Меню

Формула напряжения поля нити

Напряженность поля заряженной нити

Модуль напряженности поля, создаваемого бесконечно длинной прямой однородно заряженной нитью (или цилиндром) на расстоянии r от ее оси

где t — линейная плотность заряда (см. п. 3).

Если заряженная нить имеет конечную длину, то напряженность поля в точке, находящейся на перпендикуляре, восстановленном из середины нити, на расстоянии r от нее

где q — угол между направлением нормали к нити и радиус-вектором, проведенным из рассматриваемой точки к концу нити.

Поверхностная плотность заряда

Заряд, распределенный на поверхности S, характеризуется поверхностной плотностью s

где Q – заряд, однородно распределенный на площадке S.

Напряженность заряженной плоскости

Напряженность поля, создаваемая бесконечной равномерно заряженной плоскостью,

Напряженность поля плоского конденсатора

Напряженность поля, создаваемая внутри заряженного плоского конденсатора для случая, если расстояние между пластинами много меньше линейных размеров пластин конденсатора

Электрическая постоянная e 0=8,85×10 -12 Ф/м.

Элементарный заряд q=1,6×10 -19 Кл.

Масса электрона m=9,1×10 -31 кг.

ВОПРОСЫ И УПРАЖНЕНИЯ

1. Какие фундаментальные свойства присущи электрическому заряду? Сформулируйте закон сохранения заряда.

2. В каких единицах измеряется электрический заряд? Чему равен элементарный заряд?

3. Какому закону подчиняется сила взаимодействия точечных зарядов? Какие утверждения содержит закон Кулона?

4. Получите численное значение и единицу электрической постоянной e 0.

5. Как рассчитывается сила взаимодействия точечного заряда и зарядов, распределенных на телах конечных размеров?

6. Можно ли воспользоваться законом Кулона при расчете силы взаимодействия двух заряженных тел сферической формы?

7. Что является источником электрического поля? Как обнаруживается и исследуется электрическое поле?

8. Дайте определение напряженности электрического поля. В каких единицах измеряется напряженность?

9. Напишите формулу для напряженности E точечного заряда q. Изобразите график зависимости E(r), где r – расстояние от точечного заряда до точки поля, в которой определяется напряженность.

10. Каково содержание принципа суперпозиции электрических полей?

11. Как рассчитать напряженность поля заданного распределения точечных электрических зарядов?

12. Как вычисляется поток вектора напряженности электрического поля через любую поверхность?

13. Сформулируйте и запишите теорему Гаусса в интегральной форме.

14. Получите выражение для напряженности Е однородно заряженной бесконечной плоскости с поверхностной плотностью заряда s.

15. Получите выражение для напряженности E однородно заряженной сферы, цилиндра.

16. Напишите теорему Остроградского-Гаусса в дифференциальной форме.

ЗАДАЧИ ГРУППЫ А

1.(9.13) Два точечных заряда q 1=7,5 нКл и q 2=–14,7 нКл расположены на расстоянии r=5 см друг от друга. Найти напряженность E электрического поля в точке, находящейся на расстоянии a=3 см от положительного заряда и b=4 см от отрицательного заряда.

2.(9.15) Два металлических шарика одинакового радиуса и массы подвешены в одной точке на нитях одинаковой длины так, что их поверхности соприкасаются. Какой заряд Q нужно сообщить шарикам, чтобы сила натяжения нитей стала равной T=98 мН? Расстояние от центра шарика до точки подвеса равно l=10 см, масса каждого шарика m=5 г.

3.(9.19) К вертикально расположенной бесконечной однородно заряженной плоскости прикреплена нить, на другом конце которой расположен одноименно заряженный шарик массой m=40 мг и зарядом q=31,8 нКл. Сила натяжения нити, на которой висит шарик, T=0,5 мН. Найти поверхностную плотность заряда s на плоскости. Диэлектрическая проницаемость среды, в которой находится заряд e=6. Ускорение свободного падения g=10 м/с 2 .

4.(9.20) Найти силу F, действующую на заряд q=0,66 нКл, если заряд помещен: а) на расстоянии r 1=2 см от длинной однородно заряженной нити с линейной плотностью заряда t=0,2 мкКл/м; б) в поле однородно заряженной плоскости с поверхностной плотностью заряда s=20 мкКл/м 2 ; в) на расстоянии r 2=2 см от поверхности однородно заряженного шара радиусом R=2 см и поверхностной плотностью заряда s=20 мкКл/м 2 . Диэлектрическая проницаемость среды e=6.

Ответ: а) F 1=20мкН; б) F 2=126мкН; в) F 3=62,8 мкН.

5.(9.23) С какой силой F l электрическое поле бесконечной однородно заряженной плоскости действует на единицу длины однородно заряженной бесконечно длинной нити, помещенной в это поле? Линейная плотность заряда на нити t=3 мкКл/м и поверхностная плотность заряда на плоскости s=20 мкКл/м 2 .

6.(9.26) С какой силой F s на единицу площади отталкиваются две одноименные однородно заряженные бесконечно протяженные плоскости. Поверхностная плотность заряда на плоскостях s=0,3 мкКл/м 2 .

7.(9.29) Показать, что электрическое поле, образованное однородно заряженной нитью конечной длины, в предельных случаях переходит в электрическое поле: а) бесконечно длинной заряженной нити; б) точечного заряда.

8.(9.30) Длина однородно заряженной нити l=25 см. При каком предельном расстоянии a от нити по нормали к ее середине возбуждаемое ею электрическое поле можно рассматривать как поле бесконечно длинной заряженной нити? Ошибка d при таком допущении не должна превышать 0,05. Указание: допускаемая ошибка d равна (E 2–E 1)/E 2, где E 2 – напряженность электрического поля бесконечно длинной нити, E 1 – напряженность поля нити конечной длины.

Читайте также:  Как проверить маф по напряжению

9.(9.33) Напряженность электрического поля на оси однородно заряженного кольца имеет максимальное значение на некотором расстоянии от центра кольца. Во сколько раз напряженность электрического поля в точке, расположенной на половине этого расстояния, будет меньше максимального значения напряженности?

10. По четверти кольца радиусом r=6,1 см однородно распределен положительный заряд с линейной плотностью t=64 нКл/м. Найти силу F, действующую на заряд q=12 нКл, расположенный в центре кольца.

11. Получите соотношения п.12 раздела “Основные формулы для решения задач”.

ЗАДАЧИ ГРУППЫ Б

1.(3.2) Два одинаковых заряженных алюминиевых шарика, подвешенных в воздухе на нитях одинаковой длины, закрепленных в одной точке, опускают в жидкий диэлектрик. При этом оказалось, что угол расхождения нитей не изменился. Какова плотность r жидкого диэлектрика, если его относительная диэлектрическая проницаемость e=2? Плотность алюминия r a=2700 кг/м 3 .

2.(3.6) В вершинах квадрата находятся одинаковые заряды по q=300 пКл каждый. Какой отрицательный заряд Q нужно поместить в центре квадрата, чтобы сила взаимного отталкивания зарядов была уравновешена силой притяжения к отрицательному заряду?

3.(3.7) В вершинах правильного шестиугольника со стороной b=10 см находятся одинаковые заряды по q=1 нКл каждый. Чему равна сила F, действующая на каждый заряд со стороны пяти остальных?

4.(3.8) Два положительных точечных заряда q 1=1 нКл и q 2=2 нКл находятся на расстоянии r=5 см друг от друга. Какой величины и в каком месте нужно расположить отрицательный заряд Q, чтобы вся система находилась в равновесии?

Какое будет равновесие?

Ответ: Q=–0,34 нКл нужно расположить на расстоянии 2,07 см от заряда q 1 на линии, соединяющей заряды. Равновесие неустойчивое.

5.(3.13) Электрическое поле создается двумя длинными параллельными равномерно и одинаково заряженными нитями, расположенными на расстоянии l=5 см друг от друга. Напряженность электрического поля в точке, равноотстоящей от каждой нити на расстояние b=5 см, равна E=1 мВ/м. Определить линейную плотность заряда t на каждой нити.

6. Плоский горизонтально расположенный конденсатор с расстоянием между обкладками d=1 см заполнен касторовым маслом с плотностью r 0=900 кг/м 3 . В масле взвешен заряженный медный шарик радиусом R=1 мм, несущий заряд Q=1 мкКл. Определить напряжение U, подаваемое на обкладки конденсатора, если плотность меди r=8,6×10 3 кг/м 3 , а ускорение свободного падения g=10 м/с 2 .

7.(3.17) Электрическое поле создается тонким проволочным однородно заряженным кольцом. Определить радиус R кольца, если точка, в которой напряженность электрического поля максимальна, расположена на оси кольца на расстоянии x=1 см от его центра.

8.(3.21) Поверхностная плотность заряда бесконечно протяженной вертикальной плоскости равна s=200 мкКл/м 2 . К плоскости на нити подвешен заряженный шарик массой m=10 г. Определить заряд q шарика, если нить образует с плоскостью угол a=30 0 .

9.(3.24) На отрезке тонкого прямого стержня длиной l=10 см однородно распределен заряд с линейной плотностью t=3 мкКл/см. Вычислить напряженность E, создаваемую этим зарядом, в точке, расположенной на оси стержня и удаленной от ближайшего его конца на расстояние a=10 см.

10.(3.28) Отрицательно заряженная пылинка находится в равновесии между двумя пластинами плоского конденсатора, расположенными горизонтально. Расстояние между пластинами d=2 см, разность потенциалов на пластинах U=612 В. Масса пылинки m=10 пг. Сколько электронов несет на себе пылинка? Ускорение свободного падения g=10 м/с 2 .

11.(3.33) Капля массой m=10 -10 г и зарядом q, равным 10 зарядам электрона, поднимается вертикально вверх с ускорением a=2,2 м/с 2 между горизонтально расположенными пластинами плоского конденсатора. Определить поверхностную плотность заряда s на пластинах конденсатора. Силой сопротивления воздуха пренебречь. Ускорение свободного падения g=10 м/с 2 .

Ответ: s=6,75 мкКл/м 2 .

ЗАДАЧИ ГРУППЫ С

1. Получите соотношения п.14 раздела “Основные формулы для решения задач”.

2. Рассчитайте поле однородно заряженного по объему шара на расстоянии r от его центра, если радиус шара R, а объемная плотность заряда r.

3. Найти напряженность электрического поля в заштрихованной плоскости, образованной пересечением двух однородно заряженных по объему шаров, с плотностями заряда r и –r. Расстояние между центрами шаров а 1+R 2 (рис. 3.1).

4. Шар радиусом R заполнен зарядом, объемная плотность которого изменяется по закону в области , где В=const, r — расстояние от центра шара. Рассчитать напряженность поля, создаваемую этим шаром, как функцию радиуса.

5. Полусфера равномерно заряжена с поверхностной плотностью заряда s=67 нКл/м 2 . Найти напряженность поля Е в центре полусферы.

6. Прямая бесконечная тонкая нить несет заряд с линейной плотностью t 1. Перпендикулярно нити расположен тонкий стержень длиной l (см. рис. 3.2). Ближайший к нити конец стержня находится на расстоянии а от нее. Определить силу F, действующую на стержень со стороны нити, если он заряжен с линейной плотностью t 2.

7. По тонкой нити, изогнутой по дуге окружности, однородно распределен заряд с линейной плотностью t=10 нКл/м. Определить напряженность электрического поля Е, создаваемую распределенным зарядом, в точке, совпадающей с центром кривизны дуги. Длина нити l=15 см составляет одну треть длины окружности.

Читайте также:  Углы напряжения тока диаграмма

8. Длинный цилиндр радиусом R однородно заряжен с объемной плотностью заряда r. Найти зависимость напряженности электростатического поля, создаваемой этим цилиндром от расстояния r до его оси.

9. Напряженность электрического поля в точке, находящейся на перпендикуляре, восстановленном из центра однородно заряженного диска, на расстоянии x от него, имеет вид: , где s – поверхностная плотность заряда диска, R – его радиус. Получите это соотношение. Как изменится ответ задачи, если однородно заряженный диск радиусом R 2 имеет концентрическое отверстие радиусом R 1 (R 2>R 1)?

10. Горизонтально расположенный диск, радиус которого R=0,5 м, заряжен однородно с поверхностной плотностью s=3,33×10 -4 Кл/м 2 . Маленький шарик массой m=3,14 г, имеющий заряд q=3,27×10 -7 Кл, находится над центром диска в состоянии равновесия. Определить его расстояние от центра диска. Ускорение свободного падения g=10 м/c 2 .

11. Напряженность электрического поля зависит только от координат по закону где а – постоянная, , , – орты осей х, у и z. Найти величину заряда q, находящегося внутри сферы радиусом R с центром в начале координат.

12. Пользуясь теоремой Остроградского-Гаусса в дифференциальной форме, найти напряженность E электрического поля внутри и вне бесконечной пластинки толщиной 2a, однородно заряженной с объемной плотностью заряда r.

Источник



Поле бесконечно заряженной нити

Рассмотрим бесконечную нить, несущую заряд, равномерно распределённый по её длине. Заряд, сосредоточенный на бесконечно нити, конечно, тоже бесконечен, и поэтому он не может служить количественной характеристикой степени заряженности нити. В качестве такой характеристики принимается «линейная плотность заряда». Эта величина равна заряду, распределённому на отрезке нити единичной длины:

Выясним, какова напряженность поля, создаваемого заряженной нитью на расстоянии а от неё (рис. 1.12).

Для вычисления напряжённости вновь воспользуемся принципом суперпозиции электрических полей и законом Кулона. Выберем на нити элементарный участок dl.На этом участке сосредоточен заряд dq = tdl, который можно считать точечным. В точке А такой заряд создаёт поле (см. 1.3)

Исходя из симметрии задачи, можно заключить, что искомый вектор напряжённости поля будет направлен по линии, перпендикулярной нити, то есть вдоль оси х. Поэтому сложение векторов напряжённости, можно заменить сложением их проекцией на это направление.

Рис. (1.12 b) позволяет сделать следующие заключения:

Используя (1.8) и (1.9) в уравнении (1.7), получим

Теперь для решения задачи осталось проинтегрировать (1.10) по всей длине нити. Это означает, что угол a будет меняться от до .

В этой задаче поле обладает цилиндрической симметрией. Напряжённость поля прямо пропорциональна линейной плотности заряда на нити t и обратно пропорциональна расстоянию а от нити до той точки, где измеряется напряжённость.

Лекция 2 «Теорема Гаусса для электрического поля»

Поток вектора напряженности электрического поля.

Теорема Гаусса для электрического поля.

Применение теоремы Гаусса для расчёта электрических полей.

Поле бесконечной заряженной нити.

Поле бесконечной заряженной плоскости. Поле плоского конденсатора.

Поле сферического конденсатора.

Первую лекцию мы закончили расчётом напряжённости полей электрического диполя и бесконечно заряженной нити. В обоих случаях использовался принцип суперпозиции электрических полей. Теперь обратимся ещё к одному методу вычисления напряжённости, основанному на теореме Гаусса для электрического поля. В этой теореме речь идёт о потоке вектора напряжённости через произвольную замкнутую поверхность. Поэтому прежде чем преступить к формулировке и доказательству теоремы, обсудим понятие «поток вектора».

Поток вектора напряжённости электрического поля

Выделим в однородном электрическом поле плоскую поверхность (рис. 2.1.). Эта поверхность — вектор, численно равный площади поверхности DS и направленный перпендикулярно поверхности

Но единичный нормальный вектор может быть направлен как в одну, так и в другую сторону от поверхности (рис. 2.2.). Произвольно выберем положительное направление нормали так, как это показано на рис. 2.1. По определению потоком вектора напряжённости электрического поля через выделенную поверхность называется скалярное произведение этих двух векторов:

Если поле в общем случае неоднородно, а поверхность S, через которую следует вычислить поток, не плоская, то эту поверхность делят на элементарные участки , в пределах которых напряжённость можно считать неизменённой, а сами участки — плоскими (рис. 2.3.) Поток вектора напряжённости через такой элементарный участок вычисляется по определению потока

Здесь En = E ∙ cosa — проекция вектора напряжённости на направление нормали . Полный поток через всю поверхность S найдём, проинтегрировав (2.3) по всей поверхности

Теперь представим себе замкнутую поверхность в электрическом поле. Для отыскания потока вектора напряжённости через подобную поверхность проделаем следующие операции (рис. 2.4.):

Разделим поверхность на участки . Важно отметить при этом, что в случае замкнутой поверхности положительной считается только «внешняя» нормаль .

Вычислим поток на каждом элементарном участке :

Читайте также:  Измерительный преобразователь переменного напряжения схема

Обратите внимание на то, что вектор «вытекающий» из замкнутой поверхности создаёт положительный поток, а «втекающий» — отрицательный.

Для вычисления полного потока вектора напряжённости через всю замкнутую поверхность, все эти потоки нужно алгебраически сложить, то есть уравнение (2.3) проинтегрировать по замкнутой поверхности S

Кружок на знаке интеграл означает, что интегрирование производится по замкнутой поверхности.

Напомним, что при графическом изображении полей, густота силовых линий в произвольной точке поля числено равна значению напряжённости поля в этой точке. Это означает, что

Тогда число силовых линий, пронизывающих поверхность dS, можно записать так

dN = EndS = EdS ∙ cosa

Но ведь это определение потока вектора напряжённости через поверхность dS.

Таким образом, поток вектора напряжённости через поверхность dS численно равен числу силовых линий, пронизывающих эту поверхность (!).

Этот вывод справедлив и для потока электрического поля через замкнутую поверхность: этот поток будет равен алгебраической сумме силовых линий втекающих (–) и вытекающих (+) из замкнутой поверхности.

Теперь обратимся к теореме Гаусса.

Дата добавления: 2015-08-08 ; просмотров: 7324 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Т. Теорема Гаусса

Теорема Остроградского—Гаусса и ее применение для расчета электростатических полей

Пусть поле создается точечным электрическим зарядом q. Проведем замкнутую сферическую поверхность площадью S (рис. 2), окружающую этот заряд, центр которой совпадает с точкой нахождения заряда. Вычислим поток вектора напряженности через эту поверхность. За положительное направление нормали выберем направление внешней нормали \(

\vec n\). В этом случае во всех точках сферической поверхности E = const и cos α = 1.

Модуль напряженности поля на расстоянии R от заряда \(

Следовательно, поток вектора напряженности через сферическую поверхность

Полученный результат будет справедлив и для поверхности произвольной формы, а также при любом расположении заряда внутри этой поверхности. Действительно, если окружить сферу произвольной замкнутой поверхностью (рис. 2, а — поверхность изображена штрихами), то каждая линия напряженности, пронизывающая сферу, пройдет и сквозь эту поверхность.

Если замкнутая поверхность произвольной формы охватывает заряд (рис. 2, б), то при пересечении любой выбранной линии напряженности с поверхностью она то входит в поверхность, то выходит из нее. Нечетное число пересечений при вычислении потока в конечном счете сводится к одному пересечению, так как поток считается положительным, если линии напряженности выходят из поверхности, и отрицательным для линии, входящей в поверхность. Если же внутри поверхности площадью S1 (см. рис. 2) заряды отсутствуют, то поток напряженности через эту поверхность равен нулю (NS = 0).

Если рассматриваемая поверхность охватывает не один, а несколько электрических зарядов, то под q следует понимать алгебраическую сумму этих зарядов (рис. 3) и

Эта формула выражает теорему Остроградского—Гаусса: поток вектора напряженности через замкнутую поверхность равен алгебраической сумме зарядов, расположенных внутри этой поверхности, деленной на произведение электрической постоянной и диэлектрической проницаемости среды.

Применим эту теорему для расчета электростатических полей некоторых проводников.

Равномерно заряженная бесконечная плоскость

Пусть σ — поверхностная плотность заряда на плоскости (рис. 4).

В качестве поверхности площадью S выберем цилиндрическую поверхность, образующая которой перпендикулярна плоскости. Основания этого цилиндра расположены перпендикулярно линиям напряженности по обе стороны от плоскости. Так как образующие цилиндра параллельны линиям напряженности (α = 90°, cos α = 0), то поток через боковую поверхность цилиндра отсутствует, и полный поток через поверхность цилиндра равен сумме потоков через два основания: N = 2ES. Внутри цилиндра заключен заряд q = σS, поэтому, согласно теореме Остроградского-Гаусса, \(

2ES = \frac<\sigma S><\varepsilon_0 \varepsilon>\), где ε = 1 (для вакуума), откуда следует, что напряженность поля равномерно заряженной бесконечной плоскости

Бесконечная равномерно заряженная нить

Пусть τ — линейная плотность заряда нити. Выделим участок нити длиной Δl и окружим его цилиндрической поверхностью, расположенной так, что ось цилиндра совпадает с нитью (рис. 5).

Линии напряженности электростатического поля, создаваемого нитью в сечении, перпендикулярном самой нити, направлены перпендикулярно боковой поверхности цилиндра, поэтому поток напряженности сквозь боковую поверхность \(

N = E \cdot 2 \pi R \Delta l\), где R — радиус цилиндра. Через оба основания цилиндра поток напряженности равен нулю (α = 90°, cos α = 0). Тогда полный поток напряженности через выделенный цилиндр

N = E \cdot 2 \pi R \Delta l .\)

Заряд, находящийся внутри этого цилиндра, q = τ · Δl.

Согласно теореме Остроградского—Гаусса, можно записать \(

E \cdot 2 \pi R \Delta l = \frac<\tau \Delta l><\varepsilon_0 \varepsilon>\) . Следовательно, модуль напряженности поля, создаваемого равномерно заряженной бесконечно длинной нитью на расстоянии R от нее,

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 220-222.

Источник