Меню

Формула работа тока при перемещении единичного электрического заряда

Работа в электрическом поле. Потенциал

Работа сил электростатического поля. Понятие потенциала

Когда пробный заряд q перемещается в электрическом поле, можно говорить о работе, совершаемой в данный момент электрическими силами. Для малого перемещения ∆ l → формулу работы можно записать так: ∆ A = F · ∆ l · cos α = E q ∆ l cos α = E l q ∆ l .

Рисунок 1 . 4 . 1 . Малое перемещение заряда и работа, совершаемая в данный момент электрическими силами.

Теперь посмотрим, какую работу по перемещению заряда совершают силы в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени. Такое поле еще называют электростатическим. У него есть важное свойство, о котором мы поговорим в этой статье.

При перемещении заряда из одной точки электростатического поля в другую работа сил электрического поля будет зависеть только от величины этого заряда и положением начальной и конечной точки в пространстве. Форма траектории при этом не имеет значения.

У гравитационного поля есть точно такое же свойство, что неудивительно, поскольку соотношения, с помощью которых мы описываем кулоновские и гравитационные силы, одинаковы.

Исходя из того, что форма траектории не имеет значения, мы можем также сформулировать следующее утверждение:

Когда заряд в электростатическом поле перемещается по любой замкнутой траектории, работа сил поля равна 0 . Поле, обладающее таким свойством, называется консервативным, или потенциальным.

Ниже приведена иллюстрация силовых линий в кулоновском поле, образованных точечным зарядом Q , а также две траектории перемещения пробного заряда q в другую точку. Символом ∆ l → на одной из траекторий обозначается малое перемещение. Запишем формулу работы кулоновских сил на нем:

∆ A = F ∆ l cos α = E q ∆ r = 1 4 π ε 0 Q q r 2 ∆ r .

Следовательно, зависимость существует только между работой и расстоянием между зарядами, а также их изменением Δ r . Проинтегрируем данное выражение на интервале от r = r 1 до r = r 2 и получим следующее:

A = ∫ r 1 r 2 E · q · d r = Q q 4 π ε 0 1 r 1 — 1 r 2 .

Рисунок 1 . 4 . 2 . Траектории перемещения заряда и работа кулоновских сил. Зависимость от расстояния между начальной и конечной точкой траектории.

Результат применения данной формулы не будет зависеть от траектории. Для двух различных траекторий перемещения заряда, указанных на изображении, работы кулоновских сил будут равны. Если же мы изменим направление на противоположное, то и работа также поменяет знак. А если траектории будут соединены, т.е. заряд будет перемещаться по замкнутой траектории, то работа кулоновских сил будет нулевой.

Вспомним, как именно создается электростатическое поле. Оно представляет собой сочетание точечных разрядов. Значит, согласно принципу суперпозиции, работа результирующего поля, совершаемая при перемещении пробного заряда, будет равна сумме работ кулоновских полей тех зарядов, из которых состоит электростатическое поле. Соответственно, величина работы каждого заряда не будет зависеть от того, какой формы траектория. Значит, и полная работа не будет зависеть от пути – важно лишь местоположение начальной и конечной точки.

Поскольку у электростатического поля есть свойство потенциальности, мы можем добавить новое понятие – потенциальная энергия заряда в электрическом поле. Выберем какую-либо точку, поместим в нее разряд и примем его потенциальную энергию за 0 .

Потенциальная энергия заряда, помещенного в любую точку пространства относительно нулевой точки, будет равна той работе, которая совершается электростатическим полем при перемещении заряда из этой точки в нулевую.

Обозначив энергию как W , а работу, совершаемую зарядом, как A 10 , запишем следующую формулу:

Обратите внимание, что энергия обозначается именно буквой W , а не E , поскольку в электростатике E – это напряженность поля.

Потенциальная энергия электрического поля является определенной величиной, которая зависит от выбора точки отсчета (нулевой точки). На первый взгляд в таком определении есть заметная неоднозначность, однако на практике она, как правило, не вызывает недоразумений, поскольку сама по себе потенциальная энергия физического смысла не имеет. Важна лишь разность ее значений в начальной и конечной точке пространства.

Чтобы вычислить работу, которая совершается электростатическим полем при перемещении точечного заряда из точки 1 в точку 2 , нужно найти разность значений потенциальной энергии в них. Путь перемещения и выбор нулевой точки значения при этом не имеют.

A 12 = A 10 + A 02 = A 10 – A 20 = W p 1 – W p 2 .

Если мы поместим заряд q в электростатическое поле, то его потенциальная энергия будет прямо пропорциональна его величине.

Понятие потенциала электрического поля

Потенциал электрического поля – это физическая величина, значение которой можно найти, разделив величину потенциальной энергии электрического заряда в электростатическом поле на величину этого заряда.

Он обозначается буквой φ . Это важная энергетическая характеристика электростатического поля.

Если мы умножим величину заряда на разность потенциалов начальной и конечной точки перемещения, то мы получим работу, совершаемую при этом перемещении.

A 12 = W p 1 – W p 2 = q φ 1 – q φ 2 = q ( φ 1 – φ 2 ) .

Потенциал электрического поля измеряется в вольтах ( В ) .

1 В = 1 Д ж 1 К л .

Разность потенциалов в формулах обычно обозначается Δ φ .

Чаще всего при решении задач на электростатику в качестве нулевой берется некая бесконечно удаленная точка. Учитывая это, мы можем переформулировать определение потенциала так:

Читайте также:  Эквивалентная схема трансформатора тока

Потенциал электростатического поля точечного заряда в некоторой точке пространства будет равен той работе, которая совершается электрическими силами тогда, когда единичный положительный заряд удаляется из этой точки в бесконечность.

Чтобы вычислить потенциал точечного заряда на расстоянии r , на котором размещается бесконечно удаленная точка, нужно использовать следующую формулу:

φ = φ ∞ = 1 q ∫ r ∞ E d r = Q 4 π ε 0 ∫ r ∞ d r r 2 = 1 4 π ε 0 Q r

С помощью нее мы также можем найти потенциал поля однородно заряженной сферы или шара при r ≥ R , что следует из теоремы Гаусса.

Изображение электрических полей с помощью эквипотенциальных поверхностей

Чтобы наглядно изобразить электростатические поля, кроме силовых линий используются поверхности, называемые эквипотенциальными.

Эквипотенциальная поверхность (поверхность равного потенциала) – это такая поверхность, у которой во всех точкам потенциал электрического поля одинаков.

Эквипотенциальные поверхности и силовые линии на изображении всегда находятся перпендикулярно друг другу.

Если мы имеем дело с точечным зарядом в кулоновском поле, то эквипотенциальные поверхности в данном случае являются концентрическими сферами. На изображениях ниже показаны простые электростатические поля.

Рисунок 1 . 4 . 3 . Красным показаны силовые линии, а синим – эквипотенциальные поверхности простого электрического поля. На первом рисунке изображен точечный заряд, на втором –электрический диполь, на третьем – два равных положительных заряда.

Если поле однородное, то его эквипотенциальные поверхности являются параллельными плоскостями.

В случае малого перемещения пробного заряда q вдоль силовой линии из начальной точки 1 в конечную точку 2 мы можем записать такую формулу:

Δ A 12 = q E Δ l = q ( φ 1 – φ 2 ) = – q Δ φ ,

где Δ φ = φ 1 — φ 2 – изменение потенциала. Отсюда выводится, что:

E = — ∆ φ ∆ l , ( ∆ l → 0 ) или E = — d φ d l .

Это соотношение передает связь между потенциалом поля и его напряженностью. Буквой l обозначена координата, которую следует отсчитывать вдоль силовой линии.

Зная принцип суперпозиции напряженности полей, которые создаются электрическими разрядами, мы можем вывести принцип суперпозиции для потенциалов:

Источник

Работа сил электростатического поля при перемещении заряда

При перемещении точечного электрического заряда qпр электростатического поля из одной точки в другую на расстояние dS элементарная работа, совершаемая силой F, будет равна:

Элементарная работа при перемещении точечного заряда совершаемая силой F

Где α это угол между направлением движения и силой F.

В случае, когда работа совершается силами поля, то dA>0, а если внешними силами, то dA / b (рисунок ниже а)):

Перемещение пробного электрического заряда из точки а в точку b

Так как поле точечного заряда радиально, то на участке аа / работа не производится, поскольку перемещение осуществляется перпендикулярно вектору Е. Отсюда следует, что работа по переносу «пробного» заряда от точки а к точке b будет равна:

Работа по переносу «пробного» заряда от точки а к точке b

Теперь выберем более сложный путь движения точечного заряда (рисунок выше б)). Траекторией его движения будет то радиус, то дуга окружности. Каждый раз, когда путь будет пролегать по радиусу, интегрируется dr/r 2 . Интеграл берется в пределах от ra до ra / по первому радиальному участку, по следующему от ra / до ra // и так далее. Общий интеграл в пределах от r1 до r2 будет равна сумме интегралов, то есть ответ получится тот же, что и в первом случае. Отсюда следует, что и для любого пути, составленного из произвольного числа участков такого же вида, получится аналогичный результат. Расчет перемещения заряда в электростатическом поле для любых траекторий более сложен, но приводит к аналогичному результату, а именно:

Работа сил по перемещению электрического заряда

Где интеграл берется от начальной точки a до конечной точки b по любому пути.

Источник

Работа по перемещению заряда в электрическом поле

Вычисления работы электрического поля по перемещению заряда

Мы уже указывали на сходство законов взаимодействия электрически заряженных тел (закон Кулона) и массивных тел (закон всемирного тяготения). В обоих случаях

Соответственно и последствия из законов должны быть похожими.

В курсе механики мы выяснили, что сила всемирного тяготения является консервативной силой, поскольку ее работа по перемещению тела массой m в пространстве не зависит от траектории движения тела, а определяется только его начальным и конечным положениями. Работа по перемещению тела по замкнутой траектории равна нулю. Работа силы земного притяжения (у поверхности Земли) A = mg (h1 — h2 ) (обозначение см. рис. ниже); во всемирном масштабе работа гравитационной силы

Напоминаем, что силовое поле, в котором работа не зависит от формы траектории, называют потенциальным.

В каждой точке поля тело имеет определенную потенциальную энергию относительно выбранного нулевого уровня. Значение потенциальной энергии тела в данной точке пространства определяется работой поля по перемещению тела от этой точки на нулевой уровень. Работа силы тяжести равна изменению потенциальной энергии тела A = — (Еп2 — Эп1 ).

Эти выводы получены из закона всемирного тяготения Ньютона, подобные выводы должны быть получены и для электростатических сил, действующих в электрическом поле.

Рассмотрим движение точечного заряда в однородном электрическом поле. Пусть однородное поле создают большие металлические пластины, имеющие заряды противоположных знаков. Это поле действует на точечный тело постоянной силой

Читайте также:  Чем меньше напряжение тем больше ток потребления

подобно тому, как поле тяготения действует с постоянной силой

на тело вблизи поверхности Земли.

Пусть пластины размещены горизонтально. Вычислим работу, которую выполняет электростатическое поле, перемещая положительный заряд q с точки 1, расположенной на расстоянии d1 от отрицательно заряженной пластины, в точку 2, удаленную на расстояние d2 , по прямолинейной траектории (а).

Перемещение положительного заряда в однородном электрическом поле: а — по прямолинейной траектории; б — по ломаной

Как известно из курса механики, работа по перемещению тела определяется формулой A = Fscosα, где α — угол между векторами силы и перемещения.

Согласно электрическое поле на участке 1-2 выполняет работу A = Fd, где d = s cos α. С учетом того, что F = qE, получаем A = qEd = qE (d1 — d2 ). Эта работа не зависит от формы траектории, подобно тому, как не зависит от формы траектории работа силы тяжести. Докажем это. Пусть теперь положительный заряд q перемещается с точки 1 в точку 2 на ломаном ВDС (б). Тогда поле выполняет работу A = qE (BD cos α1 + DC cos α2 ) = qE (BD1+ D1 C1 ) = qEd.

К такому же выводу мы придем для любого вида траектории движения точечного заряда, ведь любую кривую можно заменить перемещением по ломаной траектории с достаточно малыми ступенями:

Криволинейную траекторию можно заменить траекторией в виде ломаной линии, с какой угодно точностью, если взять достаточно малые ступени.

Мы доказали, что в однородном электрическом поле работа электростатических сил не зависит от формы траектории. Итак, работа по перемещению заряда по замкнутой траектории равна нулю.

Можно доказать, что этот вывод подтверждается и для неоднородных полей, например, для поля точечного заряда. В этом случае работу по перемещению положительного заряда q с точки 1, которая находится на расстоянии r1 от заряда q, что создает поле, в точку 2, которая находится на расстоянии r2 , определяют по формуле

независимо от формы траектории.

Работа по перемещению заряда в неоднородном поле

Итак, электростатические силы взаимодействия между неподвижными точечными зарядами являются консервативными. А поле консервативных сил потенциальным. Согласно этому электрическое поле, так же, как и гравитационное поле, — потенциальное. И работа сил электрического поля может быть определена из-за изменения потенциальной энергии точечного заряда в этом поле.

Потенциальная энергия взаимодействия точечных зарядов

Подобно тому, как любое тело, которое взаимодействует с Землей по закону всемирного тяготения, на разных расстояниях от ее центра имеет различную потенциальную энергию, электрический заряд q на разном расстоянии от другого заряда q имеет различную потенциальную энергию — W. Если заряд q перемещается в электрическом поле из точки 1, где его потенциальная энергия была W1, в точку 2, где его энергия стала W2 , работа сил поля A = W1 — W2 = -(W2 — W1) = -ΔW. Как видно из формулы, A и ΔW имеют противоположные знаки. Это объясняется тем, что если заряд q перемещается под действием сил поля (т.е. работа поля А положительная), то его потенциальная энергия уменьшается, прирост энергии ΔW — отрицательный. Если же заряд перемещается против сил поля (А — отрицательная), то потенциальная энергия заряда увеличивается. (Такое же соотношение между потенциальной энергией и работой силы тяжести.)

Поскольку буквой Е сказывается напряженность электрического поля, то энергию в электродинамике принято обозначать буквой W.

Как известно, значение потенциальной энергии зависит от выбора нулевого уровня. В электростатике условились потенциальную энергию заряда, размещенного в точке, бесконечно удаленной от заряженного тела, создает поле, считать нулем, W = 0. Тогда, в случае перемещения заряда q с точки 1 в бесконечность, работа поля A = W1 — W = W1 . То есть потенциальная энергия заряда q, размещенного в какой-либо точке поля, численно равна работе, которую выполняют силы поля, перемещая этот заряд с указанной точки в бесконечность: W = qEd, где d — расстояние от источника поля до точки, в которой находится заряд q.

В электротехнике, в отличие от электростатики, под нулем часто принимают потенциальную энергию заряда, размещенного на Земле.

Если поле создано положительным зарядом, то значение потенциальной энергии другого положительного заряда, размещенного в некоторой точке этого поля, будет положительным, если же поле создано отрицательным зарядом, то значение потенциальной энергии положительного заряда — отрицательно. Для отрицательного заряда, размещенного в электрическом поле, все будет наоборот. Когда поле создано сразу несколькими зарядами, потенциальная энергия заряда q, размещенного в какой-либо точке такого поля, равна алгебраической сумме энергий, обусловленных полем каждого заряда в этой точке.

Источник



Формула работа тока при перемещении единичного электрического заряда

При перемещении пробного заряда q в электрическом поле электрические силы совершают работу. Эта работа при малом перемещении равна (рис. 1.4.1):

Рассмотрим работу сил в электрическом поле, создаваемом неизменным во времени распределенным зарядом, т.е. электростатическом поле

Электростатическое поле обладает важным свойством:

Работа сил электростатического поля при перемещении заряда из одной точки поля в другую не зависит от формы траектории, а определяется только положением начальной и конечной точек и величиной заряда.

Читайте также:  Какие заряженные частицы обеспечивают электрический ток в растворах солей

Аналогичным свойством обладает и гравитационное поле, и в этом нет ничего удивительного, так как гравитационные и кулоновские силы описываются одинаковыми соотношениями.

Следствием независимости работы от формы траектории является следующее утверждение:

Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Силовые поля, обладающие этим свойством, называют потенциальными или консервативными .

На рис. 1.4.2 изображены силовые линии кулоновского поля точечного заряда Q и две различные траектории перемещения пробного заряда q из начальной точки (1) в конечную точку (2). На одной из траекторий выделено малое перемещение Работа Δ A кулоновских сил на этом перемещении равна

Таким образом, работа на малом перемещении зависит только от расстояния r между зарядами и его изменения Δ r . Если это выражение проинтегрировать на интервале от r = r 1 до r = r 2, то можно получить

Полученный результат не зависит от формы траектории. На траекториях I и II, изображенных на рис. 1.4.2, работы кулоновских сил одинаковы. Если на одной из траекторий изменить направление перемещения заряда q на противоположное, то работа изменит знак. Отсюда следует, что на замкнутой траектории работа кулоновских сил равна нулю.

Если электростатическое поле создается совокупностью точечных зарядов то при перемещении пробного заряда q работа A результирующего поля в соответствии с принципом суперпозиции будет складываться из работ кулоновских полей точечных зарядов: Так как каждый член суммы не зависит от формы траектории, то и полная работа A результирующего поля не зависит от пути и определяется только положением начальной и конечной точек.

Свойство потенциальности электростатического поля позволяет ввести понятие потенциальной энергии заряда в электрическом поле. Для этого в пространстве выбирается некоторая точка (0), и потенциальная энергия заряда q , помещенного в эту точку, принимается равной нулю.

Потенциальная энергия заряда q , помещенного в любую точку (1) пространства, относительно фиксированной точки (0) равна работе A 10, которую совершит электростатическое поле при перемещении заряда q из точки (1) в точку (0):

(В электростатике энергию принято обозначать буквой W , так как буквой E обозначают напряженность поля.)

Так же, как и в механике, потенциальная энергия определена с точностью до постоянной величины, зависящей от выбора опорной точки (0). Такая неоднозначность в определении потенциальной энергии не приводит к каким-либо недоразумениям, так как физический смысл имеет не сама потенциальная энергия, а разность ее значений в двух точках пространства.

Работа, совершаемая электростатическое полем при перемещении точечного заряда q из точки (1) в точку (2), равна разности значений потенциальной энергии в этих точках и не зависит от пути перемещения заряда и от выбора точки (0).

Потенциальная энергия заряда q , помещенного в электростатическое поле, пропорциональна величине этого заряда.

Физическую величину, равную отношению потенциальной энергии электрического заряда в электростатическом поле к величине этого заряда, называют потенциалом φ электрического поля:

Потенциал φ является энергетической характеристикой электростатического поля.

Работа A 12 по перемещению электрического заряда q из начальной точки (1) в конечную точку (2) равна произведению заряда на разность потенциалов (φ1 – φ2) начальной и конечной точек:

A 12 = W p1 – W p2 = q φ1 – q φ2 = q (φ1 – φ2).

В Международной системе единиц (СИ) единицей потенциала является вольт (В).

1 В = 1 Дж / 1 Кл.

Во многих задачах электростатики при вычислении потенциалов за опорную точку (0) удобно принять бесконечно удаленную точку. В этом случае понятие потенциала может быть определено следующим образом:

Потенциал поля в данной точке пространства равен работе, которую совершают электрические силы при удалении единичного положительного заряда из данной точки в бесконечность.

Потенциал φ поля точечного заряда Q на расстоянии r от него относительно бесконечно удаленной точки вычисляется следующим образом:

Как следует из теоремы Гаусса, эта же формула выражает потенциал поля однородно заряженного шара (или сферы) при r ≥ R , где R – радиус шара.

Для наглядного представления электростатическое поля наряду с силовыми линиями используют эквипотенциальные поверхности .

Поверхность, во всех точках которой потенциал электрического поля имеет одинаковые значения, называется эквипотенциальной поверхностью или поверхностью равного потенциала .

Силовые линии электростатическое поля всегда перпендикулярны эквипотенциальным поверхностям.

Эквипотенциальные поверхности кулоновского поля точечного заряда – концентрические сферы. На рисунке ниже представлены картины силовых линий и эквипотенциальных поверхностей некоторых простых электростатических полей.

В случае однородного поля эквипотенциальные поверхности представляют собой систему параллельных плоскостей.

Если пробный заряд q совершил малое перемещение вдоль силовой линии из точки (1) в точку (2), то можно записать:

Δ A 12 = qE Δ l = q (φ1 – φ2) = – q Δφ,

где Δφ = φ1 – φ2 – изменение потенциала. Отсюда следует

Это соотношение в скалярной форме выражает связь между напряженностью поля и потенциалом. Здесь l – координата, отсчитываемая вдоль силовой линии.

Из принципа суперпозиции напряженностей полей, создаваемых электрическими зарядами, следует принцип суперпозиции для потенциалов:

Источник