Меню

Формула удельной потери напряжения

Расчетные формулы расчета потерь напряжения

Представляю вашему вниманию таблицу с расчетными формулами, которые используются при расчете потерь напряжения в элементах электрических установок, а также таблицу значений коэффициента «c» для проводников [Л1, с.171].

В таблице с расчетными формулами при расчете потерь напряжения, используются следующие условные обозначения:

  • U – рабочее междуфазное напряжение, кВ;
  • Uф – рабочее фазное напряжение, кВ;
  • Uном – номинальное (междуфазное) напряжение, кВ;
  • Uном.ф – номинальное фазное напряжения, кВ;
  • ΔU, ΔUф – потеря напряжения (линейная и фазная), В;
  • ΔU%, ΔUА%, ΔUВ%, ΔUС%, – потеря напряжения линейная и фазная (в фазах А, В, С), %;
  • е% — удельная потеря напряжения, %/(А*км);
  • ΔUа% — составляющая падения напряжения от активного тока в активном сопротивлении для трансформаторов, % [Л1, с.171];

Cоставляющая падения напряжения от активного тока в активном сопротивлении для трансформаторов

  • ΔUр% — составляющая падения напряжения от реактивного тока в реактивном сопротивлении для трансформаторов, % [Л1, с.171];

Cоставляющая падения напряжения от реактивного тока в реактивном сопротивлении для трансформаторов

  • Iном – номинальный ток потребителя или трансформатора, А;
  • Im – расчетный ток в линии на участке m, A;
  • im – расчетный ток ответвления от линии в точке m, A;
  • Imax – максимальное значение (пик) тока, А;
  • Sном – номинальная мощность трансформатора (или потребителя), кВА;
  • Рк – потери короткого замыкания в трансформаторе, кВт;
  • Uк% — напряжение короткого замыкания, % номинального напряжения трансформатора;
  • Sm, Pm, Qm – полная (кВА), активная (кВт) и реактивная (квар) расчетные мощности в линии на участке m;
  • SАm, PАm, QАm – то же, но с индексами Аm для провода фаз А;
  • SВm, PВm, QВm – то же, но с индексами Вm для провода фаз В;
  • SСm, PСm, QСm – то же, но с индексами Сm для провода фаз С;
  • sm, pm, qm — полная (кВА), активная (кВт) и реактивная (квар) расчетные мощности ответвления в точке m;
  • sАm, pАm, qАm – то же, но с индексами Аm для провода фаз А;
  • sВm, pВm, qВm – то же, но с индексами Вm для провода фаз В;
  • sСm, pСm, qСm – то же, но с индексами Сm для провода фаз С;
  • R, X – активное и реактивное сопротивления проводников линии, Ом;
  • Rо, Xо – активное и реактивное сопротивления проводников на единицу длины линии, Ом/км;
  • Rm, Xm – активное и реактивное сопротивления линий от точки начала отсчета (источника, ввода и т.п.) до точки m (см.рис.2.37), Ом/км;
  • rm, xm – активное и реактивное сопротивления линий на участке m, Ом;
  • s – сечение проводников на рассматриваемом участке линий, мм2;
  • r, d – радиус и диаметр поперечного сечения токоведущих жил круглых проводников, см;
  • h, b – высота и толщина шины по ее сечению, см;
  • ϑ – температура проводника, °С;
  • aс.г. – среднее геометрическое расстояние между проводниками, см;
  • ρϑ, ρ20 – активное удельное сопротивление проводника постоянному току при температуре ϑ, Ом*мм2/м;
  • для меди ρ20 = 0,0175 Ом*мм2/м;
  • для алюминия ρ20 = 0,0295 Ом*мм2/м;
  • для стали (при постоянном токе) ρ20 = 0,134 Ом*мм2/м (среднее значение);
  • γ, γϑ – активная удельная проводимость проводника:

Aктивная удельная проводимость проводника

  • Сϑ – температурный коэффициент, учитывающий изменение активного удельного сопротивления проводника при его температуре ϑ, отличной от 20 °С:
  • для меди и алюминия можно принимать:

Температурный коэффициент для меди и алюминия

  • для стали при постоянном токе:

Температурный коэффициент для стали при постоянном токе

  • Сс – коэффициент скрутки, учитывающий увеличение активного сопротивления многопроволочных жил вследствие увеличения фактической длины отдельных проволок жилы:
  • для шин и однопроволочных проводников Сс = 1;
  • для многопроволочных жил Сс = 1,02;
  • Сп.э – коэффициент поверхностного эффекта, учитывающий увеличение ρϑ и ρ20 при переменном токе 50 Гц;
  • Lm – длина линии от точки начала отсчета (источника, ввода и т.п.) до точки m, км;
  • LАm, LBm, LCm – то же провода фаз А, В, С, км;
  • lm – длина линии на участке m, км;
  • lАm, lBm, lCm – то же провода фаз А, В, С, км;
  • β – коэффициент загрузки, отношение фактической (расчетной) нагрузки к номинальной мощности;
  • cosφm, cosφ2 – коэффициент мощности на участке m и на зажимах вторичной обмотки трансформатора;
  • ω = 2πf – угловая частота переменного тока; при f = 50 Гц, ω = 314;
  • μ – коэффициент относительной магнитной проницаемости, для проводников из цветных металлов μ = 1.
Читайте также:  Формула для расчета потерь напряжения сети

Расчетная схема линий представлена на рис.2.37.

Рис.2.37 - Расчетная схема линий при расчете потерь напряжения

Таблица 1 – Расчет потерь напряжения в элементах электрических установок

Расчет потерь напряжения для несколько (n) ответвлений расположены вдоль линий

То же, но сечения проводников всех участков линии одинаковы

Расчет потерь напряжения когда сечения проводников всех участков линии одинаковы

Расчет потерь напряжения когда одна нагрузка в конце линии

Для питания силовых и осветительных сетей трёхфазного тока 50 Гц

Расчет потерь напряжения для питания силовых и осветительных сетей трёхфазного тока 50 Гц

Расчет потерь напряжения когда сеченния проводников отдельных участков линии различны

Сечения проводников всех участков линии одинаковы; cosφ ответвлений различны

Расчет потерь напряжения когда сеченния проводников всех участков линии одинаковы

Расчет потерь напряжения когда сеченния проводников всех участков линии одинаковы и cosφ ответвлений одинаковы

Одна нагрузка в конце линии

Расчет потерь напряжения когда одна нагрузка в конце линии

Расчет потерь напряжения когда несколько (n) ответвлений расположены вдоль линии

Расчет потерь напряжения когда одна нагрузка в конце линии

Расчет потерь напряжения когда нагрузка равномерно распределена по всей длине одинакового сечения

Расчет потерь напряжения когда нагрузка равномерно распределена на участке

Расчет потерь напряжения сети электрического освещения

Расчет потерь напряжения сети трехфазной снулевым проводником

Примечание:
Если сечение нулевого проводника равно половине сечения фазного проводника, то в формулах (2.51) и (2.52) необходимо заменить множители 4 в числителе на 3, а в знаменателе на 2. Значения коэффициента с принимают по данным табл. 2.60 для однофазных сетей. Расчеты фаз В и С аналогичны.

Таблица 2.60 — Значения коэффициента «с» в формулах 2.50 — 2.52 [Л1, с.174]

Таблица 2.60 - Значения коэффициента

1. Справочник по проектированию электрических сетей и электрооборудования. Ю.Г.Барыбина. 1991 г.

Источник



Расчёт потерь напряжения в кабеле

Потеря напряжения в кабеле — величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения (по ГОСТ 23875-88). Этот параметр необходимо знать при производстве любых электромонтажных работ — начиная от видеонаблюдения и ОПС и заканчивая системами электроснабжения промышленных объектов.

Потери напряжения в трёхфазной линии Потери напряжения в однофазной линии
Рис.1 Рис.2

При равенстве сопротивлений Zп 1 =Zп 2 =Zп 3 и Zн 1 =Zн 2 =Zн 3 ток в нулевом проводе отсутствует (Рис.1), поэтому для трёхфазных линий потери напряжения рассчитываются для одного проводника.

В двух- и однофазных линиях, а также в цепи постоянного тока, ток идёт по двум проводникам (Рис.2), поэтому вводится коэффициент 2 (при условии равенства Zп 1 =Zп 2 ).

Доступна Windows-версия программы расчёта потерь напряжения

Пояснения к расчёту

Расчёт потерь линейного (между фазами) напряжения в кабеле при трёхфазном переменном токе производится по формулам:

или (если известен ток)
где

Расчёт потерь фазного (между фазой и нулевым проводом) напряжения в кабеле производится по формулам:

или (если известен ток)
где

Для расчёта потерь линейного напряжения U=380 В; 3 фазы.

Для расчёта потерь фазного напряжения U=220 В; 1 фаза.

P — активная мощность передаваемая по линии, Вт;
Q — реактивная мощность передаваемая по линии, ВАр;
R — удельное активное сопротивление кабельной линии, Ом/м;
X — удельное индуктивное сопротивление кабельной линии, Ом/м;
L — длина кабельной линии, м;
— линейное напряжение сети, В;
— фазное напряжение сети, В.

Пожелания, замечания, рекомендации по улучшению раздела расчётов на нашем сайте просьба присылать по электронной почте support@ivtechno.ru

Разрешается копирование java-скриптов при условии ссылки на источник.

Источник

Расчет падения напряжения в кабеле

Содержание

Как известно, сечение кабеля выбирается не только по его способности выдерживать без перегрева свой максимальный ток. Другой критерий выбора – его длина. От длины зависит такой важный параметр системы электропитания, как падение напряжения. Иначе говоря – потери на кабельной линии.

В бытовой электропроводке эта проблема практически не принимается во внимание, поскольку существенное влияние она оказывает на длинах кабелей от нескольких десятков метров. Хотя, я уже писал на эту тему статью про падение напряжения, но там основная причина потерь заключалась в большом токе.

В интернете эта тема раскрыта очень поверхностно, и когда я с ней столкнулся, очень долго разбирался. Вспомнил косинусы с синусами, нашёл свой старый калькулятор)) Пока разбирался, написал эту статью. Как обычно у меня и бывает).

В данной статье приведу расчеты и рекомендации, сделанные мной для крупного складского комплекса, введенного в эксплуатацию год назад.

Зачем нужен расчет потерь напряжения в кабеле

Предыстория такова. Проектировщикам выдали техническое задание на проект электроснабжения, в котором была указана мощность холодильных систем. Пока выполнялся проект и выделялись деньги на его реализацию, было куплено холодильное оборудование с потребляемой мощностью, в 2 раза превышавшей исходную. Кроме того, выяснилось, что реальное расстояние до подстанции будет почти в 2 раза больше…

Читайте также:  Измерительные трансформаторы напряжения схема подключения приборов

В общем, дорогущее немецкое холодильное оборудование отказывается работать, все знают, что делать, но никто не хочет за это платить. Прошедшим летом из-за пониженного напряжения (линейное 340-360 В) сгорел компрессор стоимостью более 10 тыс.евро. Терпеть дальше это было нельзя. Меня попросили провести расчеты, мониторинг и измерения на системе питания, и дать рекомендации по решению проблемы.

Поскольку писал я этот отчет от лица фирмы, имеющей лицензию на энергоаудит, то этот документ будет иметь силу в предстоящей судебной тяжбе.

По ходу документа в цитатах буду давать комментарии и уточнения.

Было проведено обследование качество электроэнергии, поступающей от трансформаторной подстанции (ТП) по первому участку (440 м) до ГРЩ 2.2 и далее по вторым участкам (50 и 40 м) на холодильные установки (Система 12 и Система 14).

Схема структурная данной системы:

Цель обследования – выявить причины значительного падения напряжения на кабельной линии.

В Систему 12 входят следующие потребители:

Наименование Установленная мощность, кВт Макс.расчетный ток, А
Воздухоохладитель 124,6 50,5
Воздухоохладитель 78,3 27,1
Двигатели компрессоров 100 132,7
Двигатели вентиляторов 13,7 29,7
Итого 316,6 240

В Систему 14 входят следующие потребители:

Наименование Установленная мощность, кВт Макс.расчетный ток, А
Воздухоохладитель 234,4 81,2
Воздухоохладитель 193,9 55,7
Воздухоохладитель 15,2 31,3
Двигатели компрессоров 396 525,6
Двигатели вентиляторов 66 144,3
Итого 905,5 838,1

Напряжение питания – 380…415 В.

Значения токов, мощностей и напряжения взяты из паспортных данных потребителей.

  1. Предварительный расчет потерь напряжения в кабеле

По предварительному расчету, при напряжении на выходе ТП 415 В на холостом ходу (при выключенной нагрузке), при максимальной нагрузке допустимо падение 35 В, или 8,43%. В таком случае при максимальной нагрузке напряжение упадет до 380 В, что, согласно паспортным данным потребителей, является допустимым.

ТП содержит 2 трансформатора по 600 кВт, которые планировалось использовать по одному. Но из-за увеличения нагрузки их пришлось включить в параллель.

Согласно Своду правил по проектированию и строительству СП 31-110-2003, а также ГОСТ Р 50571.15-97 с учетом регламентированных отклонений от номинального значения суммарные потери напряжения от шин 0,4 кВ ТП до наиболее удаленной нагрузки в жилых и общественных зданиях не должны превышать 9%. Причем, из них 5% – на участке от ТП до ВРУ, и 4% – на участке от ВРУ до потребителя.

Согласно ГОСТ 29322-2014, номинальное фазное напряжение в трехфазных сетях должно составлять 400 В, а при нормальных условиях оперирования напряжение питания не должно отличаться от номинального напряжения больше чем на +-10%.

Исходя из этого, падение на 8,43% является обоснованным и соответствует Правилам и ГОСТам, принятым в РФ.

  1. Расчет падения напряжения для 1-го участка

В ходе обследования выяснилось следующее. От ТП, расположенной на расстоянии 440 м, электроэнергия поступает в ГРЩ2.2 по кабельной линии, состоящей из четырех параллельно соединенных кабелей АВБбШв 4х240, общим сечением 960 мм 2 .

Максимальный расчетный ток нагрузки, согласно паспортным данным, составляет 240 А для Системы 12 и 838,1 А для Системы 14. Следовательно, максимальный ток кабельной линии составляет 240+838,1=1078,1 А.

Общая установленная мощность, согласно паспортным данным, составляет 316,6 кВт для Системы 12, и 905,5 кВт для Системы 14. Следовательно, общая установленная мощность всей нагрузки составляет 316,6+905,5=1222,1 кВт.

Рассчитаем падение напряжения на кабельной линии 1-го участка от ТП до ГРЩ2.2 по формуле:

Исходные данные для расчета:

  • Максимальный ток I = 1078,1 А,
  • Установленная мощность нагрузки 1222,1 кВт,
  • Удельное активное сопротивление одной жилы R = 0,125 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Принимаем Cosφ = 0,8, тогда sinφ = 0,6
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,44 км.
Читайте также:  Что поможет при головной боли напряжения

Подставив данные в формулы, получим, что для одного кабеля падение составит 239 В, или 57,75%. Тогда для имеющейся кабельной линии 1-го участка падение напряжения составит 59,8 В, или 14,43%.

Такое падение напряжения только на 1-м участке является недопустимым.

Это – основная формула. Я делал расчеты, используя калькулятор. Проверял полученные данные, используя программу Электрик (подпрограмма “Потери”).

Кроме того, мне здорово помог Игорь (220blog.ru), за что ему большое спасибо!

Ещё есть хорошая книжка, в конце статьи дам ссылку!

На всякий случай таблица активных и индуктивных сопротивлений алюминиевых и медных кабелей разного сечения:

После щита ГРЩ2.2 к нагрузке идёт второй участок кабельной линии на Систему 12, состоящей из одного кабеля АВВГ-нг-LS 5×185, длиной 50 м.

Данные для расчета:

  • Максимальный ток 240 А,
  • Установленная мощность нагрузки 316,6 кВт,
  • Удельное активное сопротивление одной жилы R = 0,164 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,05 км.

Для имеющейся кабельной линии падение напряжения составит 3,67 В, или 0,88%.

  1. Результат обследования 2-го участка (Система 14)

После щита ГРЩ2.2 к нагрузке идёт второй участок кабельной линии на Систему 14, состоящей из трех параллельно соединенных кабелей АВВГ-нг-LS 5×185 длиной 40 м.

Данные для расчета:

  • Максимальный ток 838,1 А,
  • Установленная мощность нагрузки 905,5 кВт,
  • Удельное активное сопротивление одной жилы R = 0,164 Ом/км по данным производителя кабеля.
  • Удельное индуктивное сопротивление одной жилы Х = 0,077 Ом/км по данным производителя кабеля.
  • Материал жилы кабеля – алюминий,
  • Длина линии L = 0,04 км.

Для одного кабеля потеря напряжения составит 10,2 В, или 2,47%. Для имеющейся кабельной линии 2-го участка Системы 14 падение напряжения составит 3,4 В, или 0,82%.

  1. Рекомендации по модернизации кабельных линий

Для данного максимального тока и длины линии необходимо выбрать другую кабельную линию участка 1, поскольку расчетное падение напряжения для этого участка является недопустимым. Исходя из данных предварительного расчета и данных падения напряжения на 2-х участках, падение напряжения на 1-м участке должно быть не более 7,55%.

Такой уровень потерь обеспечит кабельная линия, состоящая из 8 кабелей АВБбШв 4х240, включенных в параллель. То есть, к имеющимся кабелям (4 шт.) добавить дополнительные (4 шт.).

В результате, потери на кабельной линии участка 1 составят 7,2%, или 29,8 В.

Кабельные линии 2-х участков в модернизации не нуждаются.

Для стабильной работы холодильного оборудования, согласно его паспортным данным, требуется напряжение с допустимыми пределами от 380 до 415 В.

Если учесть приводимые рекомендации, то при выходном напряжении ТП 415 В при максимальной нагрузке потери напряжения для Системы 12 будут 7,2+0,88=8,08%, или 33,6 В. В результате при максимальной нагрузке питающее напряжение Системы 12 составит не менее 381,4 В.

Для Системы 14 потери будут 7,2+0,82=8,02%, или 33,2 В. В результате при максимальной нагрузке питающее напряжение Системы 14 составит не менее 381,7 В.

  1. Результаты измерений качества напряжения

Измерения проводились при помощи анализатора качества напряжения HIOKI 3197, который позволяет снимать все параметры напряжения онлайн.

Прибор предназначен для построения графиков различных параметров электропитания в реальном времени. HIOKI 3197 я уже использовал в анализе качества напряжения при проблемах с холодильниками. Если кому нужен такой прибор – обращайтесь!

Измерения проводились в точке подключения 2-го участка Системы 14 в разных режимах работы оборудования. 2-й участок Системы 12 не исследовался, поскольку к нему невозможно было получить доступ, не отключая питания ТП. Но поскольку Система 12 является маломощной по сравнению с Системой 14, для получения общей картины достаточно измерений, результаты которых приведены ниже на графиках.

Источник