть электричества, которая отошла от источника, а несколько меньшая с учетом потерь при движении тока.

Для обеспечения оптимального распределения нагрузки и стабильности напряжения провод для электрической сети необходимо выбирать определенного размера – сечения, которое определяет диаметр провода.

Падение напряжения будет также зависеть от длины проводника.

Расчетная величина падения не должна сильно отклоняться от исходного нормативного значения.

При увеличении подключаемой нагрузки также возрастают препятствия для прохождения тока.

Кроме того, при небольшой силе тока увеличивается сопротивление проводника, поэтому происходит падение напряжения, ведь все мы из школы помним математическую зависимость:

Поэтому, если взять два разных по длине проводника одинакового сечения, то потери выше у более длинного из них.

Следовательно, при прокладке токоведущего кабеля для ЛЭП или других электрических установок основным критерием наряду с сечением проводника выступает его длина.

А можно ли рассчитать эту величину в обычных бытовых условиях, используя подручные средства?

Разумеется, определить снижение напряжения мы сможем тремя способами:

  • Используя два вольтметра, производим замер этой величины в на концах кабеля.
  • Измеряем напряжение последовательно на разных участках провода. При этом методе показания могут быть не объективными, т.к. возможно изменение нагрузки или условий работы сети.
  • Подключаем один электроприбор параллельно замеряемому кабелю. Здесь также возможны погрешности, потому что длинные соединительные провода способны влиять на искомую характеристику.

Важно. Значение этой величины может быть минимальным — от 0,1 В. Советуем применять для измерения приборы не ниже класса точности 0,2.

Причины падения напряжения

В большинстве случае для монтажных работ выбор останавливают на жилах двух сортов металла. Это:

  1. медь;
  2. алюминий.

Они защищены изоляционной обмоткой.

Реже применяют термоусадку для самостоятельной изоляции жильных проводов.

То есть задача изоляции – создать диэлектрическую оболочку для проводника,

потому как в одном кабеле все провода лежат очень плотно друг к другу.

При протяженных линиях сердечники под обмоткой создают некоторый заряд с ёмкостным сопротивлением, по причине чего и возникает падение напряжения.

Оно происходит по следующему алгоритму.

  1. Проводящая жила под воздействием тока греется, затем создается ёмкостное реактивное сопротивление.
  2. Преобразования в элементах цепи делают мощность электрической энергии индуктивной.
  3. Сопротивление каждой фазы всей цепи возникает из-за резистивного сопротивления проводов.
  4. Каждая токопроводящая жила имеет полное сопротивление при подключении кабеля на токовую нагрузку.
  5. Если используются три фазы, то линии тока в них симметричны, нейтральная жила при этом проводит почти нулевой ток.
  6. Полное (комплексное) сопротивление создает потери напряжения, потому что ток в цепи движется с некоторым отклонением за счет реактивного сопротивления.

Данную схему можно представить графически: горизонтальная прямая линия, выходящая из определенной точки – сила тока.

Из той же точки выходит линия входного напряжения U1 и линия выходного напряжения U2, первая под большим, а вторая под меньшим углом к вектору силы тока.

Падение напряжения будет равно геометрической разнице между направлениями U1 и U2.

На рисунке – отрезок AB и есть падение, это гипотенуза треугольника.

Катеты BC и AC – показатели понижения напряжения с учетом реактивного и активного сопротивлений.

Линия AD – это значение энергетических потерь.

Эту схему удобно применять, когда нет доступного способа описать показатель понижения напряжения математически, т.к. вручную его рассчитывать довольно трудно.

Результат падения напряжения

А что становится результатом этого процесса в фундаментальном смысле?

Давайте посмотрим, что происходит при снижении этой характеристики электрической энергии.

В соответствии с нормативной документацией ПУЭ, потери при движении тока от трансформаторной подстанции до самого отдаленного участка по электрической нагрузке для населенного пункта должны быть не более 9 %.

При этом потери в размере 4 % разрешаются от главного ввода до потребителя электроэнергии, а 5 % – от трансформатора до главного ввода.

Читайте также:  Включение реле низким напряжением

В трехфазных коммуникациях нормативный показатель по ГОСТ 29322-2014 составляет 400 В ± 10 % при нормальной эксплуатации линии.

Отклонение этой величины от норматива может приводить к следующим результатам для стационарных объектов или электрических приборов.

  1. Сбои в работе электроустановок, неправильная работа оборудования, выход его из строя, нарушение освещения объекта.
  2. Отключение электроприборов или сбои их корректной работы.
  3. Понижение ускорения вращения у электрических двигателей при старте, потери энергии, отключение устройств при нагреве.
  4. Некорректное распределение электронагрузки от начала линии до удаленного конца провода между объектами потребления.
  5. Работа на 50 % осветительных устройств помещения.

Нормальным значением для потерь при стандартном рабочем режиме электролинии является 5 %.

Эту величину допускается принимать для электросетей на этапе проекта.

Относительно токов большой мощности строятся протяженные электрические магистрали.

Важно. К устройству ЛЭП на всех стадиях предъявляются высокие требования. Поэтому важно просчитывать потери на всех участках магистрали, от главного магистрального пути до линий второстепенного назначения.

Рассчитываем падение напряжения

При вычислении обязательно учитываем активное и реактивное сопротивления, составляющие комплексное (общее) сопротивление цепи, а также мощность.

Формула для расчета этого показателя на участке цепи длиной L выглядит так:

  • P — активная мощность;
  • Q — реактивная мощность;
  • r 0 — активное сопротивление;
  • x 0 — реактивное сопротивление;
  • U ном — номинальное напряжение.

Как мы сказали выше, на практике допускаются отклонения от нормативного показателя по ПУЭ. Разрешенные пределы отклонения:

  • силовые линии – ±5 %;
  • внутреннее и наружное бытовое освещение – ±5 %;
  • производственное освещение (также для общественных зданий) – от +5 % до -2,5 %.

В итоге вычисления мы получим процентный показатель.

Приведем пример.

Суммарная потребляемая мощность всех приборов в доме – 2 кВт.

Все приборы подключены к сети.

Тогда сила тока I = 2 * 1000/220 = 9 А.

Далее нам необходимо знать формулу расчета потерь напряжения.

Она выглядит следующим образом:

Используя эту формулу, получаем потери в кабеле:

∆U = (I * R / U) * 100 % = 2 (два провода) * 0,0175 / 1,5 * 30 = 0,7 Ом.

Тогда значение понижения напряжения будет равняться:

∆U = (9 * 0,7 / 220) * 100 % = 2,86 %.

Полученная величина вполне вписывает в нормативный по ПУЭ показатель 5 % отклонения.

Это значение, к тому же, очень выгодно для конечного потребителя, поскольку он получает электроэнергию полной мощности с потреблением электричества более низкого напряжения.

Это позволяет существенно снизить затраты потребителей на электроэнергию.

Еще один способ определения величины потерь напряжения предполагает использование таблицы, которая представлена в профильных методических указаниях для инженеров ЛЭП.

Там учтены все технические качества линии и оборудования, в зависимости от которых можно «достать» значение потерь для определенных условий эксплуатации.

Как уменьшить падение напряжения в электрической сети

При выполнении работ по прокладке кабеля сечение провода, взятое по допустимому понижению, превосходит таковую величину, выбранную по нагреву проводника.

Это приводит к удорожанию электричества для потребителя.

Как уменьшить этот показатель?

Ведь от него зависит итоговая цена за 1 кВт электроэнергии.

Опишем несколько способов сделать это.

  • Установить стабилизатор около нагрузки для устойчивости сети.
  • Повысить значение потенциала у начала кабеля, подключившись к отдельному трансформатору.
  • Расположить на небольшом расстоянии от потребителя блок питания или понижающий трансформатор при подключенной нагрузке 12-36 В.

Как уменьшить потери в кабеле

Потери напряжения приводят к дополнительным затратам.

Для того чтобы понизить этот показатель, можно воспользоваться следующими методами.

  • увеличить сечение питающих кабелей;
  • уменьшить количество ломаных линий (поворотов) в проводке, тем самым уменьшив длину маршрута проводника для снижения общего сопротивления;
  • понизить температуру окружающей среды, т.к. при нагревании металла возрастает его сопротивление, охлаждение даст обратный эффект;
  • уменьшить нагрузку на сеть;
  • привести угол между вектором напряжения и вектором силы тока к единице.

Замечание. Для того чтобы понизить сопротивление кабеля, а, соответственно, потери электричества в нем, можно попробовать улучшить вентиляцию в конструкциях кабеля и кабельных лотках.

Дорогие читатели, мы с Вами рассмотрели очередной вопрос, касающийся нашей безопасности в отношении электроснабжения, именно, узнали, как произвести правильный расчет падения напряжения.

Если информация была Вам полезна, порекомендуйте наш блог своим друзьям, подписывайтесь на нас в социальных сетях и будьте всегда под защитой!

Источник



Падение напряжения на проводах — расстояние от трансформатора до ламп или ленты

Нас часто спрашивают, можно ли светодиодные лампы на 12 вольт такой-то мощности в таком-то количестве отдалить от трансформатора на такое-то расстояние?

Общая рекомендация — это расстояние не должно превышать 5 метров. Это известный факт.

Но что делать, если требуется больше 5 метров? Часто из-за конструктивных ограничений невозможно уложиться в такое короткое расстояние.

Потери на проводах — суть проблемы

В некоторых ситуациях можно превратить число 5 в гораздо большее значение. Для этого нужно оценить падение напряжения на проводах.

Именно оно является причиной ограничений — сам провод имеет внутреннее сопротивление и поэтому «съедает» часть напряжения источника тока. И когда провод слишком длинный, может случиться так, что лампам останется такая малая часть исходного напряжения, что они не загорятся.

Читайте также:  Valeo a000 2655043 регулятор напряжения

Вторая часть проблемы — провод не просто «съедает» часть напряжения, а превращает его в тепло. Помимо того, что это просто бестолковое расходование электричества, так оно ещё и несёт в себе пожарную проблему — провод может нагреться слишком сильно.

Чтобы быть уверенным, что требуемые, например, 15 метров между трансформатором и лампой не принесут неприятностей, нужно оценить, сколько именно вольт потеряется на этих 15 метрах.

Рассчитать падение напряжения на проводе очень просто. Все необходимые для этого данные у Вас, как правило, есть: длина провода, суммарная мощность подключаемых ламп (ленты), напряжение питания и площадь поперечного сечения проводника. Нужно лишь дополнительно узнать удельное электрическое сопротивление материала, из которого изготовлен провод.

Формула для расчёта падения напряжения на проводах

Достаточно легко выводится простая общая формула для расчёта падения напряжения, применимая в любой ситуации.

Нам понадобится только закон Ома R = V / I и формула связи электрической мощности, напряжения и силы тока W = V · I.

Также для оценки сопротивления провода нужно знать значение удельного электрического сопротивления [википедия] материала проводника.

Проведя простые выкладки, получим вот такую формулу, дающую оценку значения падения напряжения на проводах:

Формула оценки падения напряжения на проводахОценка падения напряжения на проводах

Падение напряжения зависит от типа материала провода, сечения провода, его длины, мощности потребителей и напряжения источника питания. В этой формуле обозначено:

  • W — мощность в ваттах потребителей тока на конце провода;
  • V — напряжение источника тока в вольтах, как правило, 12 вольт или 24 вольта;
  • L — длина провода в метрах, т.е. удалённость потребителей от трансформатора;
  • S — площадь сечения провода в мм²;
  • ρ — значение удельного электрического сопротивление в Ом·мм²/м, для меди это примерно 0.018 Ом·мм²/м

Формула проста, но применима только в случае, если ожидаемое падение напряжения невелико, не более нескольких процентов, т.е. когда расстояние между трансформатором и потребителем не превышает 10 метров, а мощность менее 10-20 ватт.

В иных случаях следует воспользоваться более точной формулой:

Формула для вычисления падения напряжения на проводахТочное значение падения напряжения на проводах

Теперь, вычислив значение падение напряжения на проводах, мы можем оценить, какая мощность будет теряться — просто расходоваться на нагрев проводов. Нужно полученное значение падения напряжения умножить на мощность потребителей тока W и поделить на напряжение трансформатора V:

Оценка падения мощности на проводахОценка падения мощности на проводах

Если эта мощность получится слишком большой, то, очевидно, нужно увеличить толщину провода. Иначе можно получить разные неприятности вплоть до пожара.

Выводы

Как легко видеть из формул, двукратное увеличение площади сечения проводника примерно двукратно уменьшает падение напряжения на проводах.

Также возможным решением проблемы может быть увеличение значения напряжения источника тока. Если, конечно, потребители тока это позволяют. Опять же, двукратное увеличение питающего напряжения примерно в два раза снижает падение напряжения.

Например, наши низковольтные лампы Е27 на 12-24 вольт одинаково светят и от 12 и от 24 вольт. И в этом случае имеет смысл перейти на трансформатор на 24 вольта.

Также становится понятно, что для мощных потребителей (порядка 100 ватт) понадобятся очень толстые провода.

Пример

Оценим падение напряжения на медном проводе сечением 1.5 мм² и длиной 20 м при 24 вольтах и мощности подключенной ленты 50 ватт.

Подставив в первую формулу эти значения, мы получим, что на проводах «потеряется» примерно 1 вольт и около 2 ватт. В принципе, это не много, но если есть возможность увеличить толщину провода, лучше это сделать.

Можно, конечно, увеличить напряжение источника тока, заложив падение напряжение, но это совсем не лучший выход. Например, если мощность светильников на конце провода 180 ватт, то падение напряжения на проводе составит уже 3.5 вольта, а мощности — 25 ватт. Светильникам останется только 20 вольт, и драйверы некоторых светильников от недостатка напряжения могут войти в нештатный режим работы и начать перегреваться, потребляя гораздо больше заявленной мощности (хотя светодиоды при этом будут выдавать ту же яркость), что только увеличит падения напряжения на проводе. В этой ситуации останется только гадать, что случится раньше — возгорание проводов или выход из строя светильников.

А для трансформаторов на 12 вольт падение напряжения и расход мощности будут ещё в два раза больше.

Единственное правильное решение — увеличить толщину проводника. Как уже было сказано, увеличиваем сечение провода в два раза — примерно в два раза уменьшаем потери на проводах.

Или кликните на кнопку слева и задайте свой вопрос — подробный ответ Вы получите очень быстро.

Мы всегда стараемся помочь.

Источник

Расчет падения напряжения при питании потребителей шлейфом

Расчет падения напряжения при питании шлейфом

Расчет падения напряжения при питании потребителей по радиальным схемам достаточно прост. Один участок, одно сечение кабеля, одна длина, один ток нагрузки. Подставляем эти данные в формулу и получаем результат.

Читайте также:  Стабилизатор напряжения для дома тесты

При питании потребителей по магистральным схемам (шлейфом) расчет падения напряжения выполнить сложнее. Фактически, приходится выполнять несколько расчетов падения напряжения для одной линии: нужно выполнять расчет падения напряжения для каждого участка. Дополнительные сложности возникают при изменении потребляемой мощности электроприемников, запитанных по магистральной схеме. Изменение мощности одного электроприемника отражается на всей цепочке.

Насколько часто на практике встречается питание по магистральным схемам и шлейфом? Примеров привести можно много:

  • В групповых сетях — это сети освещения, розеточные сети.
  • В жилых домах этажные щиты запитаны по магистральным схемам.
  • В промышленных и коммерческих зданиях также часто применяются магистральные схемы питания и питания шлейфом щитов.
  • Шинопровод является примером питания потребителей по магистральной схеме.
  • Питание опор наружного освещения дорог.

Рассмотрим расчет падения напряжения на примере наружного освещения.

Предположим, что нужно выполнить расчет падения напряжения для четырёх столбов наружного освещения, последовательно запитанных от щита наружного освещения ЩНО.

Длина участков от щита до столба, между столбами: L1, L2, L3, L4.
Ток, протекающий по участкам: I1, I2, I3, I4.
Падение напряжения на участках: dU%1, dU%2, dU%3, dU%4.
Ток, потребляемый светильниками на каждом столбе, Ilamp.

Столбы запитаны шлейфом, соответственно:

  • I4=Ilamp
  • I3=I4+Ilamp
  • I2=I3+Ilamp
  • I1=I2+Ilamp

Ток, потребляемый лампой, неизвестен, зато известна мощность лампы и её тип (либо из каталога, либо по п.6.30 СП 31-110-2003).

Ток определяем по формуле:

Расчет падения напряжения при питании шлейфом. Формула расчета полного фазного тока

Формула расчета полного фазного тока

Iф — полный фазный ток
P — активная мощность
Uф — фазное напряжение
cosφ — коэффициент мощности
Nф — число фаз (Nф=1 для однофазной нагрузки, Nф=3 для однофазной нагрузки)

Напомню, что линейное (междуфазное) напряжение больше фазного напряжения в √3 раз:
Соотношение линейного (междуфазного) и фазного напряжения

При расчете падения напряжения в трехфазной сети подразумевают падение линейного напряжения, в однофазных — однофазного.

Расчет падения напряжения выполняется по формулам:

Расчет падения напряжения при питании шлейфом. Формула для расчета в трехфазной цепи

Формула расчета падения напряжения в трехфазной цепи

Расчет падения напряжения при питании шлейфом. Формула расчета падения напряжения в однофазной цепи

Формула расчета падения напряжения в однофазной цепи

Iф — полный фазный ток, протекающий по участку
R — сопротивление участка
cosφ — коэффициент мощности

Сопротивление участка рассчитывается по формуле
Формула для расчета сопротивления
ρ — удельной сопротивление проводника (медь, алюминий)
L — длина участка
S — сечение проводника
N — число параллельнопроложенных проводников в линии

Обычно в каталогах приводят удельные значения сопротивления для различных сечений проводников
Формула расчета удельного сопротивления
При наличии информации об удельных сопротивлениях проводников формулы расчета падения напряжения принимают вид:

Расчет падения напряжения при питании шлейфом. Формула для расчета в трехфазной цепи

Формула расчета падения напряжения в трехфазной цепи

Формула расчета падения напряжения в однофазной цепи

Формула расчета падения напряжения в однофазной цепи

Подставляя в формулу соответствующие значения токов, удельных сопротивлений, длины, количества параллельнопроложенных проводников и коэффициента мощности, вычисляем величину падения напряжения на участке.

Нормативными документами регламентируется величина относительного падения напряжения (в процентах от номинального значения), которая рассчитывается по формуле:
Формула расчета относительного падения напряжения
U — номинальное напряжение сети.

Формула расчета относительного падения напряжения одинакова для трехфазной и однофазной сети. При расчете в трехфазной сети нужно подставлять трехфазное падение и номинальное напряжения, при расчете в однофазной сети — однофазные:

Формула расчета относительного падения напряжения в трехфазной сети

Формула расчета относительного падения напряжения в трехфазной сети

Формула расчета относительного падения напряжения в однофазной сети

Формула расчета относительного падения напряжения в однофазной сети

С теорией закончено, рассмотрим, как это реализовать с использованием DDECAD.

Примем следующие исходные данные:

  • Мощность лампы 250Вт, cosφ=0,85.
  • Расстояние между столбами, от щита до первого столба L1=L2=L3=L4=20м.
  • Питание столбов осуществляется медным кабелем 3×10.
  • Ответвление от питающего кабеля до лампы выполнено кабелем 3×2,5, L=6м.

Для каждого столба в программе DDECAD создаём расчетную таблицу.

Заполняем данные для лампы в каждой расчетной таблице:
Расчет падения напряжения при питании шлейфом в программе DDECAD
Подключаем к расчетной таблице Столб 3 расчетную таблицу Столб 4, к Столб 2 — Столб 3, к Столб 1 — Столб 2, к ЩНО — Столб 1:
Расчет падения напряжения при питании шлейфом в программе DDECAD
Далее, из расчетной таблицы ЩНО рассчитанное программой значение падения напряжения в конце первого участка (Столб 1) переносим в зелёную ячейку расчетной таблицы Столб 1:
Расчет падения напряжения при питании шлейфом
Переносить значения следует делая ссылку на ячейку расчетной таблицы вышестоящего щита. В случае Столб 1 и ЩНО это делается так:

  1. В расчетной таблице Столб 1 курсор устанавливают на зелёную ячейку в столбике «∆U».
  2. Нажимают «=».
  3. Переключаются на расчетную таблицу ЩНО.
  4. Устанавливают курсор на ячейку в столбике «∆U∑», находящуюся в строке Столб 1.
  5. Нажимают «Enter».

Расчет падения напряжения при питании шлейфом в программе DDECAD

Получаем рассчитанное значение падения напряжения в конце второго участка (Столб 2) — 0,37% и рассчитанное падение напряжения на лампе — 0,27%.

Аналогично делаем для всех остальных расчетных таблиц и получаем рассчитанные значения падения напряжения на всех участках.
Так как мы выполнили связывание таблиц (средствами программы, подключая одну таблицу к другой, и вручную, перенося значения падения напряжения), то получили связанную систему. При внесении любых изменений всё будет автоматически пересчитано.

Источник

Adblock
detector