Меню

Импульсное регулирование частоты вращения двигателя постоянного тока

Способы регулирования частоты вращения двигателя постоянного тока

Принципы регулирования частоты вращения в двигательном режиме реализуются в четырех основных способах регулирования:

1) реостатно-контакторное регулирование;

2) регулирование по системе «генератор — двигатель»;

3) регулирование по системе «управляемый выпрямитель — двигатель»;

4) тиристорно-импульсное регулирование.

Реостатно-контакторное регулирование.В настоящее время это управление широко применяется для регулирования частоты вращения двигателей малой и средней мощности, а иногда (на железнодорожном транспорте) и для мощных двигателей. Обычно при реостатно-контакторном управлении используются два метода регулирования: 1) при частотах вращения, меньших номинальной, в цепь якоря включают дополнительные сопротивления (Рис. 7 28). 2) при повышенных торного регулирования частоты вращения регулируют с последовательным. Машины малой мощности при отсутствии автоматизированного управления имеют два ползунковых регулировочных реостата, один из которых включен в цепь якоря, а другой — в цепь возбуждения. При больших мощностях, а также при необходимости автоматизации процесса сопротивления изменяют ступенчато (рис. 7.28) с помощью контакторов. Если требуется точное регулирование, то контакторов должно быть очень много, вся установка становится громоздкой, дорогой и сравнительно малонадежной. Реостатно-контакторная система при двигателях с параллельным возбуждением позволяет в зоне высоких частот вращения осуществлять рекуперативное торможение путем увеличения тока возбуждения. В зоне низких частот вращения применяют реостатное торможение, причем регулирование тормозного усилия осуществляют с помощью той же реостатно-контакторной установки, которая регулирует двигательный режим, после соответствующего переключения схемы. В связи со сложностью автоматизации и большими расходами на ремонт и эксплуатацию реостатно-контакторное управление в настоящее время постепенно заменяют более совершенными системами управления.

Регулирование по системе «генератор — двигатель.В этой установке (рис. 7.29) двигатель Д получает питание от автономного генератора Г с независимым возбуждением, который приводится во вращение каким-либо первичным двигателем ПД (например, электродвигателем, дизелем) Регулирование частоты вращения осуществляют изменением:

1) напряжения на якоре двигателя путем изменения тока возбуждения генератора /вГ;

Рис. 7 28. Схема реостатно-контак-торного регулирования частоты вращения двигателя с последовательным возбуждением.

2) магнитного потока двигателя путем регулирования тока возбуждения двигателя /в.д.

Пуск в ход и получение низких частот вращения производят при максимальном токе возбуждения двигателя, но при уменьшенном токе возбуждения генератора, т. е. при пониженном напряжении. Ослабление магнитного потока двигателя (уменьшение его тока возбуждения) производят только после того, как исчерпана возможность повышения напряжения, т. е. когда установлен максимальный ток возбуждения генератора. Изменение направления вращения двигателя производят переменой полярности подводимого к якорю напряжения, для чего меняют направление тока в обмотке возбуждения генератора. Система «генератор — двигатель» выгодно отличается тем, что в ней отсутствуют силовые контакторы, реостаты и т. п. Управление легко поддается автоматизации, так как осуществляется путем регулирования сравнительно небольших токов возбуждения. Установки типа «генератор — двигатель» широко распространены в промышленности и на транспорте, в тех устройствах, где требуется регулирование частоты вращения в широких пределах. В транспортных установках генератор приводится во вращение дизелем, в промышленности — трехфазным синхронным или асинхронным двигателем. Систему «генератор — двигатель» широко применяют в металлургической промышленности для привода прокатных станов с двигателями мощностью 10 МВт и более при диапазоне регулирования частоты вращения 1 : 200 и точности поддержания заданной частоты вращения (погрешности) менее 1%. В рассматриваемой системе уменьшение частоты вращения производят с использованием рекуперативного торможения: сначала увеличивая ток возбуждения двигателя, а затем постепенно уменьшая ток возбуждения генератора, можно перевести двигатель в генераторный режим и быстро затормозить механизм. При этом накопленная кинетическая энергия якоря и механизма отдается в электрическую сеть. Если нагрузка толчкообразная, то иногда на валу первичного двигателя, вращающего генератор, ставят маховик, который уменьшает перегрузки первичного двигателя. Недостатки системы «генератор — двигатель» — большие масса, габариты, высокая стоимость установки; сравнительно низкий КПД (примерно 0,6 . 0,7), так как производится трехкратное преобразование энергии.

рис. 7.29. Схема «генератор—двигатель»

В последнее время на транспорте (в тепловозах, больших автомобилях, кораблях) вместо генератора постоянного тока в системе «генератор — двигатель» применяют синхронный генератор с полупроводниковым выпрямителем. Это позволяет снизить массу и уменьшить стоимость генератора. В промышленных установках такое усовершенствование обычно не применяется, так как для рекуперативного торможения требуется управляемый выпрямитель-инвертор, в связи с чем выгоднее перейти к схеме «управляемый выпрямитель — двигатель», исключив генератор и первичный двигатель.

Регулирование по системе «управляемый выпрямитель — двигатель».Развитие полупроводниковой техники позволило применить для регулирования частоты вращения двигателя управляемый выпрямитель, выполненный на тиристорах, где одновременно с выпрямлением производится регулирование выпрямленного напряжения (рис. 7.30). Применение системы «управляемый выпрямитель — двигатель» позволяет увеличить КПД и уменьшить массу установки. Если требуется быстрая остановка механизма с последующим реверсированием, то для рекуперативного торможения параллельно с выпрямителем ставят инвертор, т. е. еще один полупроводниковый преобразователь, позволяющий отдавать энергию от машины постоянного тока в сеть переменного тока. Недостаток системы «управляемый выпрямитель — двигатель» — низкий коэффициент мощности при пониженном выходном напряжении. Кроме того, из-за пульсаций напряжения возникают пульсации тока, что ухудшает работу двигателя: возрастают потери, ухудшается коммутация и т. д. Особенно велики пульсации тока при питании от сети однофазного тока (в электровозах переменного тока), где обеспечение удовлетворительной коммутации — серьезная проблема.

Тиристорно-импульсное регулирование. При управлении тяговыми двигателями возникает необходимость регулировать возбуждение тягового дви­гателя, как правило, в трех случаях:

1) в начальной стадии пуска для получения более плавного на­растания силы тяги. Для этого в момент подключения двигателей к источнику питания осуществляют максимальное или частичное ослабление возбуждения с последующим его усилением до полно­го возбуждения;

2) в заключительной стадии пуска для увеличения скорости дви­жения подвижного состава. С этой целью после достижения пол­ного напряжения на двигателях постепенно ослабляют магнитное поле (уменьшают ток возбуждения) до предельного или промежу­точного значения коэффициента регулирования возбуждения а = Iв/Iя;

3) в начальной стадии электрического торможения (как рекупе­ративного, так и реостатного) с целью ограничения напряжения на двигателях при высоких скоростях движения, а также для более плавного нарастания тормозной силы. Для этого вначале торможе­ние осуществляется при ослабленном возбуждении с последующим постепенным усилением его до полного (а=1).

Все указанные режимы регулирования возбуждения двигателей могут с успехом осуществляться при тиристорно-импульсном управлении. В метровагонах типа

81-717.5М/714.5М используется именно эта система. Если регулирование тока возбуждения (а следовательно и магнитного поля) двигателей при разгоне осуществляется ступенчато за счёт реостатов, то в режиме реостатного торможения регулирование уже плавное, что позволяет поддерживать максимально возможную тормозную силу до 55-60 км/ч. Это достигается за счёт применения тиристорного регулятора РТ-300/300А. Этот регулятор состоит из силового блока, блока управления и датчика тока двигателей. Силовой блок состоит из двух идентичных тиристорных ключей-фаз, каждая из которых обслуживает отдельную группу тяговых двигателей. Тиристорные ключи, помимо самих тиристоров, состоят из коммутирующих диодов, дросселей, конденсаторов и резисторов. Оба тиристорных ключа размещены в одном модуле, что располагается под вагоном. В этом же модуле размещён блок защиты, который в аварийных ситуациях отключает тиристорный регулятор, при этом на данном вагоне электрическое (реостатное) торможение не работает, остаётся только пневматическое.

Схема включения ТИР при регулировании возбуждения тягового дви­гателя (а) и осциллограм­мы (б)

Список используемой литературы:

1. Г.Г. Рекус. Общая электротехника и основы промышленной электроники. «Высшая школа», 2008 г.

2. Ю.А. Комиссаров и др. Основы элетротехники, микроэлектроники и управления. т.1 «Химия», 2007

Читайте также:  Что такое флуктуация тока

3. Ю.М. Борисов и др. Электротехника. «Электроатомиздат» 1985 г.

4. А.С. Касаткин, М.В. Немцов. Электротехника. «Электроатомиздат», 1983 г.

5. Раздаточный материал по курсу электротехники, электроники и электрооборудованию промышленных предприятий (№3240).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию.

§ 2.3. Импульсное управление исполнительным двигателем постоянного тока

В связи с развитием полупроводниковой техники все шире применяется импульсное управление исполнительным двигателем. Суть его заключается в том, что частоту вращения двигателя регулируют не величиной постоянно подводимого напряжения, а длительностью питания двигателя номинальным напряжением. Одна из возможных схем импульсного управления приведена на рис. 2.7,а. Там же (рис. 2.7,б) показаны графики скорости при различных t.

В период, когда электронный ключ открыт, питающее напряжение полностью подается на двигатель, ток якоря увеличивается, двигатель развивает положительный момент и частота вращения возрастает; когда электронный ключ закрыт, ток под действием запаса электромагнитной энергии продолжает протекать в том же направлении но через обратный диод. При этом он уменьшается, момент двигателя уменьшается, угловая скорость вращения падает.

Рис. 2.7. Схема импульсного управления (а), графики скорости вращения (б) при разных τ. (τ2 > τ1)

Работа двигателя состоит из чередующихся периодов разгона и торможения. И, если эти периоды малы по сравнению с электромагнитной постоянной времени якорной цепи Тэм.а, устанавливается некая средняя скорость, однозначно определяемая относительной продолжительностью включения (скважностью) t = tи/T, где tи — длительность импульса напряжения; T — период.

Частота управляющих импульсов составляет 200-400 Гц, в результате период управления Т оказывается на 2 порядка меньше электромагнитной постоянной времени обмотки якоря

Управление, при котором изменяется соотношение длительности импульса tи и паузы tп при постоянном периоде Т, называется широтно-импульсным.

Если параметры схемы подобраны так, что колебания тока, момента и угловой скорости вращения небольшие, работа двигателя практически не отличается от работы при постоянном напряжении, за которое можно принять среднее напряжение за период управления Т: Uср = Uномtи/T = tUном.

Оперируя средними значениями, получим уравнение, аналогичное (2.4), поскольку в данном случае мы имеем якорное управление

На рис. 2.8,а показаны графики тока сети (Ic) и тока якоря (Ia) при относительно больших нагрузках. При малых нагрузках ток двигателя становится небольшим и появляются периоды, когда при закрытом электронном ключе ток якоря уменьшается до нуля. Говорят, наступил режим прерывистых токов (рис.2.8,б). Механические характеристики приобретают перелом и становятся похожими на характеристики двигателя при регулировании реостатом в цепи якоря. В общем случае они имеют вид, представленный на рис. 2.9. Зона, соответствующая прерывистым токам, ограничена пунктирной линией. Критическая относительная частота вращения, при которой наступает перелом, равна

Рис. 2.8. Графики тока сети Ic и тока якоря Ia при больших нагрузках (а) и тока якоря при малых нагрузках (б)

Основное преимущество импульсного управления заключается в уменьшении средней потребляемой мощности за счет уменьшения среднего тока.

§ 2.4. Динамические характеристики исполнительных двигателей постоянного тока

Механические характеристики исполнительных двигателей постоянного тока линейные, поэтому для них выражение электромеханической постоянной времени будет иметь известный вид (1.11).

При якорном управлении характеристики параллельные, т.е. пусковой момент и угловая скорость холостого хода изменяются пропорционально коэффициенту сигнала: Мп = aМб, w = awб. В этом случае постоянная времени, а следовательно и быстродействие, не зависят от коэффициента сигнала.

При полюсном управлении пусковой момент прямо- а угловая частота вращения холостого хода обратно пропорциональны коэффициенту сигнала: Мп = aМб, w= wб/a. Постоянная времени будет Тм = Jwббa 2 . Видно, что при полюсном управлении быстродействие в сильной степени зависит от коэффициента сигнала, ухудшаясь с его уменьшением.

§ 2.5. Конструкции исполнительных двигателей постоянного тока

По конструкции исполнительные двигатели можно разделить на двигатели с ферромагнитным якорем и малоинерционные, не имеющие ферромагнитного сердечника якоря.

Двигатели с ферромагнитным якорем и обмоткой возбуждения отличаются от обычных машин лишь тем, что имеют полностью шихтованную магнитную систему (якорь, полюса, станину), что продиктовано стремлением уменьшить потери в стали и увеличить быстродействие в переходных режимах. Это двигатели серий СЛ, МИ, ПБС и др. Есть двигатели (серии ДП и ДПМ), в которых роль обмотки возбуждения выполняют постоянные магниты. В остальном они ничем не отличаются от названных выше.

Существуют двигатели, например серии МИГ, в которых обмотка якоря располагается не в пазах (их нет), а непосредственно на поверхности якоря, закрепляясь на ней с помощью специального клея и бандажей. «Беспазовое» исполнение обмотки значительно уменьшает ее индуктивность, улучшает коммутацию и увеличивает быстродействие. Недостатком гладкого якоря является большой немагнитный промежуток между ним и полюсом, что увеличивает размеры обмотки возбуждения.

Малоинерционные двигатели выпускаются двух типов: 1) с дисковым якорем и печатной обмоткой; 2) с полым немагнитным якорем и обычной обмоткой. Один из вариантов двигателя первого типа показан на рис. 2.14. В его состав входят: дисковый якорь 1, выполненный из тонкого изоляционного материала, на обеих сторонах которого фотохимическим методом нанесена обмотка якоря; кольца 2 и 3 из магнитомягкой стали, по которым замыкается магнитный поток, созданный постоянными магнитами 4, и щетки 5, непосредственно касающиеся оголенных проводников якоря. Как видно, здесь отсутствует отдельный коллектор.

Двигатель второго типа показан на рис. 2.15.

Якорь малоинерционных двигателей примерно в 8 раз легче, а момент инерции в 5¸10 раз меньше, чем у обычного двигателя. В результате их постоянные времени в 2¸ 2,5 раза меньше. К тому же они имеют практически безыскровую коммутацию, поскольку их секции обладают меньшей индуктивностью. К недостаткам таких двигателей можно отнести большой воздушный зазор, а, следовательно, большие габариты по сравнению с обычными машинами.

Источник

Регулирование скорости оборотов двигателя постоянного тока

Моторчик

С точки зрения регулирования скоростью вращения электродвигателей, интересно уравнение для электромеханических характеристик, соответствующее Второму закону Кирхгофа:

ω = U/C×Φ – ΥЯ /( C×Φ) 3 ×M

При описании технических характеристик электродвигателя скорость, выражаемая оборотами в минуту, зачастую называется частотой вращения ν по известному соотношению:

ω = 2p/T = 2pn

Поэтому эти две разноименные величины часто применяются в одном и том же смысле. Скорость w (частота ν) находится в прямой зависимости от напряжения питания U и в обратной от магнитного потока Ф. Исходя из приведенной выше формулы, возникает вывод, что скоростью можно управлять, регулируя сопротивление якоря, магнитный поток и напряжение питания.

1

Методы регулировки

Итак, различают три основных варианта регулирования скоростью:

  1. Изменением напряжения сети. Меняя подводимое питание можно управлять частотой вращения двигателя;
  2. Добавлением пускового реостата в цепь якоря. Регулируя сопротивление, можно уменьшить скорость вращения;
  3. Управлением магнитного потока. Двигатели с электромагнитами дают возможность регулировать поток путем изменения тока возбуждения. Однако нижний предел ν min ограничен насыщением магнитной цепи двигателя, что не позволяет увеличивать в большой степени магнитный поток.

К каждому из вариантов соответствует определённая зависимость механических характеристик.

Методы регулирования применительны к двигателям с различными:

  • типами возбуждения;
  • величиной мощности.

На практике в современных электрических моторах, в связи с недостатками и ограниченности диапазонов, рассмотренные методы не всегда применяются.

Это еще связано с тем, что машины отличаются довольно небольшими КПД, и к тому же не позволяют плавно увеличивать или уменьшать частоту вращения.

Электронные же схемы управления с регуляторами частоты, работающими от аккумуляторной батареи на 12 В, напротив, широко используются. Например, они очень актуальны для управления низковольтными электродвигателями 12 вольт в приборах автоматики, детских игрушках, электрических велосипедах, аккумуляторных детских автомобилях.

Читайте также:  Зависимость крутящего момента электродвигателя от частоты тока

2

Принципиальной особенностью метода является то, что ток в цепи якоря и момент, развиваемый электродвигателем, зависят лишь от величины нагрузки на его валу. Регулировка осуществляется с помощью регулятора оборотов электродвигателя.

В течение очень долгого времени тиристорные преобразователи являлись единственным коммерчески доступными регуляторами двигателей. К слову сказать, они по-прежнему самые распространенные на сегодняшний день. Однако с появлением силовых транзисторов стали наиболее популярными регуляторы оборотов двигателя постоянного тока с широтно-импульсной модуляцией. Приведём для примера ниже схему, работающую от источника постоянного тока 12 В.

2

Схема на практике даёт возможность, к примеру, увеличивать либо уменьшать яркость свечения ламп накаливания на 12 вольт.

Последовательно-параллельное управление используется в ситуациях, когда два или более агрегата постоянного тока соединены механически. Схема с последовательным соединением электродвигателей, в которой общее напряжение делится на всех, используется для низкоскоростных приложений. Схема с параллельным соединением машин, имеющих одинаковое напряжение, используется в высокоскоростных применениях.

Заключение

Рассмотренный метод регулировки напряжения сети считается самым эффективным и экономичным вариантом, так как:

  • им обеспечивается широкий диапазон изменения скоростей (wmin / wmax) и лучшие энергетические характеристики (КПД);
  • он работает без каких-либо потерь мощности в силовой цепи якоря.

Управление осуществляется плавно, и по точности регулировка частоты вращения является весьма высокой.

Источник



Современные способы регулирования частоты вращения электродвигателей постоянного тока

date image2015-09-06
views image4785

facebook icon vkontakte icon twitter icon odnoklasniki icon

Описанные принципы регулирования частоты вращения в двигательном и тормозных режимах находят свою практическую реализацию в четырех основных способах регулирования:

1) реостатно-контакторное управление;

2) регулирование по системе «генератор–двигатель»;

3) регулирование по системе «управляемый выпрямитель–двигатель»;

4) импульсное регулирование.

Подробное исследование этих способов регулирования дается вкурсах электропривода и теории автоматического регулирования. В этом разделе будут рассмотрены только основные положения, имеющие непосредственное отношение к теории электрических машин.

Реостатно-контакторное управление.В настоящее время это управление применяют весьма широко для регулирования частоты вращения двигателей малой и средней мощности, а иногда (на железнодорожном транспорте) и для регулирования мощных двигателей.

Обычно при реостатно-контакторном управлении используют два метода регулирования: при частотах вращения, меньших номинальной, в цепь якоря включают дополнительные сопротивления; при повышенных частотах вращения регулируют ток возбуждения.

Машины малой мощности при отсутствии автоматизированного управления имеют два ползунковых регулировочных реостата, один из которых включен в цепь якоря, а другой – в цепь возбуждения. При больших мощностях, а также при необходимости автоматизации процесса величину сопротивлений изменяют ступенчато (рис. 10–76) при помощи контакторов. Если требуется точное регулирование, то число контакторов должно быть очень большим, при этом вся установка становится громоздкой, дорогой и сравнительно малонадежной.

Рис. 2.76 – Схема реостатно-контакторного регулирования частоты вращения двигателя с последовательным возбуждением

Реостатно-контакторная система при двигателях с параллельным возбуждением позволяет в зоне высоких частот вращения осуществлять рекуперативное торможение путем увеличения тока возбуждения. В зоне низких частот вращения применяют реостатное торможение, причем регулирование тормозного усилия осуществляют при помощи той же реостатно-контакторной установки, которая регулирует двигательный режим, после соответствующего переключения схемы.

В связи со сложностью автоматизации и большими расходами, идущими на ремонт и эксплуатацию, реостатно-контакторное управление в настоящее время постепенно заменяют более совершенными системами управления.

Система «генератор-двигатель». В этой установке (рис. 2.77) двигатель Д получает питание от автономного генератора Г с независимым возбуждением, который приводят во вращение от какого-либо первичного двигателя ПД (электродвигателя, дизеля и пр.). Регулирование частоты вращения осуществляют изменением:

1) напряжения на якоре двигателя путем изменения тока возбуждения генератора;

2) магнитного потока двигателя путем регулирования тока возбуждения двигателя.

Пуск в ход и получение низких частот вращения производят при максимальном токе возбуждения двигателя, но при уменьшенном токе возбуждения генератора, т.е. при пониженном напряжении. Ослабление магнитного потока двигателя (уменьшение его тока возбуждения) производят только после того, как исчерпана возможность повышения напряжения, т.е. когда установлен максимальный ток возбуждения генератора. Изменение направления вращения двигателя производят путем изменения полярности подводимого к якорю напряжения, для чего изменяют направление тока в обмотке возбуждения генератора.

Система «генератор – двигатель» выгодно отличается тем, что в ней отсутствуют силовые контакторы, реостаты и т.п. Поскольку управление двигателем осуществляют путем регулирования сравнительно небольших токов возбуждения, управление легко поддается автоматизации.

Установки типа «генератор–двигатель» получили широкое распространение в промышленности и на транспорте, в тех устройствах, где требуется регулирование частоты вращения в широких пределах. В транспортных установках генератор приводится во вращение дизелем. В промышленности обычно для привода генератора используют трехфазные синхронные или асинхронные двигатели.

Систему «генератор – двигатель» широко применяют в металлургической промышленности для привода прокатных станов с двигателями мощностью 10 000 кВт и более при диапазоне регулирования частоты вращения 1:200 и точности поддержания заданной частоты вращения (погрешности) менее 1%.

Следует отметить, что в этой системе уменьшение частоты вращения производят с использованием рекуперативного торможения: сначала, увеличивая ток возбуждения двигателя, а затем, постепенно уменьшая ток возбуждения генератора, можно перевести двигатель в генераторный режим и быстро затормозить механизм. При этом накопленная кинетическая энергия якоря и механизма отдается в электрическую сеть.

Рис. 2.77 – Схема регулирования двигателя с независимым возбуждением при питании его от генератора

Если нагрузка толчкообразная, то иногда на валу первичного двигателя, вращающего генератор, ставят маховик, который уменьшает перегрузки первичного двигателя.

Недостатки системы «генератор–двигатель»:

1) большие масса, габариты и стоимость установки;

2) сравнительно низкий к. п. д. (порядка 0,6 – 0,7), так как производится трехкратное преобразование энергии.

В последнее время на транспорте (тепловозы, большие автомобили, корабли и т.п.) вместо генератора постоянного тока в системе «генератор–двигатель» применяют синхронный генератор с полупроводниковым выпрямителем. Это позволяет снизить вес и уменьшить стоимость генератора. В промышленных установках такое усовершенствование не получило широкого распространения, так как из-за выпрямителя теряется возможность рекуперативного торможения.

Система «управляемый выпрямитель–двигатель». Развитие полупроводниковой техники позволило применить для регулирования частоты вращения двигателя управляемый выпрямитель УВП, выполненный на тиристорах, где одновременно с выпрямлением производится регулирование выпрямленного напряжения (рис. 2.78). Применение системы «управляемый выпрямитель – двигатель» позволяет увеличить коэффициент полезного действия и уменьшить массу установки.

Рис. 2.78. Схема регулирования двигателя с независимым возбуждением при питании его от управляемого вентильного преобразователя

Если требуется быстрая остановка механизма, с последующим реверсированием, то для осуществления рекуперативного торможения параллельно с выпрямителем ставят инвертор, т.е. еще один полупроводниковый преобразователь, позволяющий отдавать электрическую энергию от машины постоянного тока всеть переменного тока.

Недостатком системы «управляемый выпрямитель–двигатель» является низкий коэффициент мощности при пониженном выходном напряжении. Кроме того, несколько ухудшается коммутация двигателя из-за пульсаций тока якоря. Особенно велики пульсации тока при питании от сети однофазного тока (электровозы переменного тока), где обеспечение удовлетворительной коммутации вырастает в большую проблему.

В настоящее время система «управляемый выпрямитель–двигатель» имеет меньшую надежность, чем система «генератор – двигатель», из-за сложности полупроводникового оборудования, особенно системы управления.

Импульсное регулирование частоты вращения.В последние годы в связи с развитием полупроводниковой техники широко применяют импульсный метод регулирования частоты вращения двигателей постоянного тока. При этом на двигатель с помощью импульсного прерывателя периодически подаются импульсы напряжения определенной частоты.

Читайте также:  Как обозначаются в однолинейных электрических схемах трансформаторы тока

Импульсный прерыватель (рис. 2.79, а) состоит из входного фильтра LфСф, электронного ключа ТK (транзисторного или тиристорного), обратного диода Д и индуктивности L. В период времени τ, когда электронный ключ замкнут (транзистор или тиристор открыт), питающее напряжение U подается полностью на якорь двигателя, и его ток ia увеличивается (рис. 10–79, б); когда электронный ключ разомкнут (транзистор или тиристор заперт), ток iа продолжает протекать через якорь двигателя и обратный диод Д под действием электромагнитной энергии, запасенной в индуктивностях La + L цепи якоря; при этом ток ia уменьшается. Частота следования импульсов при номинальном режиме обычно составляет 200–400 Гц, вследствие чего период Т примерно на два порядка меньше постоянной времени цепи якоря. Поэтому за время импульса τ ток в двигателе не успевает значительно возрасти, а за время паузы – τ) – уменьшиться.

Рис. 2.79 – Схема импульсного регулирования двигателя постоянного тока (а); графики изменения напряжения и тока при работе двигателя в режиме непрерывного тока (б)

Среднее напряжение, подаваемое на обмотку якоря,

, (2.99)

где α = τ/Т – коэффициент регулирования напряжения, равный относительной длительности включения ключа ТК.

При этом частота вращения двигателя

, (2.100)

где Iа= Iср–среднее значение тока якоря.

Изменение тока при работе импульсного прерывателя ΔI = IмаксIмин определяется по приближенной формуле

, (2.101)

где La+L – индуктивность цепи якоря двигателя.

Если параметры схемы выбраны так, что пульсация тока не превосходит 5–10%, то работа двигателя практически не отличается от работы двигателя при постоянном напряжении. Скоростные и механические характеристики двигателя 1, 2 и 3 (рис. 2.80), полученные при различных напряжениях, подаваемых на обмотку якоря, в таком режиме работы аналогичны соответствующим характеристикам двигателя при изменении питающего напряжения U.

Рис. 2.80 – Скоростные и механические характеристики двигателя с параллельным возбуждением при импульсном регулировании

При уменьшении нагрузки двигателя с параллельным возбуждением возрастают пульсации тока якоря, и при некоторой критической нагрузке наступает режим прерывистых токов. Поскольку условие Iа = 0 имеет место при Е = U, частота вращения при идеальном холостом ходе n = U/(сеФ) не будет зависеть от времени т, т.е. от коэффициента регулирования напряжения α. Благодаря этому при некоторой критической частоте вращения nкр, когда двигатель переходит в режим прерывистых токов, угол наклона скоростных и механических характеристик к оси абсцисс резко изменяется. В диапазоне n> n> nкр эти характеристики имеют примерно такую же форму, как и при регулировании частоты вращения путем включения реостата в цепь якоря. Критическая частота вращения

, (2.102)

где β = Т/Та. Здесь Та = (L + Lа)/∑r – постоянная времени цепи обмотки якоря.

Среднее напряжение Uср, подаваемое на двигатель, регулируется путем изменения либо продолжительности периода Т между подачей управляющих импульсов на электронный ключ ТK при τ=const (частотно-импульсное регулирование), либо времени τ при постоянном значении Т (широтно-импулъсное регулирование).

Используют также комбинированное регулирование, при котором изменяется как Т, так и τ.

В настоящее время импульсное регулирование двигателей малой мощности и микродвигателей осуществляют с помощью импульсных прерывателей, в которых коммутирующими элементами являются транзисторы. Для регулирования двигателей средней ибольшой мощностей применяют прерыватели с тиристорами. Так как тиристор, в отличие от транзистора, является не полностью управляемым вентилем, то для его запирания применяют различные схемы искусственной коммутации, обеспечивающие прерывание проходящего тока путем подачи на его электроды обратного напряжения.

Рис. 2.81 – Схемы включения двигателя постоянного тока через тиристорный импульсный прерыватель при частотно-импульсном и широтно-импульсном регулировании

На рис. 2.81 показаны две простейшие схемы импульсных тиристорных прерывателей. Схему, изображенную на рис. 2.81, а, используют при частотно-импульсном регулировании Тиристор Т отпирается путем подачи импульсов гока управления на его управляющий электрод, запирание же его осуществляется с помощью коммутирующего конденсатора Ск Перед включением тиристора конденсатор Скзаряжен до напряжения U. При подаче отпирающего импульса на управляющий электрод тиристор Т открывается и через двигатель начинает проходить ток ia. Одновременно происходит перезаряд конденсатора Ск через резонансный контур, содержащий индуктивность L1. После окончания перезаряда, когда полярность конденсатора изменится, к тиристору будет приложено обратное напряжение. При этом он восстанавливает свои запирающие свойства и прохождение тока через тиристор прекращается. В дальнейшем конденсатор заряжается через нагрузку и схема оказывается подготовленной для последующего отпирания тиристора. Время открытого состояния тиристора определяется параметрами резонансной цепи:

Схему, изображенную на рис. 2.81, б, используют при широтно-импульсном и комбинированном регулирований. В этом случае импульсный прерыватель имеет два тиристора: главный Т1 и вспомогательный Т2. Запирание главного тиристора Т1 осуществляется коммутирующим конденсатором Ск, который подключается к тиристору Т1 в требуемые моменты времени вспомогательным тиристором Т2. После запирания тиристора Т1 коммутирующий конденсатор заряжается от источника питания через тиристор Т2 и якорь двигателя, а после повторного открытия главного тиристора Т1 перезаряжается через цепочку, содержащую индуктивность L1и диод Д1, и приобретает полярность, требуемую для последующего запирания тиристора Т1.

Торможение при импульсном регулировании.При работе двигателя от импульсного прерывателя можно выполнить его рекуперативное и динамическое торможения. Наиболее интересная особенность рекуперативного торможения при импульсном регулировании – возможность осуществления его при величине э. д. с. двигателя, меньшей напряжения сети. В связи с этим рекуперативное торможение может осуществляться почти до полной остановки.

При рекуперативном торможении импульсный прерыватель ИП включают параллельно якорю двигателя, диод Д–между якорем и питающей сетью. Приотпирании прерывателя ИП якорь машины вместе с индуктивностью L замыкается накоротко. При этом увеличивается ток ia и происходит накопление электромагнитной энергии в индуктивностях L + La, а возникающая э. д. с. самоиндукции eL уравновешивает э. д. с. машины Е. При запирании прерывателя ИП ток ia под действием э. д. с. самоиндукции протекает через диод Д и накопленная энергия отдается в сеть. Среднее значение тока, отдаваемого в сеть, определяется разностью между средней э. д. с. якоря Е и напряжением сети U.

Из закона сохранения энергии IaсрE=Iс.срU имеем

. (2.103)

Следовательно, по мере уменьшения частоты вращения якоря ток Iс.ср, отдаваемый в сеть, уменьшается, хотя ток якоря может оставаться постоянным, а следовательно, неизменным будет оставаться и тормозящий электромагнитный момент.

Рис. 2.104 – Схема рекуперативного торможения двигателя постоянного тока при импульсном регулировании

По мере снижения частоты вращения n и э. д. с. Е для поддержания требуемого значения тока Iа увеличивают частоту тока f при частотно-импульсном регулировании или длительность импульса τ при широтно-импульсном регулировании. При малой частоте вращения, когда αувеличивается до единицы, якорь машины остается все время замкнутым накоротко, и отдача энергии в сеть прекращается. Однако ток Iа протекает через якорь и режим торможения осуществляется практически до полной остановки.

Частота вращения nкр, при которой прекращается рекуперативное торможение,

,

где rи.п–сопротивление элементов импульсного прерывателя (тиристоров и индуктивности L), по которым замыкается ток ia.

Динамическое торможение осуществляют аналогично, однако в схеме вместо сети и фильтра LФСф включают реостат, в котором гасится энергия, отдаваемая машиной.

Импульсное регулирование широко применяют при питании двигателей от сети постоянного тока, а также в автономных устройствах, где необходимо использовать аккумуляторы электрической энергии.

Источник