Меню

График зависимости силы переменного тока от времени представляет собой

Построение графика зависимости силы тока от напряжения

График зависимости силы тока от напряжения

Физика

В физике график зависимости силы тока от напряжения называют вольт-амперной характеристикой (ВАХ). Он показывает, как зависят параметры электрической цепи или радиоэлемента друг от друга при их изменении в широком диапазоне. Его построение можно выполнить на основе практических исследований или теоретических расчётов. При этом второй способ не точный, а первый не всегда возможно применить.

  1. Общие сведения
  2. Связь между параметрами
  3. Вольт-амперная характеристика
  4. Решение задач

Общие сведения

В XVI веке исследования учёных показали, что в природе существует нечто, способное вызывать силы взаимодействия между телами. Впоследствии это явление назвали электричеством, а величину, характеризующую процесс — зарядом. В 1729 году Шарль Дюфе открыл существование двух их типов. Однотипные обладают свойством отталкивания друг от друга, а одинаковые — притягивания. Условно их разделили на положительные и отрицательные.

По сути, электрический заряд определяет способность вещества генерировать поле и принимать участие в электромагнитном взаимодействии. В качестве единицы измерения скалярной величины в СИ принят кулон [Кл]. Носителями зарядов являются элементарные частицы. Обозначают их с помощью символа q.

Зависимость силы тока от напряжения график

Физическое тело состоит из атомов или молекул. В свою очередь, они формируются из простейших частиц. В твёрдом теле имеются ядра, состоящие из протонов и нейтронов. Вокруг них по орбиталям вращаются электроны. Если на тело не действуют внешние силы, система находится в электрическом равновесии. Связанно это с тем, что положительный заряд ядра компенсируется отрицательным электрона.

Но в то же время в теле могут существовать так называемые свободные электроны. Это частицы, не имеющие связи с ядром и свободно перемещающиеся по телу. Их движение хаотичное. Двигаясь по кристаллической решётке, электроны ударяются с дефектами и примесями, отдавая часть им своей энергии и превращая её в тепло. Но это явление настолько незначительное, что его сложно обнаружить даже специализированными устройствами.

Зависимость силы тока от напряжения

Если же к телу приложено электромагнитное поле, движение свободных зарядов становится направленным. При обеспечении его непрерывности возникает явление, которое назвали электрическим током. Таким образом, под ним стали понимать упорядоченное движение носителей заряда. Исследования показали, что такими частицами могут быть:

  • электроны — твёрдые тела;
  • ионы — газы, электролиты.

Для описания электротока используют 2 величины — работу и силу. Первая показывает, какое количество энергии необходимо затратить, чтобы перенести заряд из одной точки поля в другую. Называют её напряжением. Сила тока же определяется отношением количества заряда, прошедшего через поперечное сечение тела за единицу времени.

Связь между параметрами

Чтобы появился электрический ток, необходимо выполнение нескольких условий. Нужен его источник, материал, имеющий свободные носители заряда, и замкнутая цепь, по которой они смогут перемещаться. После изобретения «вольтова столба» учёные начали проводить различные эксперименты, изучая протекание электротока. В 1825 году Ом в своих опытах с использованием гальванического источника и крутильных весов наблюдал потерю энергии в зарядах. Он обнаружил, что сила тока в цепи зависит не только от типа материала, но и его линейных характеристик.

Анализируя полученные данные, Ом вывел формулу: X = a*k/L, где: X — сила электротока, a — электрическое напряжение, k — коэффициент проводимости, l — длина материала. Впоследствии этот закон был подтверждён другими учёными и был назван в честь открывателя.

Зависимость силы тока от времени

В современном виде он записывается так: I = U/R, где:

  • U — разность потенциалов (напряжение);
  • R — сопротивление.

То есть сила тока в проводнике прямо пропорциональна напряжению и обратно пропорциональна его сопротивлению. R — коэффициент пропорциональности. По своему определению он является величиной, обратной проводимости. Зависит сопротивление от физических размеров проводника и его способности препятствовать прохождению электротока.

Вычислить значение R можно по формуле: R = pL/S, где p — удельный коэффициент, зависящий от свойства материала, L — длина проводника, S — площадь поперечного сечения. Значение удельного сопротивления зависит от температуры, но при этом для каждого градуса остаётся постоянным. Его величина измерена для практически всех существующих элементов в природе и является табличной.

Зависимость силы тока от напряжения формула

Открытые формулы позволили установить не только зависимость тока от сопротивления, но и связать 2 фундаментальные электрические величины — силу и работу. Причём зависимость между ними принято изображать с помощью графика, получившего название вольт-амперная характеристика. Её смысл заключается в построении функции, описывающуюся законом Ома. Это важный график для электротехнических устройств. Используя его, можно определить мощность для любых величин.

Вольт-амперная характеристика

С её помощью можно узнать, как изменяется ток при увеличении или уменьшении напряжения в цепи. Если её строить для проводника, зависимость будет линейной. Это можно понять из закона Ома, в соответствии с которым сила пропорциональна приложенной разности потенциалов. Такого вида график характерен для металлов. Но в то же время для полупроводников он не будет линейным.

Всё дело в том, что такие материалы обладают особыми свойствами. В них может наступать пробой — явление, при котором происходит резкое возрастание силы тока и процесс насыщения. В последнем случае значение электротока практически не изменяется при росте напряжения.

График зависимости силы тока от напряжения

График зависимости строят в декартовой системе координат. По оси X откладывают напряжение, а Y — ток. Исследовать характеристику для любого элемента цепи можно и самостоятельно. Для этого потребуется подготовить:

  • регулируемый блок питания;
  • амперметр;
  • вольтметр;
  • исследуемый элемент.

Схема собирается довольно просто. К блоку питания подключают измеритель тока (амперметр), к выходу которого подсоединяют одним выводом проводник. Второй полюс соединяют со свободным контактом источника напряжения. Измеритель напряжения включают параллельно исследуемому элементу.

Зависимость силы тока от напряжения

Эксперимент заключается в следующем. С помощью блока питания изменяют напряжение, величина которого снимается с вольтметра. Одновременно списывают данные с амперметра. Затем рисуют координатные оси ВАХ, на которых откладывают точки соответствующих величин и соединяют их плавной линией. Нарисованная кривая или прямая и будет отображать реальную картину зависимости тока от напряжения для элемента. По ВАХ можно построить график зависимости мощности от силы тока. Для этого необходимо выполнить расчёт по формуле: P = I*U.

На практике часто приходится иметь дело с переменным током. Это явление, при котором его сила изменяется с течением времени. В этом случае не используют ВАХ, так как изменение U происходит по определённому закону, чаще всего синусоидальному, поэтому, если нужно построить график зависимости напряжения от времени, необходимо знать формулу, с помощью которой описывается функция.

Решение задач

Задачи, связанные с нахождением фундаментальных электрических величин, обычно простые. Но для их решения понадобится не только знать несколько формул, но и единицы измерения в СИ. В Международной системе сила тока измеряется в амперах, напряжение — вольтах, сопротивление — омах, мощность — ваттах. Нередко приходится сталкиваться с большими числами или, наоборот, маленькими, поэтому для упрощения записи используют приставки: микро, нано, кило, мега.

Вот некоторые из типовых заданий, рассчитанных на самостоятельную проработку в рамках уроков по физике для 8 класса:

График зависимости силы тока от напряжения решение задачи

  1. Определить напряжение на резисторе, обладающем сопротивлением 10 Ом, если через него проходит ток силой в 1 ампер. Это простой пример, решаемый с помощью закона Ома. Согласно ему I = U/R, следовательно: U= I*R. Подставив исходные данные, можно выполнить вычисления: U= 1 A*10 Ом = 10 В.
  2. Найти мощность устройства, если его сопротивление равняется 1 кОм, при создаваемой разности потенциалов 10 вольт. Чтобы вычислить P, нужно определить потребление тока: I =U/R = 10/1000 = 0,01 A. Теперь воспользовавшись формулой мощности, можно найти нужный параметр: P = I*U = 0,01*10 = 0,1 Вт.
  3. Электрическая лампа включена в сеть с напряжением 220 В. Найти значение тока, проходящего через спираль, если сопротивление проводника равняется 30 Ом. По закону: I = U/R = 220/3 = 7,3 А.
  4. При напряжении 220 вольт значение тока, проходящего через дроссель, составляет 5 А. Вычислить, как изменится I, если напряжение увеличится на 20 вольт. Исходя из того, что сопротивление постоянное, можно составить пропорцию: U1 / I1 = U2/I2. Напряжение для второго случая возможно определить из выражения: U 2 = U + U 1 = 220 + 20 = 240 В. Отсюда I2 = I1 * U2 / U 1 = 5 А * 240 В / 220 В = 5,45 A.

Формула зависимости тока от напряжения, полученная экспериментальным путём, стала основополагающей в развитии электротехники и электроники. Связь между величинами оказалась пропорциональной с учётом коэффициента, получившего название сопротивление. Причём его значение зависит от рода материала и размеров тела.

Источник

Зависимость силы тока от напряжения — формула, график и законы

Фундаментальной связью в электричестве является зависимость силы тока от напряжения. Благодаря этому закону, экспериментально установленном Омом в 1826 году, созданы различные измерительные приборы. Удалось исследовать физику короткого замыкания. Формулу можно применять для систем, которые зависят от электросопротивления. Пожалуй, разработка любой электрической сети невозможна без использования этого открытия.

Читайте также:  Стандартные напряжения источников постоянного тока

Зависимость силы тока от напряжения - формула, график и законы

Общие сведения

Любое физическое тело состоит из молекул и атомов. Эти частицы взаимодействуют между собой. Они могут притягиваться друг к другу или отталкиваться. В изолированной системе элементарные частицы являются носителями заряда. В спокойном состоянии, то есть когда на тело не оказывается внешнего воздействия, алгебраическая сумма энергии частиц всегда постоянная величина. Это утверждение называется законом сохранения электрического заряда.

Зависимость силы тока от напряжения - формула, график и законы

Частицы хаотично могут перемещаться по кристаллической решётке, но их движение компенсируется. Поэтому ток не возникает. Но если к телу приложить внешнюю силу, то свободные электроны начинают двигаться в одну сторону. Это упорядоченное движение заряженных частиц и называют электрическим током. Количественно его можно описать через силу.

Упорядочено заряды заставляет двигаться электрическое поле, вдоль линий которого и происходит перемещение. Впервые этот термин ввёл Фарадей. Он сумел выяснить, что вокруг любого носителя существует особый вид материи, влияющий на поведение других частиц. За силовую характеристику электрического поля было взято отношение действующей силы к величине заряда, помещённого в данную точку: E = F / q. Назвали эту характеристику напряжённостью.

Изучение поля позволило экспериментально открыть принцип суперпозиции. То есть установить, что напряжённость поля, созданного системой зарядов, равна геометрической сумме величин, существующих у отдельных носителей: E = Σ E1 + E2 +…+ En. Напряжённость прямо пропорциональна напряжению, которое, в свою очередь, равняется разности потенциалов между двумя точками.

По сути, это работа электрического поля, совершаемая для переноса единичного заряда из одного места в другое: U = A / q = E * d, где d – расстояние между точками. Значение напряжения зависит от нескольких факторов:

  • строения тела;
  • температуры;
  • сопротивления.

Самое большее влияние оказывает последняя величина. Именно она характеризует способность материала препятствовать прохождению тока, то есть определяет проводимость. Сопротивление зависит от длины проводника и его сечения: R = (p * l) / S, где p – параметр обратный удельной проводимости (справочное значение). Он численно равняется сопротивляемости однородного проводника единичной длины и площади сечения.

Подтверждение закона Ома

Бум исследования электрических явлений пришёлся на конец XVIII – начало XIX веков. Такие учёные, как Фарадей, Ампер, Вольт, Эрстед, Кулон, Лачинов, Ом провели ряд экспериментов, которые позволили Максвеллу создать теорию электромагнитных явлений.

Зависимость силы тока от напряжения - формула, график и законы

Огромную роль в открытии новых знаний сыграл опыт Ома исследовавшего, от чего зависит сила тока в цепи. Немецкий физик ставил опыты над проводимостью различных материалов. Для этого он использовал электрическую цепь, в разрыв которой подключал проводники разной длины и замерял силу тока.

Изначально учёный не смог установить закономерность. Всё дело в том, что для своих опытов Ом использовал химическую батарею. Друг учёного Поггендорф предложил взять термоэлектрический источник тока. В итоге физик смог проследить зависимость. Описал он её так: частное от a, разделённого на l + b, где b определяет интенсивность воздействия на проводника длиною l, причём a и b — постоянные, зависящие соответственно от действующей силы и сопротивления элементов цепи.

Обычно при изучении закона в седьмом классе средней школы учитель демонстрирует эту зависимость на практических уроках. Для этого чтобы ученики удостоверились в справедливости утверждения, преподаватель собирает электрическую цепь, в состав которой входят:

  • вольтметр – прибор для измерения напряжения, включается параллельно измеряемому проводнику;
  • амперметр – устройство для замера тока, подключается последовательно с измеряемым телом;
  • регулируемый источник электродвижущей силы (ЭДС).

Суть опыта заключается в подключении проводников с разной длиной. Измеренные результаты заносят в таблицу. Она должна иметь примерно следующий вид:

Первое тело Второе тело Третье тело
U, В I, А U, В I, А U, В I, А
1 0,5 1 0,4 1 0,2
2 1 2 0,6 2 0,3
3 1,5 3 0,8 3 0,4
4 2 4 1 4 0,5

Проведя анализ таблицы, можно сделать вывод. Если для любого тела напряжение разделить на соответствующую ему силу тока, то получится одно и то же число. Следовательно, это отношение является свойством проводника. Для первого оно равно двум, второго – пяти, а третьего – десяти. При одинаковых токах в третьем случае число больше, значит, это тело оказывает большее сопротивление току.

Полученные значения по факту и являются величинами, обратными проводимости. Обозначают их буквой R (resistance).

График зависимости

По результатам эксперимента Ом построил график зависимости силы тока от сопротивления, который напоминает собой левую часть параболы. Современная запись закона Ома имеет вид: I = U / R. Звучит она следующим образом: ток прямо пропорционален напряжению и обратно пропорционален электрическому сопротивлению.

Но при разработке приборов или исследовании участка цепи перед учёными и инженерами стоит задача, прежде всего, выяснить зависимость тока от напряжения. Поэтому ими строится график, в котором по оси абсцисс откладывают значение потенциала, а ординат — силы тока. В итоге если отложить соответствующие точки, то должна получиться прямая линия. Это говорит о том, что зависимость величин линейная. То есть во сколько раз увеличивается напряжение, во столько же возрастает сила тока.

Зависимость силы тока от напряжения - формула, график и законы

Такого вида график называется вольт-амперной характеристикой (ВАХ). Но при реальных измерениях изменение ток зависит ещё от температуры. Установлено, что при нагреве сопротивление проводника увеличивается. Поэтому прямая на ВАХ будет иметь меньший угол наклона. Кроме того, ток может быть двух видов:

  • постоянный – сила не изменяется от времени;
  • переменный – изменяющийся по синусоидальному закону.

Поток носителей заряда для второго вида описывается гармоническим законом: I(t) = Im * cos (wt + f), где: w – циклическая частота, f – сдвиг фаз относительно напряжения, Im – наибольшее значение тока. Тогда изменение напряжения во времени можно записать так: U(t) = Um * cos (wt). В этом случае закон Ома примет вид: I = U / Z, где Z – полное сопротивление цепи.

Зависимость силы тока от напряжения - формула, график и законы

График зависимости силы тока от времени, впрочем, как и напряжения, будет представлять собой синусоиду. Если отложить их на одном рисунке, то при активном сопротивлении (резистор) фазы величин будут совпадать друг с другом. В схеме, содержащей реактивные составляющие, а это ёмкость, и индуктивность, фаза тока соответственно будет опережать и отставать от напряжения. Угол изменения составит девяносто градусов.

Графики зависимости позволяют определить мощность. Сделать это можно, воспользовавшись формулой: P = U * I * cos(f). Чтобы построить график мощности, нужно аппроксимировать на ось t точки синусоиды I(t) и U(t), в которых параметры изменяют свой знак.

Характеристика P(t) будет также описываться по гармоническому закону. Причём в каждой этой точке линя изменит направление.

Простейшие задачи

Зависимость, установленную экспериментальным путём, широко используют при проектировании электронных схем различных устройств. С помощью закона Ома рассчитывают нужное сопротивление резисторов для той или иной цепи, вычисляют значение тока при определённом напряжении.

Читайте также:  Световой источник тока фотоэлемент

Вот некоторые из таких заданий:

Зависимость силы тока от напряжения - формула, график и законы

Зависимость силы тока от напряжения - формула, график и законы

  • Пусть имеется схема, подключённая к источнику, выдающему 60 вольт. Определить, какой ток потечёт через резистор 30 Ом. Согласно правилу, связывающему три фундаментальных величины: I = U / R. Так как по условию все нужные данные известны, то необходимо их просто подставить в формулу и выполнить вычисления: I = 60 В / 30 Ом = 2 А. Задача решена. Ответ: через резистор потечёт ток равный двум амперам.
  • Построить графики зависимости для двух проводников имеющих сопротивление пять и пятнадцать ом. В задании требуется нарисовать ВАХ. Так как напряжения не указаны, то их можно брать любыми. Используя формулу Ома, нужно определить ток для произвольных значений потенциала. График зависимости – прямая. Значит, нужно отложить две точки. Чтобы правильно разметить значения необходимо выбрать масштаб. Поэтому вначале следует посчитать максимальное значение тока. Пусть за наибольшее напряжение будет принято U = 50 В. Тогда, Im1 = 50 / 5 = 10 А, Im2 = 50 / 10 = 5 А. Теперь останется отложить полученный результат на графике и провести линию через ноль и эти точки.
  • Определить ток, потребляемый электрочайником, если его спираль имеет сопротивление 40 Ом, а напряжение сети равно 220 вольт. Пример решается по простой формуле: I = U / R = 220 В / 40 Ом = 5, 5 А. Задача решена.
  • В вольтметре, показывающем 120 вольт, ток составляет 15 миллиампер. Найти сопротивление прибора. Из формулы зависимости можно выразить сопротивление. Оно будет равно: R = U / I. При этом, чтобы получить правильный ответ, миллиамперы следует перевести в амперы. Решение будет иметь вид: R = 120 В / 15 * 10 -3 А = (120 * 10 3 ) / 15 = 8 * 10 3 Ом = 8 кОм. Итак, внутреннее сопротивление вольтметра составит восемь килоом.

    Следует отметить, что в школьных задачах не учитываются характеристики источника тока.

    По умолчанию считают, что он имеет бесконечно малое внутреннее сопротивление. Но на самом деле это не так. Электродвижущая сила генератора электрической энергии затрачивается как на внутренние, так и внешние потери. Поэтому формула закона Ома для полной цепи имеет вид: I = (U0 + U) / R + r, где: U0 – внутреннее падение напряжения, r0 – сопротивление источника.

    Источник

    Графики зависимости напряжения и силы тока от времени

    Прокомментируйте схему и графики зависимости напряжения и силы тока от времени. Рисунок 1.

    Слайд 14 из презентации «График переменного тока». Размер архива с презентацией 4452 КБ.

    Физика 11 класс

    «Специальная теория относительности» — Анри Пуанкаре. Панель дома. Световой импульс. Идея опыта. Принцип относительности. Относительность расстояний. Масса в СТО. Принцип постоянства скорости света. Преобразования Лоренца. Альберт Эйнштейн. Импульс в СТО. Безмассовые частицы. Опыты по наблюдению спектра водорода. Два автомобиля движутся в противоположных направлениях. Опыты Майкельсона и Морли. Теория относительности. Найдите скорость.

    «Магнитная сила Лоренца» — Центростремительное ускорение. Движение заряженной частицы. Сила, действующая на движущуюся заряженную частицу. Сила Лоренца. Модуль силы Лоренца. Проверьте свои знания. Движение заряженной частицы под действием силы Лоренца. Направление силы Лоренца. Применение силы Лоренца. Магнитное поле. Действие магнитного поля на движущуюся заряженную частицу.

    «Звуки вокруг нас» — Различие между музыкой и шумом. Звуки, идущие от колеблющихся струн. Ультразвук. Музыкальные звуки. Инфразвуки в искусстве. Орган. Наинизший из слышимых человеком музыкальных звуков. Белл. Звуки разных инструментов. Красота формул. Нижняя нота. Мы охотно слушаем музыку. Физика вокруг нас. Музыкальные инструменты. Пианино.

    «Реакция ядерного распада» — Коэффициент размножения нейтронов. Энергетический выход ядерных реакций. Испускание нейтронов в процессе деления. Ядерные реакции. Образование плутония. Ядерные реакции на нейтронах. Ядерная реакция. Механизм деления. Цепные ядерные реакции. Деление ядер урана. Значения ускорителей элементарных частиц.

    «Диапазоны радиоволн» — День радио. Первый радиоприемник. Лодж Оливер Джозеф. Открытие радио. Волны. Ультракороткие волны. Связь на коротких волнах. Изобретение радио. Радио. Короткие волны. Изучить дополнительную литературу. Колебательный контур. Изучение свойств радиоволн. Длинные волны. Средние волны. Попов Александр Степанович. История создания радио. Решение задач.

    ««Лазеры» физика 11 класс» — Схема лазера на рубине. Каскад фотонов. Схема энергетических уровней гелия и неона. Цилиндр из розового рубина. Частота электромагнитных колебаний. Используются также в различных приборах. Список лазерных материалов. Лазеры и их применение. Гелий-неоновый лазер. Применение лазеров. Цилиндрический сосуд. Химики заключили ион неодима в атомную кольчугу. Процесс образования каскада фотонов. Атомы поглощают световую энергию.

    Всего в теме «Физика 11 класс» 108 презентаций

    Источник

    

    Переменный ток. 1

    Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

    Темы кодификатора ЕГЭ: переменный ток, вынужденные электромагнитные колебания.

    Переменный ток — это вынужденные электромагнитные колебания, вызываемые в электрической цепи источником переменного (чаще всего синусоидального) напряжения.

    Переменный ток присутствует всюду. Он течёт по проводам наших квартир, в промышленных электросетях, в высоковольтных линиях электропередач. И если вам нужен постоянный ток, чтобы зарядить аккумулятор телефона или ноутбука, вы используете специальный адаптер, выпрямляющий переменный ток из розетки.

    Почему переменный ток распространён так широко? Оказывается, он прост в получении и идеально приспособлен для передачи электроэнергии на большие расстояния. Подробнее об этом мы поговорим в листке, посвящённом производству, передаче и потреблению электрической энергии.

    А сейчас мы рассмотрим простейшие цепи переменного тока. Будем подключать к источнику переменного напряжения поочерёдно: резистор сопротивлением , конденсатор ёмкости и катушку индуктивности . Изучив поведение этих элементов, мы в следующем листке «Переменный ток. 2» подключим их одновременно и исследуем прохождение переменного тока через колебательный контур, обладающий сопротивлением.

    Напряжение на клеммах источника меняется по закону:

    Как видим, напряжение может быть положительным и отрицательным. Каков смысл знака напряжения?

    Всегда подразумевается, что выбрано положительное направление обхода контура. Напряжение считается положительным, если электрическое поле зарядов, образующих ток, имеет положительное направление. В противном случае напряжение считается отрицательным.

    Начальная фаза напряжения не играет никакой роли, поскольку мы рассматриваем процессы, установившиеся во времени. При желании вместо синуса в выражении (1) можно было бы взять косинус — принципиально от этого ничего не изменится.

    Текущее значение напряжения в момент времени называется мгновенным значением напряжения.

    Условие квазистационарности

    В случае переменного тока возникает один тонкий момент. Предположим, что цепь состоит из нескольких последовательно соединённых элементов.

    Если напряжение источника меняется по синусоидальному закону, то сила тока не успевает мгновенно принимать одно и то же значение во всей цепи — на передачу взаимодействий между заряженными частицами вдоль цепи требуется некоторое время.

    Между тем, как и в случае постоянного тока, нам хотелось бы считать силу тока одинаковой во всех элементах цепи. К счастью, во многих практически важных случаях мы действительно имеем на это право.

    Возьмём, к примеру, переменное напряжение частоты Гц (это промышленный стандарт России и многих других стран). Период колебаний напряжения: с.

    Взаимодействие между зарядами передаётся со скоростью света: м/с. За время, равное периоду колебаний, это взаимодействие распространится на расстояние:

    Поэтому в тех случаях, когда длина цепи на несколько порядков меньше данного расстояния, мы можем пренебречь временем распространения взаимодействия и считать, что сила тока мгновенно принимает одно и то же значение во всей цепи.

    Теперь рассмотрим общий случай, когда напряжение колеблется с циклической частотой . Период колебаний равен , и за это время взаимодействие между зарядами передаётся на расстояние . Пусть — длина цепи. Мы можем пренебречь временем распространения взаимодействия, если много меньше :

    Читайте также:  Фильтрация пульсаций постоянного тока

    Неравенство (2) называется условием квазистационарности. При выполнении этого условия можно считать, что сила тока в цепи мгновенно принимает одно и то же значение во всей цепи. Такой ток называется квазистационарным.

    В дальнейшем мы подразумеваем, что переменный ток меняется достаточно медленно и его можно считать квазистационарным. Поэтому сила тока во всех последовательно включённых элементах цепи будет принимать одинаковое значение — своё в каждый момент времени. Оно называется мгновенным значением силы тока.

    Резистор в цепи переменного тока

    Простейшая цепь переменного тока получится, если к источнику переменного напряжения подключить обычный резистор (мы полагаем, разумеется, что индуктивность этого резистора пренебрежимо мала, так что эффект самоиндукции можно не принимать во внимание) , называемый также активным сопротивлением (рис. 1 )

    Рис. 1. Резистор в цепи переменного тока

    Положительное направление обхода цепи выбираем против часовой стрелки, как показано на рисунке. Напомним, что сила тока считается положительной, если ток течёт в положительном направлении; в противном случае сила тока отрицательна.

    Оказывается, мгновенные значения силы тока и напряжения связаны формулой, аналогичной закону Ома для постоянного тока:

    Таким образом, сила тока в резисторе также меняется по закону синуса:

    Амплитуда тока равна отношению амплитуды напряжения к сопротивлению :

    Мы видим, что сила тока через резистор и напряжение на нём меняются «синхронно», точнее говоря — синфазно (рис. 2 ).

    Рис. 2. Ток через резистор совпадает по фазе с напряжением

    Фаза тока равна фазе напряжения, то есть сдвиг фаз между током и напряжением равен нулю.

    Конденсатор в цепи переменного тока

    Постоянный ток через конденсатор не течёт — для постоянного тока конденсатор является разрывом цепи. Однако переменному току конденсатор не помеха! Протекание переменного тока через конденсатор обеспечивается периодическим изменением заряда на его пластинах.

    Рассмотрим конденсатор ёмкости , подключённый к источнику синусоидального напряжения (рис. 3 ). Активное сопротивление проводов, как всегда, считаем равным нулю. Положительное направление обхода цепи снова выбираем против часовой стрелки.

    Рис. 3. Конденсатор в цепи переменного тока

    Как и ранее, обозначим через заряд той пластины конденсатора, на которую течёт положительный ток — в данном случае это будет правая пластина. Тогда знак величины совпадает со знаком напряжения . Кроме того, как мы помним из предыдущего листка, при таком согласовании знака заряда и направления тока будет выполнено равенство .

    Напряжение на конденсаторе равно напряжению источника:

    Дифференцируя это равенство по времени, находим силу тока через конденсатор:

    Графики тока и напряжения представлены на рис. 4 . Мы видим, что сила тока каждый раз достигает максимума на четверть периода раньше, чем напряжение. Это означает, что фаза силы тока на больше фазы напряжения (ток опережает по фазе напряжение на ).

    Рис. 4. Ток через конденсатор опережает по фазе напряжение на

    Найти сдвиг фаз между током и напряжением можно также с помощью формулы приведения:

    Используя её, получим из (3) :

    И теперь мы чётко видим, что фаза тока больше фазы напряжения на .

    Для амплитуды силы тока имеем:

    Таким образом, амплитуда силы тока связана с амплитудой напряжения соотношением, аналогичным закону Ома:

    Величина называется ёмкостным сопротивлением конденсатора. Чем больше ёмкостное сопротивление конденсатора, тем меньше амплитуда тока, протекающего через него, и наоборот.

    Ёмкостное сопротивление обратно пропорционально циклической частоте колебаний напряжения (тока) и ёмкости конденсатора. Попробуем понять физическую причину такой зависимости.

    1. Чем больше частота колебаний (при фиксированной ёмкости ), тем за меньшее время по цепи проходит заряд ; тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление. При ёмкостное сопротивление стремится к нулю: . Это означает, что для тока высокой частоты конденсатор фактически является коротким замыканием цепи.

    Наоборот, при уменьшении частоты ёмкостное сопротивление увеличивается, и при имеем . Это неудивительно: случай отвечает постоянному току, а конденсатор для постоянного тока представляет собой бесконечное сопротивление (разрыв цепи).

    2. Чем больше ёмкость конденсатора (при фиксированной частоте), тем больший заряд проходит по цепи за то же время (за ту же четверть периода); тем больше амплитуда силы тока и тем меньше ёмкостное сопротивление.

    Подчеркнём, что, в отличие от ситуации с резистором, мгновенные значения тока и напряжения в одни и те же моменты времени уже не будут удовлетворять соотношению, аналогичному закону Ома. Причина заключается в сдвиге фаз: напряжение меняется по закону синуса, а сила тока — по закону косинуса; эти функции не пропорциональны друг другу. Законом Ома связаны лишь амплитудные значения тока и напряжения.

    Катушка в цепи переменного тока

    Теперь подключим к нашему источнику переменного напряжения катушку индуктивности (рис. 5 ). Активное сопротивление катушки считается равным нулю.

    Рис. 5. Катушка в цепи переменного тока

    Казалось бы, при нулевом активном (или, как ещё говорят, омическом) сопротивлении через катушку должен потечь бесконечный ток. Однако катушка оказывает переменному току сопротивление иного рода.
    Магнитное поле тока, меняющееся во времени, порождает в катушке вихревое электрическое поле , которое, оказывается, в точности уравновешивает кулоновское поле движущихся зарядов:

    Работа кулоновского поля по перемещению единичного положительного заряда по внешней цепи в положительном направлении — это как раз напряжение . Аналогичная работа вихревого поля — это ЭДС индукции .

    Поэтому из (4) получаем:

    Равенство (5) можно объяснить и с энергетической точки зрения. Допустим, что оно не выполняется. Тогда при перемещении заряда по цепи совершается ненулевая работа, которая должна превращаться в тепло. Но тепловая мощность равна нулю при нулевом омическом сопротивлении цепи. Возникшее противоречие показывает, что равенство (5) обязано выполняться.

    Вспоминая закон Фарадея , переписываем соотношение (5) :

    Остаётся выяснить, какую функцию, меняющуюся по гармоническому закону, надо продифференцировать, чтобы получить правую часть выражения (6) . Сообразить это нетрудно (продифференцируйте и проверьте!):

    Мы получили выражение для силы тока через катушку. Графики тока и напряжения представлены на рис. 6 .

    Рис. 6. Ток через катушку отстаёт по фазе от напряжения на

    Как видим, сила тока достигает каждого своего максимума на четверть периода позже, чем напряжение. Это означает, что сила тока отстаёт по фазе от напряжения на .

    Определить сдвиг фаз можно и с помощью формулы приведения:

    Непосредственно видим, что фаза силы тока меньше фазы напряжения на .

    Амплитуда силы тока через катушку равна:

    Это можно записать в виде, аналогичном закону Ома:

    Величина называется индуктивным сопротивлением катушки. Это и есть то самое сопротивление, которое наша катушка оказывает переменному току (при нулевом омическом сопротивлении).

    Индуктивное сопротивление катушки пропорционально её индуктивности и частоте колебаний. Обсудим физический смысл этой зависимости.

    1. Чем больше индуктивность катушки, тем большая в ней возникает ЭДС индукции, противодействующая нарастанию тока; тем меньшего амплитудного значения достигнет сила тока. Это и означает, что будет больше.

    2. Чем больше частота, тем быстрее меняется ток, тем больше скорость изменения магнитного поля в катушке, и тем большая возникает в ней ЭДС индукции, препятствующая возрастанию тока. При имеем , т. е. высокочастотный ток практически не проходит через катушку.

    Наоборот, при имеем . Для постоянного тока катушка является коротким замыканием цепи.

    И снова мы видим, что закону Ома подчиняются лишь амплитудные, но не мгновенные значения тока и напряжения. Причина та же — наличие сдвига фаз.

    Резистор, конденсатор и катушка, рассмотренные пока что по отдельности, теперь соберутся вместе в колебательный контур, подключённый к источнику переменного напряжения. Читайте следующий листок — «Переменный ток. 2».

    Источник