Меню

Графики тока в индуктивной цепи

Цепь с индуктивностью

Напряжение и ток

Цепь с индуктивностью Цепь, изображенная на рис. 5-14, обладает индуктивностью и ничтожно малым активным сопротивлением

При прохождении по цепи тока

i = I м sin ωt в ней индуктируется э. д. с. самоиндукции;

еL = —L( d i : dt)

Для замкнутой цепи согласно второму правилу Кирхгофа u + eL = i r = 0 следовательно, напряжение на зажимах индуктивности

u = — eL = L( d i : dt)

Рис. 5-14. Цепь с индуктивностью.

Написанное уравнение, с од ной стороны, показывает, что под действием приложенного

напряжения в цепи устанавливается такой ток , который в каждый момент времени индуктирует э. д. с. самоиндукции, равную по величине и противоположную по направлению приложенному напряжению, т. е. э. д. с, уравновешивающую напряжение.

С другой стороны, уравнение показывает, что напряжение на индуктивности пропорционально скорости изменения тока по времени.

При синусоидальном токе (рис. 5-15) скорость изменения его

d i : dt = I м(d sin ωt : dt) = ω I мcosωt

Графики тока, магнитного потока, напряжения и мощности цепи с индуктивностью

т. е. скорость изменения пропорциональна косинусу. Следовательно, при прохождении тока через максимум скорость его изменения равна нулю, а при прохождении тока через нулевое значение скорость его изменения наибольшая (рис. 5-15).

Рис. 5-15. Графики тока, магнитного потока, напряжения и мощности цепи с индуктивностью.

Напряжение на индуктивности

и = L( d i : dt ) = Lω I мcosωt = Lω I мsin (ωt + π :2)

Таким образом, при синусоидальном токе напряжение на индуктивности также синусоидально, но по фазе опере жает ток на угол π /2 (рис. 5-16).

Индуктированная в цепи э. д. с. самоиндукции

eL = — и =Lω I M sin ( ωt + π :2) = Lω I M sin ( ωt — π :2)

сдвинута по фазе от напряжения на половину периода.

Векторная диаграмма цепи с индуктивностью дана на рис. 5-16.

Векторная диаграмма цепи с индуктивностью

Рис. 5-16. Векторная диаграмма цепи с индуктивностью.

Индуктивное сопротивление

Из выражений следует, что максимальное значение, напряжения и равное ему максимальное значение э. д. с.

Разделив написанные выражения на √2, получим действующие значения напряжения и э. д. с.

U = EL = Lω I

откуда действующее значение тока I = U : ωL = U : xL

Величина, определяемая отношением напряжения к току цепи:

U : I = ωL = 2 πfL = xL

называется реактивным сопротивлением индуктивности или просто индуктивным сопротивлением.

Индуктивное сопротивление пропорционально индуктивности и частоте переменного тока. При изменении частоты от f = 0 (постоянный ток) до f = ∞ оно изменяется от xL = 0 до xL = ∞.

Мощность

Мгновенное значение мощности

р = u i = Uм сos 2 ωt = U I sin 2ωt

Приняв во внимание, что sin ωt cos ωt = 1/2 sin 2 ωt, получим: p = 1/2U м I м sin 2ωt = U I sin 2ωt

На рис. 5-15 показан график мгновенной мощности. Мгновенная мощность в цепи с индуктивностью изменяется с двойной частотой,; достигая то положительного максимума U I = I 2 ωL, то такого же по величине отрицательного максимума.

При нарастании тока, а следовательно, и магнитного потока (первая и третья четверти периода, рис. 5-15), независимо от его направления, происходит: накопление энергии магнитного поля от пуля до максимального значений: Wм = 1/2 L I 2 м = L I 2

которая получается от генератора; таким образом, цепь работает в режиме потребителя, что соответствует положительному значению мощности цепи.

При спадании тока, а следовательно, и магнитного потока (вторая и четвертая четверти периода, рис. 5-15) происходит уменьшение энергии магнитного поля от максимального значения до нуля, которая возвращается цепью генератору. Таким образом, в эти части периода цепь работает в режиме генератора, что соответствует отрицательному значению мощности цепи с индуктивностью.

Средняя мощность Р в цепи с индуктивностью равна нулю.

Максимальное значение мощности Q в цепи с индуктивностью принято называть реактивной мощностью.

Из (5-27) следует, что Q = 1/2Uм I м = U I = I 2 ωL = ωWм

Единица измерения реактивной мощности носит название вольт-ампер реактивный (вар).

Пример 5-5. Катушка с индуктивностью 0,01 гн включена в сеть

с напряжением 127 в и частотой 50 гц.

1. Определить реактивное сопротивление, ток цепи и реактивную мощность:

xL = 2 πf L = 2 π • 50 • 0,01 = 3,14 ом;

I = U/ xL = 127 : 3,14 = 40,5 а

Q = U I = 127 • 40,5 = 5143,5 вар.

2. Определить реактивное сопротивление и ток при частоте 500 гц:

xL = 2 πf L = 2π • 500 • 0,01=31,4 ом;

I = U / xL = 127 : 31,4 = 4,05 a

Зависимость между э. д. с. и магнитным потоком

При расчете цепей переменного тока со сталью часто индуктированную з. д. с. выражают через магнитный поток. Амплитудное значение потокосцепления самоиндукции

Если все витки контура пронизываются одним магнитным потоком, то Ψм = ɯФм

В этом случае э. д. с. самоиндукции или равное ей напряжение можно выразить:

U=E L = ωL( I м/√2) = 2 πf ( ɯФм /√2) = 4,44 ɯ Фм

Статья на тему Цепь с индуктивностью

Источник

Индуктивность/катушка в цепи переменного тока — работа и влияние на цепь

При течении тока по проводнику всегда вокруг движущихся зарядов возникает магнитное поле. Для случая, когда в цепи имеется место с несколькими витками, вокруг них возникающее магнитное поле пронизывает собственный проводник, действуя как дополнительная ЭДС помимо основного источника питания. Под действием этой ЭДС в проводнике возникает ток самоиндукции, который в случае сети переменного При течении тока по проводнику всегда вокруг движущихся зарядов возникает магнитное поле. Для случая, когда в цепи имеется место с несколькими витками, вокруг них возникающее магнитное поле пронизывает собственный проводник, действуя как дополнительная ЭДС помимо основного источника питания. Под действием этой ЭДС в проводнике возникает ток самоиндукции, который в случае сети переменного напряжения также носит знакопеременный характер.

В соответствии с правилом Ленца, сила самоиндукции во всех случаях противодействует сите, вызвавшей её.

Поскольку ЭДС самоиндукции согласно данному условию противодействует изменениям в цепи, то в сети переменного тока этот фактор учитывается и обозначается как индуктивное сопротивление (ХL), измеряющееся аналогично активному сопротивлению в Омах.

Величина индуктивного сопротивления определяется величиной ЭДС самоиндукции, которая в свою очередь зависит от индуктивности катушки и частоты изменения напряжения в катушке.

где L — это индуктивность катушки, измеряется в Генриях (Гн);

ω — угловая частота переменного тока (рад/сек).

Другими словами, индуктивное сопротивление тем больше, чем выше частота протекающего переменного тока и чем большее количество витков имеется в катушке.

Индуктивность в цепи переменного тока 1

Катушки индуктивности в цепях переменного тока создают ток самоиндукции, который по фазе опережает напряжение в цепи на угол 90°. При этом в разные периоды изменения базового напряжения в катушке сначала происходит накопление энергии (при возрастании напряжения в любую сторону), а затем отдача её обратно в сеть (во время уменьшения напряжения в сторону нуля).

Таким образом, если пренебречь собственным активным сопротивлением проводника катушки, в среднем она не потребляет электроэнергию, а лишь изменяет характеристики и характер проходящего тока в цепи во времени.

То есть, вся запасённая в катушке в первый период энергия затем отдаётся обратно в электрическую сеть.

Читайте также:  Время нарастания тока при сварке

Это свойство позволило широко использовать катушки индуктивности в электротехнике для множества целей:

Индуктивность в цепи переменного тока 3

— в качестве основного накапливающего элемента в стабилизаторах, что позволяет преобразовывать уровни напряжения;

— несколько связанных между собой индуктивно катушек образуют трансформатор;

— в качестве электромагнитов;

— в радиосвязи для приёма и излучения электромагнитных волн (кольцевая антенна, магнитная антенна);

— для обнаружения магнитных полей;

— для нагрева проводящих ток материалов в печах индукционного типа и многое др.

При выборе подходящей для тех или иных целей катушки (индуктивности) необходимо учитывать частоту в сети, собственные характеристики катушки (резонансная частота, индуктивность, допустимый ток, накапливаемая мощность и т.д.).

Источник

Катушка индуктивности в цепи переменного тока

Рассмотрим цепь, содержащую в себе катушку индуктивности , и предположим, что активное сопротивление цепи, включая провод катушки, настолько мало, что им можно пренебречь. В этом случае подключение катушки к источнику постоянного тока вызвало бы его короткое замыкание, при котором, как известно, сила тока в цепи оказалась бы очень большой.

Иначе обстоит дело, когда катушка присоединена к источнику переменного тока. Короткого замыкания в этом случае не происходит. Это говорит о том. что катушка индуктивности оказывает сопротивление проходящему по ней переменному току .

Каков характер этого сопротивления и чем оно обусловливается?

Чтобы ответить ил этот вопрос, вспомним явление самоиндукции. Всякое изменение тока в катушке вызывает появление в ней ЭДС самоиндукции, препятствующей изменению тока. Величина ЭДС самоиндукции прямо пропорциональна величине индуктивности катушки и скорости изменения тока в ней. Но так как переменный ток непрерывно изменяется, то непрерывно возникающая в катушке ЭДС самоиндукции создает сопротивление переменному току.

Для уяснения процессов, происходящих в цепи переменного тока с катушкой индуктивности, обратимся к графику. На рисунке 1 построены кривые линии, характеризующие соответственно тик в цепи, напряжение на катушке и возникающую в ней ЭДС самоиндукции. Убедимся в правильности произведенных па рисунке построений.

Цепь переменного тока с катушкой индуктивности

С момента t = 0, т. е. с начального момента наблюдения за током, он начал быстро возрастать, но по мере приближения к своему максимальному значению скорость нарастания тока уменьшалась. В момент, когда ток достиг максимальной величины, скорость его изменения на мгновение стала равной нулю, т. е. прекратилось изменение тока. Затем ток начал сначала медленно, а потом быстро убывать и по истечении второй четверти периода уменьшился до нуля. Скорость же изменения тока за эту четверть периода, возрастая от пуля, достигла наибольшей величины тогда, когда ток станет равным нулю.

Рисунок 2. Характер изменений тока во времени в зависимости от величины тока

Из построений на рисунке 2 видно, что при переходе кривой тока через ось времени увеличение тока за небольшой отрезок времени t больше, чем за этот же отрезок времени, когда кривая тока достигает своей вершины.

Следовательно, скорость изменения тока уменьшается по мере увеличения тока и увеличивается по мере его уменьшения, независимо от направления тока в цепи.

Очевидно, и ЭДС самоиндукции в катушке должна быть наибольшей тогда, когда скорость изменения тока наибольшая, и уменьшаться до нуля, когда прекращается его изменение. Действительно, на графике кривая ЭДС самоиндукции e L за первую четверть периода, начиная от максимального значения, упала до нуля (см. рис. 1).

На протяжении следующей четверти периода ток от максимального значения уменьшался до нуля, однако скорость его изменения постепенно возрастала и была наибольшей в момент, когда ток стал равным нулю. Соответственно и ЭДС самоиндукции за время этой четверти периода, появившись вновь в катушке, постепенно возрастала и оказалась максимальной к моменту, когда ток стал равным нулю.

Однако направление свое ЭДС самоиндукции изменила на обратное, так как возрастание тока в первой четверти периода сменилось во второй четверти его убыванием.

Цепь с индуктивностью

Цепь с индуктивностью

Продолжив дальше построение кривой ЭДС самоиндукции, мы убеждаемся в том, что за период изменения тока в катушке и ЭДС самоиндукции совершит в ней полный период своего изменения. Направление ее определяется законом Ленца: при возрастании тока ЭДС самоиндукции будет направлена против тока (первая и третья четверти периода), а при убывании тока, наоборот, совпадать с ним по направлению (вторая и четвертая четверти периода).

Таким образом, ЭДС самоиндукции, вызываемая самим переменным током, препятствует его возрастанию и , наоборот, поддерживает его при убывании .

Катушка индуктивности в цепи переменного тока

Обратимся теперь к графику напряжения на катушке (см. рис. 1). На этом графике синусоида напряжения на зажимах катушки изображена равной и противоположной синусоиде ЭДС самоиндукции. Следовательно, напряжение на зажимах катушки в любой момент времени равно и противоположно ЭДС самоиндукции, возникающей в ней. Напряжение это создается генератором переменного тока и идет на то, чтобы погасить действие в цепи ЭДС самоиндукции.

Таким образом, в катушке индуктивности, включенной в цепь переменного тока, создается сопротивление прохождению тока. Но так как такое сопротивление вызывается в конечном счете индуктивностью катушки , то и называется оно индуктивным сопротивлением.

Индуктивное сопротивление обозначается через X L и измеряется, как и активное сопротивление, в омах.

Индуктивное сопротивление цепи тем больше, чем больше частота источника тока, питающего цепь, и чем больше индуктивность цепи. Следовательно, индуктивное сопротивление цепи прямо пропорционально частоте тока и индуктивности цепи; определяется оно по формуле X L = ω L , где ω — круговая частота, определяемая произведением 2π f . — индуктивность цепи в гн.

Закон Ома для цепи переменного тока, содержащей индуктивное сопротивление, звучит так: величина тока прямо пропорциональна напряжению и обратно пропорциональна индуктивному сопротивлению це п и , т. е. I = U / X L , где I и U — действующие значения тока и напряжения, а X L — индуктивное сопротивление цепи.

Рассматривая графики изменения тока в катушке. ЭДС самоиндукции и напряжения на ее зажимах, мы обратили внимание на то, что изменение этих в еличин не совпадает по времени. Иначе говоря, синусоиды тока, напряжения и ЭДС самоиндукции оказались для рассматриваемой нами цепи сдвинутыми по времени одна относительно другой. В технике переменных токов такое явление принято называть сдвигом фаз .

Если же две переменные величины изменяются по одному и тому же закону (в нашем случае по синусоидальному) с одинаковыми периодами, одновременно достигают своего максимального значения как в прямом, так и в обратном направлении, а также одновременно уменьшаются до нуля, то такие переменные величины имеют одинаковые фазы или, как говорят, совпадают по фазе.

В качестве примера на рисунке 3 приведены совпадающие по фазе кривые изменения тока и напряжения. Такое совпадение фаз мы всегда наблюдаем в цепи переменного тока, состоящей только из активного сопротивления.

Читайте также:  Удар тока в левую руку

В том случае, когда цепь содержит индуктивное сопротивление, фазы тока и напряжения, как это видно из рис. 1 не совпадают, т. е. имеется сдвиг фаз между этими переменными величинами. Кривая тока в этом случае как бы отстает от кривой напряжения на четверть периода.

Следовательно, при включении катушки индуктивности в цепь переменного тока в цепи появляется сдвиг фаз между током и напряжением, причем ток отстает по фазе от напряжения на четверть периода . Это значит, что максимум тока наступает через четверть периода после того, как наступил максимум напряжения.

ЭДС же самоиндукции находится в противофазе с напряжением на катушке, отставая, в свою очередь, от тока на четверть периода. При этом период изменения тока, напряжения, а также и ЭДС самоиндукции не меняется и остается равным периоду изменения напряжения генератора, питающего цепь. Сохраняется также и синусоидальный характер изменения этих величин.

Рисунок 3. Совпадение по фазе тока и напряжения в цепи с активным сопротивлением

Выясним теперь, каково отличие нагрузки генератора переменного тока активным сопротивлением от нагрузки его индуктивным сопротивлением.

Когда цепь переменного тока содержит в себе лишь одно активное сопротивление, то энергия источника тока поглощается в активном сопротивлении, нагревая проводник.

Катушка индуктивности в цепи переменного тока

Когда же цепь не содержит активного сопротивления (мы условно считаем его равным нулю), а состоит лишь из индуктивного сопротивления катушки, энергия источника тока расходуется не на нагрев проводов, а только на создание ЭДС самоиндукции, т. е. она превращается в энергию магнитного поля. Однако переменный ток непрерывно изменяется как по величине, так и по направлению, а следовательно, и магнитное поле катушки непрерывно изменяется в такт с изменением тока. В первую четверть периода, когда ток возрастает, цепь получает энергию от источника тока и запасает ее в магнитном поле катушки. Но как только ток, достигнув своего максимума, начинает убывать, он поддерживается за счет энергии, запасенной в магнитном поле катушки посредством ЭДС самоиндукции.

Таким образом, источник тока, отдав в течение первой четверти периода часть своей энергии в цепь, в течение второй четверти получает ее обратно от катушки, выполняющей при этом роль своеобразного источника тока. Иначе говоря, цепь переменного тока, содержащая только индуктивное сопротивление, не потребляет энергии : в данном случае происходит колебание энергии между источником и цепью. Активное же сопротивление, наоборот, поглощает в себе всю энергию, сообщенную ему источником тока.

Говорят, что катушка индуктивности, в противоположность омическому сопротивлению, не активна по отношению к источнику переменного тока, т. е. реактивна . Поэтому индуктивное сопротивление катушки называют также реактивным сопротивлением .

Кривая нарастания тока при замыкании цепи, содержащей индуктивность
Кривая нарастания тока при замыкании цепи, содержащей индуктивность — переходные процессы в электрических цепях.

Источник



Графики тока в индуктивной цепи

Как мы видели выше, при включении, выключении и при всяком изменении тока в электрической цепи вследствие пересечения проводника своим же собственным магнитным полем в нем возникает индуктированная э.д.с. Эту э.д.с. мы называли э.д.с. самоиндукции. э.д.с. самоиндукции, как указывалось, имеет реактивный характер. Так, например, при увеличении тока в цепи э.д.с. самоиндукции будет направлена против э.д.с. источника напряжения и поэтому ток в электрической цепи не может установиться сразу. И наоборот, при уменьшении тока в цепи индуктируется э.д.с. самоиндукции такого направления, что, препятствуя убыванию тока, она поддерживает этот убывающий ток.

Как нам уже известно, э.д.с. самоиндукции зависит от скорости изменения тока в цепи и от индуктивности этой цепи (числа витков, наличия стальных сердечников):

В цепи переменного тока э.д.с. самоиндукции возникает и действует непрерывно, так как ток в цепи непрерывно изменяется.

На рис. 137 представлена схема цепи переменного тока, содержащей катушку с индуктивностью L без стального сердечника. Для простоты будем считать сначала, что активное сопротивление катушки r очень мало и им можно пренебречь.

Рис. 137. Цепь переменного тока, содержащая индуктивность
Рис. 137. Цепь переменного тока, содержащая индуктивность

Рассмотрим внимательнее изменение переменного тока за время одного периода. На рис. 138 показана кривая изменения переменного тока. Первая половина периода разбита на мелкие одинаковые части.

Рис. 138. Определение скорости изменения переменного тока
Рис. 138. Определение скорости изменения переменного тока

За промежуток времени 0-1 величина тока изменилась от нуля до 1-1′. Прирост величины тока за это время равен а.

За время, обозначенное отрезком 1-2, мгновенная величина тока выросла до 2-2′, причем прирост величины тока равен б.

В течение времени, обозначенного отрезком 2-3, ток увеличивается до 3-3′, прирост тока показывает отрезок в и т. д.

Так, с течением времени переменный ток возрастает до максимума (при 90°). Но, как видно из чертежа, прирост тока делается все меньше и меньше, пока, наконец, при максимальном значении тока этот прирост не станет равным нулю.

При дальнейшем изменении тока от максимума до нуля убыль величины тока становится все больше и больше, пока, наконец, около нулевого значения ток, изменяясь с наибольшей скоростью, не исчезнет, но тут же появляется вновь, протекая в обратном направлении.

Рассматривая изменение тока в течение периода, мы видим, что с наибольшей скоростью изменяется ток около своих нулевых значений. Около максимальных значений скорость изменения тока падает, а при максимальном значении тока прирост его равен нулю. Таким образом, переменный ток меняется не только по величине и направлению, но также и по скорости своего изменения.

Переменный ток, проходя по виткам катушки, создает переменное магнитное поле. Магнитные линии этого поля, пересекая витки своей же катушки, индуктируют в них э.д.с. самоиндукции.

На рис. 139 кривая i показывает изменение переменного тока в катушке. Как было уже указано, величина э.д.с. самоиндукции зависит от скорости изменения тока и от индуктивности катушки. Но так как индуктивность катушки в нашем случае остается без изменения, э.д.с. самоиндукции будет зависеть только от скорости изменения тока. Выше было показано, что наибольшая скорость изменения тока имеет место около нулевых значений тока. Следовательно, наибольшее значение э.д.с. самоиндукции имеет в те же моменты.

Рис. 139. Э.д.с. самоиндукции в катушке, включенной в цепь переменного тока
Рис. 139. Э.д.с. самоиндукции в катушке, включенной в цепь переменного тока

В момент а ток резко и быстро увеличивается от нуля, а поэтому, как следует из вышеприведенной формулы, э.д.с. самоиндукции (кривая eL) имеет отрицательное максимальное значение. Так как ток увеличивается, то э.д.с. самоиндукции, по правилу Ленца, должна препятствовать изменению (здесь увеличению) тока. Поэтому э.д.с. самоиндукции при возрастании тока будет иметь направление, обратное току (положение б), что следует также из указанной формулы. Скорость изменения тока по мере приближения его к максимуму уменьшается. Поэтому э.д.с. самоиндукции также уменьшается, пока, наконец, при максимуме тока, когда изменения его будут равны нулю, она не станет равной нулю (положение в).

Читайте также:  Цепь переменного тока содержит лампу накаливания

Переменный ток, достигнув максимума, начинает убывать. По правилу Ленца, э.д.с. самоиндукции препятствует току убывать и, направленная уже в сторону протекания тока, будет его поддерживать (положение г).

При дальнейшем изменении переменный ток быстро убывает до нуля. Резкое уменьшение тока в катушке повлечет за собой также быстрое уменьшение магнитного поля и в результате пересечения магнитными линиями витков катушки в них будет индуктироваться наибольшая э.д.с. самоиндукции (положение д).

Во вторую половину периода изменения тока картина повторяется и снова при возрастании тока э.д.с. самоиндукции будет препятствовать ему, имея направление, обратное току (положение е).

При убывании тока э.д.с. самоиндукции, имея направление, совпадающее с током, будет поддерживать его, не давая ему исчезнуть сразу (положение з).

На рисунке видно, что э.д.с. самоиндукции отстает по фазе от тока на 90°, или на 1/4 периода. Так как магнитный поток совпадает по фазе с током, то можно сказать, что э.д.с., наводимая магнитным потоком, отстает от него по фазе на 90°, или на 1/4 периода.

Нам уже известно, что две синусоиды, сдвинутые одна относительно другой на 90°, можно изобразить векторами, расположенными под углом 90° (рис. 140).

Рис. 140. Ток в катушке опережает э.д.с. самоиндукции по фазе на 90°
Рис. 140. Ток в катушке опережает э.д.с. самоиндукции по фазе на 90°

Так как э.д.с. самоиндукции в цепях переменного тока непрерывно противодействует изменениям тока, то, чтобы ток мог протекать по виткам катушки, напряжение сети должно уравновешивать э.д.с. самоиндукции. Иными словами, напряжение сети в каждый момент времени должно быть равно и противоположно э.д.с. самоиндукции.

Вектор напряжения сети, равный и противоположный э.д.с. самоиндукции ЕL, мы обозначим через U (рис. 141). Только при условии, что к зажимам катушки приложено напряжение сети, равное и противоположное э.д.с. самоиндукции, и, стало быть, это напряжение сети U уравновешивает э.д.с. самоиндукции ЕL, по катушке может проходить переменный ток I. Но в этом случае напряжение сети U будет опережать по фазе ток I на 90°.

Рис. 141. Приложенное к катушке напряжение сети опережает ток на 90° и противоположно э.д.с. самоиндукции
Рис. 141. Приложенное к катушке напряжение сети опережает ток на 90° и противоположно э.д.с. самоиндукции

Следовательно, в цепи с индуктивностью ток I отстает от приложенного напряжения U по фазе на 1/4 периода. На векторной диаграмме этому сдвигу фаз между напряжением U и током I соответствует угол α = 90° или π /2.

Таким образом, в цепях переменного тока э.д.с. самоиндукции, возникая и действуя непрерывно, вызывает сдвиг фаз между током и напряжением. Возвращаясь к рис. 139, мы видим, что ток i по катушке будет проходить и тогда, когда напряжение сети (кривая uL) равно нулю (положение в), и даже тогда, когда напряжение сети направлено в сторону, обратную току (положение г и з).

Итак отметим, что в цепи переменного тока, когда э.д.с. самоиндукции отсутствует, напряжение сети и ток совпадают по фазе. Индуктивная же нагрузка в цепях переменного тока (обмотки электродвигателей и генераторов, обмотки трансформаторов, индуктивные катушки) всегда вызывает сдвиг фаз между током и напряжением.

Можно показать, что скорость изменения синусоидального тока пропорциональна угловой частоте ω. Следовательно, действующее значение э.д.с. самоиндукции EL может быть найдено по формуле

Как было отмечено выше, напряжение, приложенное к зажимам цепи, содержащей индуктивность, должно быть по величине равно э.д.с. самоиндукции:

Формула закона Ома для цепи переменного тока, содержащей индуктивность, имеет вид

Величина xL называется индуктивным сопротивлением цепи, или реактивным сопротивлением индуктивности, и измеряется в омах. Таким образом, индуктивное сопротивление представляет собой своеобразное препятствие, которое цепь с индуктивностью оказывает изменениям тока в ней. Оно равно произведению индуктивности на угловую частоту:

Так как индуктивное сопротивление проводника зависит от частоты переменного тока, то сопротивление катушки, включаемой в цепь токов различной частоты, будет различным. Например, если имеется катушка с индуктивностью 0,05 гн, то в цепи тока частотой 50 гц ее индуктивное сопротивление будет

а в цепи тока частотой 400 гц

Та часть напряжения сети, которая преодолевает (уравновешивает) э.д.с. самоиндукции, называется индуктивным падением напряжения (или реактивной слагающей напряжения):

Рассмотрим теперь, какая мощность потребляется от источника переменного напряжения, если к зажимам его подключена индуктивность.

На рис. 142 даны кривые мгновенных значений напряжения, тока и мощности для этого случая. Мгновенное значение мощности равно произведению мгновенных значений напряжения и тока:

Рис. 142. Кривые мгновенных значений напряжения тока и мощности для цепи, содержащей индуктивность
Рис. 142. Кривые мгновенных значений напряжения тока и мощности для цепи, содержащей индуктивность

Из чертежа видно, что если u и i имеют одинаковые знаки, то кривая р располагается выше оси ωt. Если же u и i имеют разные знаки, то кривая р располагается ниже оси ωt.

В первую четверть периода ток, а вместе с ним и магнитный поток катушки увеличиваются. Катушка потребляет из сети мощность. Площадь, заключенная между кривой р и осью ωt, есть работа (энергия) электрического тока. В первую четверть периода энергия, потребляемая из сети, идет на создание магнитного поля вокруг витков катушки (мощность положительная). Количество энергии, запасаемое в магнитном поле за время увеличения тока, можно определить по формуле

Во вторую четверть периода ток убывает. э.д.с. самоиндукции, которая в первую четверть периода стремилась препятствовать возрастанию тока, теперь, когда ток начинает уменьшаться, будет препятствовать ему уменьшаться. Сама катушка становится как бы генератором электрической энергии. Она возвращает в сеть энергию, запасенную в ее магнитном поле. Мощность отрицательна, и на рис. 142 кривая р располагается ниже оси ωt.

Во вторую половину периода явление повторяется. Таким образом, между источником переменного напряжения и катушкой, содержащей индуктивность, происходит обмен мощностью. В течение первой и третьей четвертей периода мощность поглощается катушкой, в течение второй и четвертой четвертей мощность возвращается источнику.

В этом случае в среднем расхода энергии не будет, несмотря на то что на зажимах цепи есть напряжение U и в цепи протекает ток I. Следовательно, средняя, или активная, мощность цепи, носящей чисто индуктивный характер, равна нулю.

Из графика, изображенного на рис. 142, видно, что мгновенная мощность цепи с индуктивностью два раза в течение каждого периода (когда ωt = 45°, 135° и т. д.) достигает максимального значения, равного Uм /√2 ⋅ Iм /√2 = UI. Этой величиной принято характеризовать количественно процесс обмена энергией между источником и магнитным полем. Ее называют реактивной мощностью и обозначают буквой Q.

Учитывая, что в рассматриваемой цепи U = I ⋅ xL, получаем следующее выражение для реактивной мощности:

Источник