Меню

Формула нахождения напряжения катушки

Формула нахождения напряжения катушки

Катушки индуктивности и расчеты

Катушки индуктивности, в отличии от проводников, не обладают стабильным сопротивлением. Однако, для них существует определенная математическая зависимость между напряжением и током :

inductivnost7

Как видите, эта формула похожа на аналогичную формулу «Закона Ома» для конденсатора. Она связывает одну переменную (в нашем случае напряжение на катушке индуктивности) со скоростью изменения другой переменной (тока через катушку). И напряжение (u) и скорость изменения тока здесь (di/dt) мгновенны: они берутся в определенный момент времени. Величина скорости изменения тока (di/dt) выражается в амперах в секунду , и имеет положительное значение при увеличении тока, и отрицательное значение при его уменьшении.

Поведение катушки индуктивности (по аналогии с конденсатором) тесно связано с переменной времени. Если не учитывать внутреннее сопротивление катушки индуктивности (ради чистоты эксперимента мы принимаем его равным нулю), то напряжение на ее выводах будет зависеть от изменения тока во времени.

Давайте предположим, что мы подключили идеальную катушку индуктивности (имеющую нулевое сопротивление провода) к цепи, позволяющей измерить ток через эту катушку при помощи потенциометра:

inductivnost8

Если механизм потенциометра находится в одном положении (ползунок неподвижен), то соединенный последовательно с ним амперметр зарегистрирует постоянный (неизменный) ток, а подключенный к катушке индуктивности вольтметр покажет 0 вольт. Так как ток в этом случае постоянен, скорость его изменения (di/dt) будет равна нулю. Посмотрев внимательно на вышеприведенное уравнение можно сделать вывод, что при нулевом значении du/dt мгновенное напряжение на катушке так же будет равно нулю. С точки зрения физики, если ток будет постоянным (неизменным), то постоянным будет и произведенное катушкой индуктивности магнитное поле. При отсутствии изменений магнитного потока (dΦ/dt = 0 Вебер в секунду) индуцированное напряжение будет равно нулю.

inductivnost9

Если ползунок потенциометра медленно перемещать вверх, то его сопротивление будет медленно уменьшаться. Ток в цепи при этом будет возрастать, что можно увидеть по медленному отклонению стрелки амперметра:

inductivnost10

Если ползунок потенциометра перемещать с постоянной скоростью, то ток в цепи будет нарастать равномерно, а значит, отношение di/dt будет иметь фиксированное значение. Это значение, умноженное на индуктивность (так же имеющую фиксированную величину), даст нам постоянное напряжение некоторой величины. С точки зрения физики, постепенное увеличение тока приведет к росту магнитного поля. Увеличивающийся магнитный поток поля создаст в катушке индуцированное напряжение, выраженное уравнением Фарадея: e = N(dΦ/dt). Это напряжение принимает такую полярность, которая пытается противодействовать изменению тока. Другими словами, полярность напряжения, индуцированного в результате увеличения тока, будет ориентирована против направления этого тока, чтобы сохранить его величину на прежнем уровне. Это явление демонстрирует более общий принцип физики, известный как Правило Ленца , который гласит : Индукционный ток всегда имеет такое направление, что он ослабляет действие причины, возбуждающей этот ток.

В этом случае катушка индуктивности выступает в качестве нагрузки. Она имеет отрицательную полярность индуцированного напряжения со стороны входа потока электронов, и положительную полярность — со стороны выхода.

inductivnost11

Если мы будем двигать ползунок потенциометра в том же направлении, но с различной скоростью, то получим следующий график:

inductivnost12

Обратите внимание: напряжение на катушке индуктивности в любой момент времени пропорционально скорости изменения (наклону линии) тока. Когда линия тока на графике растёт быстро (крутой подъем), напряжение имеет большое значение. Когда линия тока растет медленно (пологий подъем), напряжение имеет маленькое значение. В одном месте графика можно увидеть строго горизонтальный отрезок линии тока (нулевой наклон, представляющий период времени, когда ползунок потенциометра не двигался вообще), при котором напряжение упало до нулевой отметки.

Если мы будем двигать ползунок потенциометра вниз, то его сопротивление увеличится, а ток в цепи уменьшится (отрицательное значение для di/dt). Катушка индуктивности всегда выступает против любого изменения тока, полярность индуцированного ей напряжения будет противоположна направлению этого изменения:

inductivnost13

Величина производимого катушкой индуктивности напряжения конечно же зависит от скорости уменьшения тока. Как гласит Закон Ленца, индуцированное напряжение будет противоположно изменению тока. При уменьшении тока полярность напряжения будет ориентирована таким образом, чтобы попытаться сохранить величину этого тока на прежнем уровне. В данном случае катушка выступает в качестве источника. Она имеет положительную полярность индуцированного напряжения со стороны входа потока электронов, и отрицательную полярность — со стороны выхода. Чем быстрее уменьшается ток, тем больше напряжения будет производить катушка индуктивности за счет высвобождения накопленной энергии.

Читайте также:  Что такое ибс стенокардия напряжения фк 3 хсн

Запомните, величина индуцированного идеальной катушкой индуктивности напряжения прямо пропорциональна скорости изменения протекающего через нее тока. Единственным различием между эффектами снижения увеличения тока является полярность индуцированного напряжения. При одинаковой скорости уменьшения/увеличения тока, величина напряжения будет одинаковой. Например, при скорости изменения тока (di/dt) -2 ампера в секунду будет произведено такое же количество индуцированного напряжения, как и при di/dt +2 ампера в секунду , только полярность этих напряжений будет противоположной .

Если ток через катушку индуктивности изменяется очень быстро , то она произведет очень высокое напряжение . В качестве примера давайте рассмотрим следующую схему :

inductivnost14

В этой схеме лампа подключена параллельно катушке индуктивности . Переключатель используется для управления током в цепи , а питание подается от 6 -вольтовой батареи. При включении выключателя, катушка индуктивности окажет кратковременное сопротивление изменению тока от нуля до некоторой величины, на ее выводах сгенерируется небольшое напряжение. Так как для ионизации газа внутри неоновой лампы необходимо напряжение порядка 70 вольт, шести вольт источника питания, а тем более низкого мгновенного напряжения катушки индуктивности в момент включения выключателя будет явно недостаточно, чтобы зажечь эту лампу:

inductivnost15

Если выключатель разомкнуть, то в цепи мгновенно возникнет очень высокое сопротивление (сопротивление воздушного зазора между контактами). Это сопротивление спровоцирует почти мгновенное уменьшение тока. Математически, значение di/dt будет очень большим отрицательным числом. Такое быстрое изменение тока (с некоторой величины до нуля, в короткий промежуток времени ) приведет к возникновению очень высокого напряжения на катушке индуктивности ( пытающегося противодействовать понижению тока). Этого напряжения , как правило, более чем достаточно чтобы зажечь неоновую лампу , хотя бы на короткое время , пока ток не упадет до нуля :

inductivnost16

Для достижения максимального эффекта , индуктивность катушки должна быть как можно больше (по крайней мере один Генри ).

Источник



Индуктивность: формула

Если существует замкнутый контур, в котором протекает ток, создающий магнитное поле (магнитный поток), то между током и потоком существует взаимосвязь. Коэффициент пропорциональностями между этими величинами является определением индуктивности.

Контур с током

Также эту пропорциональность можно назвать характеристикой инерционности электрической цепи, которая напрямую связана с понятием ЭДС самоиндукции, которая возникает в цепи, когда изменяется сила тока.

Электрическая цепь и индуктивность

Индуктивность характеризует электромагнитные свойства электроцепей. В более узком понятии, это элемент или участок цепи, обладающий большой величиной самоиндукции.

Таким элементом может считаться один, несколько или даже часть витка проводника, на высоких частотах также прямой отрезок провода любой длины.

Самоиндукция и измерение индуктивности

При изменении тока, который протекает в замкнутом электрическом контуре, меняется создаваемый им магнитный поток. Вследствие этого наводится ЭДС, которая называется ЭДС самоиндукции.

Напряжение ЭДС определяется формулой расчета индукции:

То есть ЭДС прямо пропорциональна величине скорости изменения тока с некоторым коэффициентом L, который и называется «индуктивность».

Обозначение и единицы измерения

В честь Ленца, единица измерения индуктивности получила обозначение символом «L». Выражается в Генри, сокращенно Гн (в англоязычной литературе Н), в честь известного американского физика.

Джозеф Генри

Если при изменении тока в один ампер за каждую секунду ЭДС самоиндукции составляет 1 вольт, то индуктивность цепи будет измеряться в 1 генри.

Как может обозначаться индуктивность в других системах:

  • В системе СГС, СГСМ – в сантиметрах. Для отличия от единицы длины обозначается абгенри;
  • В системе СГСЭ – в статгенри.

Теоретическое обоснование

Ток, протекающий в замкнутом контуре, создает магнитное поле, при этом величина вектора магнитного поля пропорциональна протекающему току. Таким образом, магнитный поток также пропорционален току.

Коэффициент пропорциональности между магнитным потоком и порождающим его током равен индуктивности рассматриваемого контура.

Свойства

Имеет следующие свойства:

  • Зависит от количества витков контура, его геометрических размеров и магнитных свойств сердечника;
  • Не может быть отрицательной;
  • Исходя из определения, скорость изменения тока в контуре, ограничена значением его индуктивности;
  • При увеличении частоты тока реактивное сопротивление катушки увеличивается;
  • Обладает свойством запасать энергию – при отключении тока запасенная энергия стремится компенсировать падение тока.
Читайте также:  Напряжение изменяется по закону косинуса

Схемы соединения катушек

Как радиотехнический элемент, катушки индуктивностей обладают свойствами соединений, полностью идентичными соединениям резисторов.

Параллельное соединение

Параллельное соединение:

Для двух элементов формула упрощается:

Последовательное соединение

Общее значение последовательного соединения равняется сумме индуктивностей:

Типы соединений

Добротность катушки

Одно из важнейших качеств катушек – это добротность. Данный параметр представляет собой отношение реактивного (индуктивного) сопротивления к активному. Активное сопротивление – это сопротивление проводника, из которого выполнен элемент, его можно считать постоянным, за исключением температурного коэффициента сопротивления материала, из которого выполнен провод.

Реактивное сопротивление прямо пропорционально частоте. Формула расчета добротности выглядит следующим образом:

где:

  • π – число пи, ≈3,14,
  • f – частота,
  • R – сопротивление.

Обратите внимание! С ростом частоты сигнала добротность катушки индуктивности возрастает.

Одновитковой контур и катушка

Индуктивность контура, представляющего виток провода, зависит от величины протекающего тока и магнитного потока, пронизывающего контур. Для индуктивности контура формула определяет параметр, соответственно, через поток и силу тока:

Ослабление магнитного потока из-за диамагнитных свойств окружающей среды снижает индуктивность.

Параметр для многовитковой катушки пропорционален квадрату количества витков, поскольку увеличивается не только магнитный поток от каждого витка, но и потокосцепление:

Для того чтобы рассчитать индуктивность катушки формула должна учитывать не только количество витков, но и тип намотки и геометрические размеры.

Соленоид

Соленоид отличается от обычной катушки по двум признакам:

  • Длина обмотки превышает диаметр в несколько раз;
  • Толщина обмотки меньше диаметра катушки также в несколько раз.

Соленоидальный тип катушки

Параметры соленоида можно узнать из такого выражения:

где:

  • µ0 – магнитная постоянная;
  • N – количество витков;
  • S – площадь поперечного сечения обмотки;
  • l – длина обмотки.

Важно! Приведенное выражение справедливо для соленоида без сердечника. В противном случае необходимо дополнительно внести множитель µ, который равен магнитной проницаемости сердечника.

Обратите внимание! Используя подвижный сердечник, можно производить оперативное изменение параметров соленоида.

Чем большую магнитную проницаемость будет иметь сердечник, тем больше увеличится итоговое значение.

Тороидальная катушка (катушка с кольцевым сердечником)

Тороидальный тип обмотки рассчитывается по специальной формуле, которая предполагает, что используется соленоид с бесконечной длиной. Чтобы определять индуктивность формула для тора имеет следующий вид:

где r – усредненный радиус тороидального сердечника.

Кольцевой сердечник прямоугольного сечения можно находить по следующей формуле:

где:

r – внутренний радиус сердечника;

R – внешний радиус;

Важно! Вторая формула позволяет узнавать результат с большей точностью.

Тороидальная намотка

Длинный прямой проводник

Как найти индуктивность прямого проводника? Существует формула, дающая точное значение при условии, что проводник имеет длину, значительно превышающую толщину:

где:

  • µe и µi – магнитная проницаемость среды и материала проводника, соответственно;
  • l и r – длина и радиус проводника.

Какой магнитной проницаемостью обладает проводник, можно узнать из справочных материалов.

Применение катушек индуктивности

Рассматриваемые элементы широко применяются в радио,- и электротехники:

  • Частотозадающие цепи;
  • Трансформаторы;
  • Дроссели;
  • Антенны;
  • Элементы фильтров;
  • Накопители энергии;
  • Нагревательные элементы (система индукционного нагрева);
  • Электромагниты;
  • Датчики магнитного поля.

Колебательный контур

Емкость и индуктивный элемент, соединенные в цепь, образуют колебательный контур с резко выраженными частотными свойствами и будут являться резонансной системой. В качестве системы используется конденсатор, изменяя емкость которого, можно производить коррекцию частотных свойств.

Последовательный и параллельный колебательные контуры

Если измерить резонансную частоту, используя известный конденсатор, то можно определить индуктивность катушки.

Индуктивность – важнейший элемент в разных областях электротехники. Для правильного применения нужно знать все параметры используемых элементов.

Устройство, которое позволяет определить параметры катушек индуктивности, в том числе добротность, может называться L-метр или Q-метр.

Q-метр для измерения добротности

Видео

Источник

Катушки индуктивности своими руками

Для того, чтобы создать магнитное поле и сгладить в нем помехи и импульсы, используются специальные накопительные элементы. Катушки индуктивности в цепи переменного тока и постоянного применяются для накопления определенного количества энергии и ограничения электричества.

Конструкция

Главное назначение катушек индуктивности ГОСТ 20718-75 – это накопление электрической энергии в пределах магнитного поля для акустики, трансформаторов и т. д. Их используют для разработки и конструирования различных селективных схем и электрических устройств. От конструкции (материала, количества витков), наличия каркаса зависит их функциональность, размеры и область использования. Изготовление устройств производится на заводах, но можно сделать их самостоятельно. Самодельные элементы несколько уступают по надежности профессиональным, но обходятся в разы дешевле.

Читайте также:  Подача напряжения полевой транзистор

Каркас катушки индуктивности выполняется из диэлектрического материала. На него наматывается изолированный проводник, который может быть как одножильным, так и многожильным. В зависимости от типа намотки, они бывают:

  1. Спиральными (на ферритовом кольце);
  2. Винтовыми;
  3. Винтоспиральными или комбинированными.

Примечательной особенностью катушки индуктивности для электрических схем является то, что её можно намотать как в несколько слоев, так и нированно, т. е., с обрывками Если используется толстый проводник, то элемент может обматываться без каркаса, если тонкий – то только на рамку. Эти каркасы катушек индуктивности бывают различного сечения: квадратные, круглые, прямоугольные. Полученная намотка может вставляться в специальный корпус какого-либо электрического устройства или использоваться в открытом виде.

Для увеличения индуктивности используются сердечники. В зависимости от назначения элемента, варьируется используемый материал стержня:

  1. С ферромагнитным и воздушным сердечником применяются при высоких частотах тока;
  2. Стальные используются в условиях низкого напряжения.

Вместе с этим, в электротехнике активно используются индуктивные классические катушки без сердечника, которые можно сделать своими руками при помощи намотки на немагнитный контур.Такие устройства имеют некоторые преимущества перед «сердечными». У них большая линейность импеданса. Но, у тороидальной модели намотка на немагнитный каркас способствует появлению паразитной емкости.

Исходя из принципа работы, бывают такие типы:

  1. Контурные. Преимущественно используются в радиотехнике для создания колебательных контуров платы, работают вместе с конденсаторами. Для соединения используется последовательное подключение. Это современный вариант плоской контурной катушки Тесла;
  2. Вариометры. Это высокочастотные перестраиваемые катушки, индуктивностью которыми можно при необходимости управлять при помощи дополнительных устройств. Они представляют собой соединение двух отдельных катушек, при этом, одна подвижна, а вторая нет;
  3. Сдвоенные и подстроечные дроссели. Основные характеристики этих катушек: малое сопротивление постоянному току и высокое переменному. Дроссели изготавливаются из нескольких катушек, соединенных обмотками между собой. Их часто используют в виде фильтра для различных радиотехнических приборов, устанавливают для контроля помех в антенны и т. д.;
  4. Трансформаторы связи. Их конструктивной особенностью является то, что на одном стержне установлено от двух и более катушек. Они используются в трансформаторах для обеспечения определенной связи между отдельными компонентами устройства.

Маркировка катушек индуктивности определяется по количеству витков и цвету корпуса.

Принцип действия

Схема работы катушек индуктивности активного действия основан на том, что каждый отдельный виток намотки пересекается с магнитными силовыми линиями. Этот электрический элемент необходим для того, чтобы извлекать электрическую энергию из источника питания и преобразовывая её сохранять в виде электрического поля. Соответственно, если ток цепи увеличивается – то расширяется и магнитное поле, но если он уменьшается – поле будет неизменно сжиматься. Эти параметры также зависят от частоты и напряжения, но в целом, действие остается неизменным. Включение элемента производит сдвиг фаз тока и напряжения.

Помимо этого, индуктивные (каркасные и бескаркасные) катушки обладают свойством самоиндукции, его расчет производится исходя из данных номинальной сети. В многослойной и однослойной обмотке создается напряжение, которое противоположно напряжению электрического тока. Это называется ЭДС, определение электродвижущей магнитной силы зависит от показателей индуктивности. Её можно рассчитать по закону Ома. Стоит отметить, что независимо от напряжения сети, сопротивление в катушке индуктивности не изменяется.

Связь индуктивности и понятия (изменения) ЭДС можно найти по формуле ε c = — dФ/dt = — L*dI/dt, где ε – это значение ЭДС самоиндукции. И если скорость изменения электрической энергии будет равна dI/dt = 1 A/c, то и L = ε c.

Видео: расчет катушки индуктивности

Вычисление

Основные характеристики катушки индуктивности: добротность, индуктивность, потери, резонанс, паразитарная емкость и ЭДС. Также прибор зависит от ТИК – температурного коэффициента.

Для того чтобы рассчитать различные параметры, используются специальные физические формулы. К примеру, простейший колебательный контур состоит из катушки и конденсатора, он рассчитывается по следующей формуле:

Источник