Меню

Импульсный источник питания постоянного напряжения

Регулируемые импульсные блоки питания с Алиэкпресс. Подборка-путеводитель

Регулируемые блоки питания — широкий класс устройств, в которых может регулироваться хотя бы один параметр выхода: напряжение, ток или порог срабатывания защиты по току.

Но так исторически сложилось, что наиболее продвинутые из них выделились в отдельный класс лабораторных блоков питания, отличающихся хорошими характеристиками выходного напряжения, обязательным наличием регулировки величины выходного напряжения и уровня стабилизации (или ограничения) выходного тока. Кроме этого, они должны обладать и подходящим конструктивом для обеспечения безопасной и удобной работы.

Часто они также обладают дополнительными возможностями: измерением не только напряжения и тока, но и отдаваемой мощности; цифровым управлением, памятью режимов и т.п.

В данной подборке лабораторные блоки питания рассматриваться не будут, а будут рассмотрены более простые устройства, во многих ситуациях, тем не менее, достаточные для проведения ремонтно-испытательных работ или же для постоянного применения совместно с питаемым устройством.

В подборке блоки питания будут рассмотрены в порядке от более простых к более «навороченным».

Указанные в подборке цены — примерные на дату обзора с доставкой в Россию; они могут меняться как в зависимости от курсов валют, так и по воле продавцов.

Импульсный блок питания на 96 Вт со ступенчатой регулировкой выходного напряжения

Этот блок питания внешне похож на стандартный блок питания для ноутбука, и отличается от такового только возможностью переключения выходного напряжения. Если правильно устанавливать напряжение, то, действительно, можно и ноутбуки заряжать (набор переходников — в комплекте).

Он может выдавать напряжения 12, 15, 16, 18, 19, 20 и 24 Вольт.

Допустимый выходной ток для напряжений 20 и 24 В составляет 4 А, для всех остальных — 4.5 А.

Установка выходного напряжения осуществляется переключателем ползункового типа сбоку устройства; а индикация — семью светодиодами на верхней поверхности.

Источник



Импульсный блок питания

Для обычного человека, не вникающего в электронику, был незаметен переход всех питающих устройств с линейных на импульсные. Именно импульсные источники (ИИП) питания устанавливаются во всей современной аппаратуре. Основная причина перехода на такой тип преобразователей напряжения — это уменьшение габаритов. Так как всё время, с начала появления и изобретения, электронные приборы требуют постоянного уменьшения их размеров. На рисунке изображен для сравнения габариты обычного и импульсного источника постоянного тока. Не вооруженным глазом видны различия в размерах.

Принцип действия ИИП и его устройство

ИИПИмпульсный источник питания — это устройство, которое работает по принципу инвертора, то есть сначала преобразует переменное напряжение в постоянное, а потом снова из постоянного делает переменное нужной частоты. В конечном итоге последний каскад преобразователя всё равно основан на выпрямлении напряжения, так как большинство приборов всё же работают на пониженном постоянном напряжении. Суть уменьшения габаритов этих питающих и преобразующих устройств построена на работе трансформатора. Дело в том, что трансформатор не может работать с постоянным напряжением. Просто-напросто на выходе вторичной обмотки при подаче на первичную постоянного тока не будет индуктироваться ЭДС (электродвижущая сила). Для того чтобы на вторичной обмотке появилось напряжения оно должно меняться по направлению или же по величине. Переменное напряжение обладает этим свойством, ток в нём меняет своё направление и величину с частотой 50 Гц. Однако, чтобы уменьшить габариты самого блока питания и соответственно трансформатора, являющегося основой гальванической развязки, нужно увеличить частоту входного напряжения.Принцип работы

Читайте также:  Какие работы связаны с нервно эмоциональным напряжением

При этом импульсные трансформаторы, в отличие от обычных линейных, имеют ферритовый сердечник магнитопровода, а не стальной из пластин. И также современные блоки питания работающие по этому принципу состоят из:

  1. выпрямителя сетевого напряжения;
  2. генератора импульсов, работающего на основе ШИМ (широтно-импульсная модуляция) или же триггера Шмитта;
  3. преобразователя постоянного стабилизированного напряжения.

После выпрямителя сетевого напряжения генератор импульсов с помощью ШИМ генерирует его в переменное с частотой около 20–80 кГц. Именно это повышение с 50 Гц до десятков кГц и позволяет значительно уменьшить, и габариты, и массу источника питания. Верхний диапазон мог быть и больше, однако, тогда устройство будет создавать высокочастотные помехи, которые будет влиять на работу радиочастотной аппаратуры. При выборе ШИМ стабилизации обязательно нужно учитывать также и высшие гармоники токов.

Состав импульсного блока питания

Даже при работе на таких частотах эти импульсные устройства вырабатывают высокочастотные помехи. А чем больше их в одном помещении или в одном закрытом помещении тем больше их в радиочастотах. Для поглощения этих негативных влияний и помех устанавливаются специальные помехоподавляющие фильтры на входе устройства и на его выходе.

Это наглядный пример современного импульсного блока питания применяемого в персональных компьютерах.

A — входной выпрямитель. Могут применяться полумостовые и мостовые схемы. Ниже расположен входной фильтр, имеющий индуктивность;
B — входные с довольно большой емкостью сглаживающие конденсаторы. Правее установлен радиатор высоковольтных транзисторов;
C — импульсный трансформатор. Правее смонтирован радиатор низковольтных диодов;
D — катушка выходного фильтра, то есть дроссель групповой стабилизации;
E — конденсаторы выходного фильтра.
Катушка и большой жёлтый конденсатор, находящиеся ниже E, являются компонентами дополнительного входного фильтра, установленного непосредственно на разъёме питания, и не являющегося фрагментом основной печатной платы.

Если схему радиолюбитель изобретает сам то он обязательно заглядывает в справочник по радиодеталям. Именно справочник является основным источником информации в данном случае.

Обратноходовой импульсный источник питания

Это одна из разновидностей импульсных источников питания, имеющих гальваническую развязку как первичных, так и вторичных цепей. Сразу был изобретён именно этот вид преобразователей, который был запатентован ещё в далёком 1851 году, а его усовершенствованный вариант применялся в системах зажигания и в строчной развертке телевизоров и мониторов, для подачи высоковольтной энергии на вторичный анод кинескопа.Обратноходовой источник питания

Основная часть этого блока питания тоже трансформатор или может быть дроссель. В его работе есть два этапа:

  1. Накопление электрической энергии от сети или от другого источника;
  2. Вывод накопленной энергии на вторичные цепи полумоста.

Во время размыкания и замыкания первичной цепи во вторичной появляется ток. Роль размыкающего ключа выполнял чаще всего транзистор. Узнать параметры которого нужно обязательно использовать справочник. управление же этим транзистором чаще всего полевым выполняется за счёт ШИМ-контроллера.

Управление ШИМ-контроллером

Преобразование сетевого напряжения, которое уже прошло этап выпрямления, в импульсы прямоугольной формы выполняется с какой-то периодичностью. Период выключения и включения этого транзистора выполняется с помощью микросхем. ШИМ-контроллеры этих ключей являются основным активным управляющим элементом схемы. В данном случае как прямоходовой, так и обратноходовой источник питания имеет трансформатор, после которого происходит повторное выпрямление.

Читайте также:  Стабилизатор напряжения эра sta 1500

Для того чтобы с увеличением нагрузки не падало выходное напряжение в ИИП была разработана обратная связь которая была заведена непосредственно в ШИМ-контроллеры. Такое подключение даёт возможность полной стабилизации управляемым выходным напряжения путём изменения скважности импульсов. Контроллеры, работающие на ШИМ модуляции, дают большой диапазон изменения выходного напряжения.

Микросхемы для импульсных источников питания могут быть отечественного или зарубежного производства. Например, NCP 1252 – ШИМ-контроллеры, которые имеют управление по току, и предназначены для создания обоих видов импульсных преобразователей. Задающие генераторы импульсных сигналов этой марки показали себя как надёжные устройства. Контроллеры NCP 1252 обладают всеми качественными характеристиками для создания экономически выгодных и надежных блоков питания. Импульсные источники питания на базе этой микросхемы применяются во многих марках компьютеров, телевизоров, усилителей, стереосистем и т. д. Заглянув в справочник можно найти всю нужную и подробную информацию обо всех её рабочих параметрах.

Преимущество импульсных источников питания перед линейными

В источниках питания на импульсной основе видны целый ряд преимуществ, которые качественно выделяют их от линейных. Вот основные из них:

  1. Значительное снижение габаритов и массы устройств;
  2. Уменьшение количества дорогостоящих цветных металлов, таких как медь, используемых в их изготовлении;
  3. Отсутствие проблем при возникновении короткого замыкания, в большей степени это касается обратноходовых устройств;
  4. Отличная плавная регулировка выходного напряжения, а также его стабилизация путём введения обратной связи в ШИМ-контроллеры;
  5. Высокие показатели КПД.

Однако, как и всё в этом мире, импульсные блоки имеют свои недостатки:

  1. Излучение помех, которые могут появляется при неисправных помехоподавляющих цепочек, чаще всего это высыхание электролитических конденсаторов;
  2. Нежелательная работа их без нагрузки;
  3. Более сложная схема с применением большего количества деталей для поиска аналогов которых необходим справочник.

Применение источников питания на основе высокочастотной модуляции (в импульсных) в современной электронике как в быту, так и на производстве, существенно повлияли на развитие всей электронной техники. Они давно вытеснили с рынка устаревшие источники, построенные на традиционной линейной схеме, и в дальнейшем будут только усовершенствоваться. ШИМ-контроллеры при этом являются сердцем этого аппарата и развитие их функциональности и технических характеристик постоянно улучшается.

Видео о работе импульсного источника питания

Источник

Импульсные источники питания — общие принципы, преимущества и недостатки

Сегодня уже трудно в каком-нибудь бытовом приборе или блоке питания обнаружить трансформатор на железе. В 90-е годы они начали быстро уходить в прошлое, уступая место импульсным преобразователям или импульсным источникам питания (сокращенно ИИП).

Импульсный блок питания

Импульсные источники питания превосходят трансформаторные по габаритам, качеству получаемого постоянного напряжения, они имеют широкие возможности регулировки выходного напряжения и тока, а также традиционно оснащены защитой от перегрузки по выходному току. И хотя считается, что импульсные блоки питания являются основными поставщиками помех в бытовую сеть, тем не менее широкое их распространение вспять уже точно не повернуть.

Трансформаторный источник питания:

Трансформаторный источник питания

Импульсный источник питания: Импульсный источник питания

Своей повсеместной распространенностью импульсные блоки питания обязаны полупроводниковым ключам — полевым транзисторам и диодам Шоттки. Именно полевой транзистор, работающий совместно с дросселем или трансформатором, является сердцем любого современного импульсного источника питания: в инверторах, сварочных аппаратах, источниках бесперебойного питания, во встроенных блоках питания телевизоров, мониторов и т. д. — нынче практически везде используются только импульсные схемы преобразования напряжения.

Читайте также:  Провод возбуждения генератора ваз 2110 какое напряжение

Общий принцип функционирования импульсного преобразователя основан на законе электромагнитной индукции, и в этом он сходен с любым трансформатором. Разница лишь в том, что на обычный сетевой трансформатор переменное напряжение с частотой сети 50 Гц подается сразу на первичную обмотку и преобразуется непосредственно, (после чего, если нужно, выпрямляется) а в импульсном блоке питания сетевое напряжение сначала выпрямляется и превращается в постоянное, и уже после — преобразуется в импульсное, с тем чтобы далее быть повышенным либо пониженным при помощи специальной высокочастотной (по сравнению с сетевыми 50 герцами) схемы.

Схема импульсного источника питания

Схема импульсного источника питания включает в себя несколько главных составных частей: сетевой выпрямитель, ключ (или ключи), трансформатор (или дроссель), выходной выпрямитель, блок управления, а также блок стабилизации и защиты. Выпрямитель, ключ и трансформатор (дроссель) — основа силовой части схемы ИИП, в то время как электронные блоки (включая ШИМ-контроллер) относятся к так называемому драйверу.

Итак, сетевое напряжение подается через выпрямитель на конденсатор сетевого фильтра, где таким образом получается постоянное напряжение, максимум которого составляет от 305 до 340 вольт, в зависимости от текущего среднего значения напряжения в сети (от 215 до 240 вольт).

Выпрямленное напряжение подается на первичную обмотку трансформатора (дросселя) в форме импульсов, частота следования которых определяется обычно схемой управления ключом, а длительность — средним током питаемой нагрузки.

Ключ с частотой от нескольких десятков до нескольких сотен килогерц подключает и отключает первичную обмотку трансформатора или дросселя к конденсатору фильтра, перемагничивая таким образом сердечник трансформатора или дросселя.

Различие между трансформатором и дросселем: в дросселе фазы накопления энергии от источника сердечником и отдачи энергии из сердечника через обмотку — в нагрузку, разделены во времени, а в трансформаторе это происходит одновременно.

Дроссель применяется в преобразователях без гальванической развязки топологий: повышающий — boost, понижающий — buck, а также в преобразователях с гальванической развязкой топологии обратноходовый — flyback. Трансформатор применяется в преобразователях с гальванической развязкой следующих топологий: мост — full-bridge, полумост — half-bridge, двухтактный — push-pull, прямоходовой — forward.

Ключ может быть одиночным (обратноходовый преобразователь, прямоходовый преобразователь, повышающий или понижающий преобразователь без гальванической развязки) или же силовая часть может включать в себя несколько ключей (полумост, мост, двухтактный).

Схема управления ключом (ключами) получает с выхода источника сигнал обратной связи по напряжению или по напряжению и току нагрузки, в соответствии с величиной этого сигнала автоматически осуществляется регулировка ширины (скважности) импульса, управляющего длительностью проводящего состояния ключа.

Выход источника устроен следующим образом. Со вторичной обмотки трансформатора или дросселя, либо с единственной обмотки дросселя (если речь идет о преобразователе без гальванической развязки), импульсное напряжение подается через диоды Шоттки двухполупериодного выпрямителя — на конденсатор фильтра.

Здесь же находится делитель напряжения с которого берется сигнал обратной связи по напряжению, а также может присутствовать датчик тока. К конденсатору фильтра, через дополнительный выходной НЧ-фильтр или напрямую, присоединяется нагрузка.

Источник

Adblock
detector