Меню

Импульсный понижающий преобразователь напряжения схема

Как сделать повышающий/понижающий преобразователь напряжения своими руками

Повышающий/понижающий преобразователь крупным планом

Как своими руками создать повышающий/понижающий преобразователь напряжения для зарядки разного рода портативных устройств — схемы, пошаговые фото и видео помогут в этом деле.

  1. Схема
  2. Монтаж своими руками
  3. Тестирование
  4. Видео о сборке

Сегодня соберем новый преобразователь напряжения, режим его работы — однотактный.

Повышающий/понижающий преобразователь напряжения на руке

Преобразователь имеет небольшие габариты и достаточно большую мощность.

Технические элементы на преобразователе напряжения

Обычные преобразователи делают одно из двух. Только повышают, или только понижают подаваемое на вход напряжение. Наш прибор является одновременно повышающим и понижающим.

Повышающий/понижающий преобразователь напряжения подключён к измерителям

Результаты измерений повышающего/понижающего преобразователя напряжения

С помощью повышающего/понижающего преобразователя напряжения можно использовать различные регулируемые источники питания для зарядки всевозможных портативных гаджетов — от смартфонов и планшетов до ноутбуков и видеокамер.

Естественно для этого можно просто воспользоваться универсальными зарядными устройствами с адаптерами питания, но все они питаются от 220В. А если нужен именно портативный источник различных выходных напряжений?

  • Смотрите также схему простого преобразователя напряжения 12–220В

Питающие напряжения для указанных гаджетов имеют очень широкий диапазон.
Например, смартфонам нужно всего 5 В, ноутбукам — 18, а некоторым даже 24 В. Вот здесь и пригодится наш повышающий/понижающий преобразователь напряжения, который научимся собирать своими руками.

Повышающий/понижающий преобразователь напряжения на голубом фоне

Схема повышающего и понижающего преобразователя напряжения

Схематическое изображение повышающего/понижающего преобразователя напряжения

Плата для создания преобразователя

Конденсаторы на плате преобразователя

На схеме указаны эталонные номиналы, а плату мы делаем для решения своих задач.
Во-первых, нас интересует компактность.

Печатная плата крупным планом

Во-вторых, наш преобразователь питания позволяет спокойно создать выходной ток в 3 Ампера.

Измерение выходного напряжения преобразователя

Большего и не надо.

Контакты печатной платы

Связано это с тем, что емкость применяемых накопительных конденсаторов небольшая, но схема способна выдать выходной ток до 5 А.

  • Смотрите также, как сделать преобразователь на 5В

Поэтому схема является универсальной. Параметры зависят от емкости конденсаторов, параметров дросселя, диодного выпрямителя и характеристик полевого ключа.

Технические компоненты платы крупным планом

Ещё пару слов о схеме. Она представляет собой однотактный преобразователь на базе шим-контроллера UC3843.

Плата преобразователя в собранном состоянии

Поскольку напряжение от аккумулятора немного больше штатного питания микросхемы, в схему был добавлен 12В стабилизатор 7812 для питания шим-контроллера.

Стабилизатор 7812 для питания шим-контроллера крупным планом

Повышающий и понижающий преобразователь напряжения — монтаж своими руками

Про перемычки, установленные с монтажной стороны платы.

Перемычки на монтажной стороне платы

Их четыре, две из них являются силовыми. Их диаметр должен быть не менее миллиметра!

  • Пошаговое создание повышающего преобразователя напряжения на TL494

Трансформатор, вернее дроссель, намотан на желтом кольце из порошкового железа.

Кольцо для наматывания дросселя

Такие колечки можно найти в выходных фильтрах компьютерных блоков питания. Что касается размеров.

Внешний диаметр — 23,29 мм.

Измерение диаметра кольца

Внутренний диаметр — 13,59 мм.

Внутренний диаметр кольца для дросселя

Толщина — 10,33 мм.

Толщина кольца для дросселя

Толщина намотки изоляции 0,3 мм. Дроссель состоит из двух равноценных обмоток.

Обмотанное кольцо

Обе обмотки наматываются медной проволокой диаметром 1,2 мм. Рекомендуем применять проволоку диаметром немного больше 1,5–2 мм.

Проволока для обмотки кольца

Витков в обмотке десять, оба провода наматываются разом, в одном направлении.

Перед установкой дросселя перемычки заклеиваем капроновым скотчем.

Перемычки заклеены капроновым скотчем

Работоспособность схемы заключается в правильной установке дросселя.

Дроссель установлен на плату

Ориентировочная схема для правильной установки дросселя

Схема правильной установки дросселя

Необходимо правильно припаять выводы обмоток.

Начало установки дросселя преобразователя

Просто установите дроссель, как это показано на фото.

Как выглядит правильная установка дросселя

Силовой N-канальный полевой транзистор, подойдет практически любой низковольтный.

Точка установки силового N-канального полевого транзистора

Точка установки силового N-канального транзистора на схеме

Ток транзистора не ниже 30А. Используем IRFZ44N.

Транзистор IRFZ44N крупным планом

Выходной выпрямитель — это сдвоенный диод YG805C в корпусе TO220.

Расположение выходного выпрямителя

Важно использовать диоды Шоттки, так как они дают минимальную просадку напряжения (0,3В против 0,7) на переходе, это влияет на потери и нагрев. Их также легко найти в пресловутых компьютерных блоках питания.

Как выглядят диоды Шоттки

В блоках они стоят в выходном выпрямителе.

Расположение диодов Шоттки в компьютерных блоках питания

В одном корпусе — два диода, которые в схеме запараллелены для увеличения проходящего тока.

  • Смотрите также инструкцию монтажа преобразователя напряжения 12–220

Преобразователь стабилизирован, имеется обратная связь.

Выходное напряжение задает резистор R3

Расположение резистора R3

Его можно заменить на выносной переменный резистор для удобства работы.

Преобразователь также снабжен защитой от короткого замыкания. В качестве датчика тока применен резистор R10.

Расположение защитного резистора R10

Это низкоомный шунт — чем выше его сопротивление, тем меньше ток срабатывания защиты. Установлен SMD вариант, на стороне дорожек.

Расположение низкоомного шунта на плате

Если защита от КЗ не нужна, то этот узел просто исключаем.

Исключение узла защиты от короткого замыкания

На входе схемы стоит предохранитель на 10А.

Расположение предохранителя на 10А

Кстати, в плате контроля аккумулятора уже установлена защита от КЗ.

Плата контроля аккумулятора

Конденсаторы, применяемые в схеме, крайне желательно брать с низким внутренним сопротивлением.

Расположение конденсаторов на схеме

Конденсаторы преобразователя крупным планом

Стабилизатор, полевой транзистор и диодный выпрямитель крепятся к алюминиевому радиатору в виде согнутой пластины.

Стабилизатор, полевой транзистор и диодный выпрямитель установлены на плате

Согнутая пластина радиатора

Обязательно изолируем подложки транзистора и стабилизатора от радиатора при помощи пластиковых втулок и теплопроводящих изолирующих прокладок. Не забываем и про термопасту. А установленный в схеме диод уже имеет изолированный корпус.

Правильный монтаж подложек транзистора и стабилизатора

Установка элементов с правильной изоляцией

Благодаря ШИМ-управлению, у преобразователя весьма высокий КПД. Например, ток холостого хода, в зависимости от питающего напряжения, находится в пределах 20–40мА.

Измерение КПД преобразователя

Показатели тока холостого хода

Тестирование повышающего/понижающего преобразователя напряжения

Для начала проверим диапазоны выходных напряжений.

Подадим на вход 12 В. Выходное напряжение достигает 25-ти. Выше поднимать нельзя, выходные конденсаторы на 25 В.

Тестирование при входном напряжении 12 В

Минимальное выходное напряжение составляет 4,85В. Следовательно, можно заряжать все USB гаджеты.

Результат измерения выходного напряжения преобразователя

Показатель минимального выходного напряжения преобразователя

Стабилизация работает отлично! Увеличив входное напряжение до 22,2 В, выходное находится точно в установленных пределах.

Повышение входного напряжения

Напряжение установлено на отметке 22,6 В

Проверка стабилизации преобразователя

При компактных размерах стабилизатор дает выходной ток 2,5–3А практически без просадки выходного напряжения.

Выходной ток от стабилизатора

Важно усилить припоем широкие силовые дорожки печатной платы, поскольку там протекают большие токи.

Читайте также:  Плавное регулирование напряжения переменного тока

Силовые дорожки печатной платы

Широкие дорожки печатной платы

Дорожки печатной платы усилены припоем

Вот как выглядит готовое устройство:

Повышающий/понижающий преобразователь напряжения в работе

Видео о сборке повышающего и понижающего преобразователя напряжения своими руками:

Источник



Понижающий импульсный преобразователь напряжения, источник питания. Преимущества, недостатки, применение. Принцип работы. Схема

Понижение напряжения постоянного тока. Как работает понижающий преобразователь напряжения. Где он применяется. Описание принципа действия. Пошаговая инструкция по проектированию (10+)

Понижающий импульсный преобразователь напряжения. Проектирование. Расчет

Для понижения постоянного напряжения с минимальными потерями и получения стабилизированного выхода применяется следующий подход. Постоянное напряжение преобразуется в импульсы переменной скважности. Далее эти импульсы пропускаются через катушку индуктивности. Энергия накапливается на накопительном конденсаторе. Обратная связь следит за стабильностью выходного напряжения и для этого регулирует скважность импульсов.

Если нет потребности в снижении потерь, то применяется последовательный стабилизатор непрерывного действия.

Принцип работы понижающего преобразователя напряжения основан на свойстве катушки индуктивности (дросселя) накапливать энергию. Накопление энергии проявляется в том, что сила тока через катушку индуктивности как бы имеет инерцию. То есть она не может измениться моментально. Если к катушке приложить напряжение, то сила тока будет постепенно нарастать, если приложить обратное напряжение, то сила тока будет постепенно убывать.

Вашему вниманию подборки материалов:

Конструирование источников питания и преобразователей напряжения Разработка источников питания и преобразователей напряжения. Типовые схемы. Примеры готовых устройств. Онлайн расчет. Возможность задать вопрос авторам

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

На схеме мы видим, что блок управления D1 в зависимости от напряжения на конденсаторе C2 замыкает и размыкает силовой ключ. Причем чем выше напряжение на C2, тем меньше время, на которое замыкается ключ, то есть меньше коэффициент заполнения (больше скважность). Если напряжение на конденсаторе C2 превышает некоторое, то ключ вообще перестает замыкаться, пока напряжение не снизится. Как обеспечивается такая работа схемы управления, описано в статье о широтно-импульсной модуляции.

Когда силовой ключ замкнут, ток идет по пути S1. При этом к катушке индуктивности приложено напряжение, равное разнице между входным и выходным напряжением. Ток через катушку увеличивается пропорционально напряжению, приложенному к катушке, и времени, на которое замыкается ключ. Катушка накапливает энергию. Протекающий ток заряжает конденсатор C2.

Когда силовой ключ разомкнут, ток идет по пути S2 через диод. К катушке индуктивности приложено выходное напряжение с обратным знаком. Ток через катушку уменьшается пропорционально напряжению, приложенному к катушке, и времени, в течение которого ключ разомкнут. Протекающий ток по-прежнему заряжает конденсатор C2.

Когда конденсатор C2 зарядится, ключ перестает замыкаться, зарядка конденсатора прекращается. Ключ снова начнет замыкаться, когда конденсатор C2 немного разрядится через нагрузку.

Конденсатор C1 нужен для того, чтобы уменьшить пульсации тока во входной цепи, отбирать из нее не импульсный, а средний ток.

Преимущества, недостатки, применимость

Потери энергии непосредственно зависят от отношения входного и выходного напряжений. Так понижающий преобразователь теоретически может сформировать большой выходной ток при малом напряжении из небольшого входного тока, но большого напряжения, но нам придется прерывать большой ток при большом напряжении, что гарантирует высокие коммутационные потери. Так что понижающие преобразователи применяются, если входное напряжение в 1.5 — 4 раза больше выходного, но их стараются не применять при большей разнице.

В таком преобразователе нет трансформатора. Это, с одной стороны, хорошо, так как нет проблем с паразитной индуктивностью утечки — главным ограничителем мощности импульсных преобразователей. Так что понижающий преобразователь может быть разработан практически на любую мощность. Но, с другой стороны, плохо, так как нет гальванический развязки входной и выходной цепей.

Проектирование понижающего преобразователя

Разберем процесс проектирования и расчета понижающего преобразователя и опробуем его на примерах. В конце статьи будет форма, в которую можно забить необходимые параметры источника, провести расчет онлайн и получить номиналы всех элементов. Для примера возьмем следующие схемы:

Одной из проблем понижающих преобразователей является сложность управления силовым ключом, так как его эмиттер (исток) как правило не подключен к общему проводу. Дальше мы рассмотрим несколько вариантов решения этой проблемы. Пока остановимся на несколько нестандартном включении микросхемы — ШИМ контроллера. Мы используем микросхему 1156EU3. У этой микросхемы выходной каскад выполнен по классической двухтактной схеме. Средняя точка этого каскада выведена на ножку 14, эмиттер нижнего плеча соединен с общим проводом (ножка 10), коллектор верхнего плеча выведен на ножку 13. Мы соединим ножку 14 с общим проводом через резистор, а ножку 13 подключим к базе ключевого транзистора. Когда верхнее плечо выходного каскада открыто (это соответствует подаче отпирающего напряжения на выход), ток протекает через эмиттерный переход транзистора VT2, ножку 13, верхнее плечо выходного каскада, ножку 14, резистор R6. Этот ток отпирает транзистор VT2.

В таком включении можно применять и контроллеры с открытым эмиттером на выходе. В этих контроллерах нет нижнего плеча. Но оно нам и не нужно.

В нашей схеме в качестве силового ключа используется мощный биполярный транзистор. Подробнее о работе биполярного транзистора в качестве силового ключа. В качестве силового ключа можно использовать составной транзистор, чтобы понизить нагрузку на контроллер. Однако, напряжение насыщения коллектор — эмиттер составного транзистора в разы больше, чем у одинарного. В статье про составной транзистор описано, как рассчитать это напряжение. Если Вы используете составной транзистор, то в форме расчета в конце статьи укажите в качестве напряжения насыщения коллектор — эмиттер VT2 именно это напряжение. Чем выше напряжение насыщения, тем выше потери, так что с составным транзистором потери будут в разы больше. Но решение есть. Оно будет описано далее в разделе о маломощных контроллерах.

Читайте также:  Транзистор открывается отрицательным напряжением

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Перечитал множество статей работы с 1156ЕУ3, но так и не понял, как именно задается выходное напряжение. От каких элементов оно зависит? Также буду очень благодарен, если если подскажете, как правильно рассчитать параметры понижающего преобразователя 100в на 28в 1000 Ватт. Заранее огромное спасибо. Читать ответ.

Мостовой импульсный стабилизированный преобразователь напряжения, исто.
Как работает мостовой стабилизатор напряжения. Где он применяется. Описание прин.

Полумостовой импульсный стабилизированный преобразователь напряжения, .
Полумостовой преобразователь напряжения сети. Схема, онлайн расчет. Форма для вы.

Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Повышающий импульсный преобразователь напряжения. Силовой ключ — бипол.
Как сконструировать повышающий импульсный источник питания. Как выбрать мощный т.

Конструирование (проектирование и расчет) источников питания и преобра.
Разработка источников питания и преобразователей напряжения. Типовые схемы. Прим.

Источник

Преобразователи напряжения импульсные

Для преобразования электроэнергии, а точнее сказать, напряжения, можно использовать различные устройства, такие как трансформаторы, генераторы, зарядные устройства. Все они являются преобразователями электрической энергии. Так как для питания многих современных устройств нужно не только переменное, но и постоянное напряжение, то для этих целей не всегда есть возможность применять такой источник энергии, как аккумуляторная батарея. Именно она выдаёт идеальное постоянное напряжение путём химической реакции. Раньше для преобразования и понижения напряжения применялись только низкочастотные трансформаторы, работающие в паре с выпрямителем и сглаживающим фильтром. Однако они обладали очень большими габаритами. С ростом и развитием инновационных технологий в быту и на производстве стали появляться электронные устройства, требующие миниатюрных преобразовательных устройств. Так и появились импульсные преобразователи постоянного напряжения. Миниатюрность их требуется больше для переносных мобильных устройств, нежели для стационарных.

Все импульсные преобразователи можно разделить на следующие группы:

  1. Повышающие, понижающие, инвертирующие;
  2. Со стабилизацией и без неё;
  3. С гальванической развязкой и без неё;
  4. Регулируемые и нерегулируемые;
  5. Обладающие различным диапазоном входного и выходного напряжения.

Однако импульсные преобразователи собраны на более сложных схемах, нежели их предшественники классические понижающие выпрямители.

Принцип действия

ИПН 24-12

Классические преобразователи с регулировкой выходного напряжения, как правило, управляют сопротивлением элемента, выполняющего регулировочную роль (транзистор или тиристор), через него постоянно протекает электрический ток, который и заставляет данный элемент нагреваться, при этом теряется значительная часть мощности. Главное преимущество такого устройства это минимум запчастей, простота, и отсутствие помех. Все остальные характеристики больше относятся к недостаткам.

Импульсный преобразователь напряжения использует регулировочный элемент лишь в виде ключа. То есть он работает в двух режимах:

  • Закрыт, и не пропускает электрический ток;
  • Открыт, и имеет минимальное проходное сопротивление.

При этом каждый из режимов обладает низким выделением тепла, что даёт возможность показывать высокий коэффициент полезного действия (КПД). Нагрузка же получает непрерывно электроэнергию за счёт накопления и хранения её в таких электрических резервуарах, как:

  1. Индуктивность (катушках);
  2. Конденсаторах.

Регулировка происходит за счёт изменения времени замкнутого состояния ключевого элемента. Снижение габаритов, а также массы устройств, возможно только за счёт повышения частоты, от 20 кГц до 1 МГц. Импульсные устройства могут формировать на выходе как пониженное напряжение, так и с изменением полярности. За счёт применения в них трансформаторов, работающих на высоких частотах позволяет:

  1. Качественно изолировать вход от выхода;
  2. Получить на выходе устройства несколько выходных напряжений.

Как и любое устройство импульсный преобразователь обладает и недостатками, которыми являются:

  1. Сложность схемы и наличие большего количества запчастей, а значит потенциально существует больше причин поломки;
  2. Являются источниками помех.

Однако постоянное развитие технологий в этом направлении снижают эти недостатки к минимальным значениям.

Классификация и виды импульсных преобразователей

Выпускаемые преобразователи можно разделить на три основные группы по роду тока:

  1. Конверторы. Выполняют преобразование переменного напряжения (АС) в постоянное (DC). Они применяются в основном в промышленности и в быту для изолированного питания устройств потребителей, где используется переменное напряжение 380/220 Вольт с частотой 50 Гц;
  2. Инверторы. Они постоянное напряжение преобразуют в переменное. Применяются в устройствах бесперебойного питания, а также сварочных аппаратах где за счёт такого преобразования есть возможность уменьшения габаритов, а значит и веса устройств.
  3. Конверторы постоянного напряжения. Преобразуют DC в DC. Применяются для питания аккумуляторных батарей и их подзарядки в системах где питание происходит от одного конвертора AC/DC, а каждый уже непосредственный аккумулятор получает за счёт конвертора DC/DC нужное конкретно для него напряжение.

Самые распространённые схемы

Существует несколько классических стандартных схем, которые чаще всего применяются в импульсных преобразователях постоянного напряжения. Они обеспечивают разные величины соотношений между входным и выходным напряжением. Эти схемы раскрывают саму суть преобразователей и их принцип работы.

Читайте также:  Что такое когнитивное напряжение

Понижающий преобразователь напряжения и его схема

Понижающий преобразователь напряжения и его схема

Она используется для питания потребителей, нагрузка которых выражается большими токами и малым напряжением. Это первоочередная схема способная заменить классический низкочастотный преобразователь, в свою очередь, обеспечит увеличение КПД, уменьшит габариты и вес устройства. Транзистор VT выполняет роль электронного ключа, его работа лежит между двумя режимами осечки (полного закрытия) и насыщения (полного открытия). Расчет каждой детали производится непосредственно для конкретного потребителя и источника напряжения. Основным недостатком данной схемы является вероятность пробоя и появление полного большого входного напряжения на потребителе. Это, несомненно, приведёт к неисправности питаемого устройства.

Повышающий преобразователь и схема

Повышающий преобразователь и схема

Она может быть использована для получения напряжения на потребителе или на нагрузке больше чем на источники энергии. Применяется для подсветки дисплеев портативных компьютеров и для других электронных устройств где необходимо из небольшого напряжения сделать большее. Здесь имеет место процесс появления ЭДС самоиндукции, которая появляется после открытия транзистора. Вся накопленная энергия в дросселе попадает в нагрузку. При этом напряжение на выводах дросселя меняет свою полярность.

Инвертирующая схема

Может использоваться для получения напряжения, которое обладает обратной полярностью. При этом по значению U вых может быть меньше или больше U вх. Энергия, которая скапливается в дросселе направляется в нагрузку через сглаживающий конденсатор.

инвертирующая схема

Как видно из этих схем все они не имеют гальванической развязки, то есть непосредственной изоляции вторичного выходного напряжения от входного.

Схема 5

Вот одна из таких схем, содержащих трансформатор. Энергия, которая накапливается в магнитном поле первичной обмотки трансформатора, в нагрузку выводится через вторичную обмотку. Трансформатор в этом случае может быть и повышающим и понижающим. Применяется очень часто в сетевых источниках где есть необходимость снижения входного напряжения от нескольких сотен вольт до единиц или десятков.

В момент когда транзистор закрывается трансформатор своей индуктивностью может вызвать на коллекторе высоковольтный скачок или всплеск, что несомненно, очень плохо и может привести к пробою полупроводникового элемента. Для этого и устанавливается RC-цепочка из конденсатора и катушки индуктивности, которая может быть подключена параллельно ключу или первичной обмотке. Такой обратноходовой импульсный преобразователь широко используется во многих сетевых источниках электрического тока с небольшой мощностью порядка 100 Вт.

Схема 6

Еще одна схема с трансформатором и прямым включением диода изображена на схеме ниже.

Используется в источниках питания около 250 Вт. Все эти рассмотренные выше преобразователи называются однотактные, потому что за один период преобразования в нагрузку будет поступать только один импульс. Основное их преимущество — это простота схемы состоящей всего из одного транзистора, работающего в режиме ключа, а недостаток намагничивание сердечника которое не даёт в полном объёме использовать с максимальным КПД этот магнитный материал. Передача энергии потребителю и подготовка трансформатора к следующему циклу размагничивания осуществляется с некоторой паузой которая и снижает их выходную мощность.

Вот несколько практических реализованных в жизни схем, основой которого является импульсный преобразователь. Первая из них имеет регулировочный элемент, выполненный на микросхеме, в свою очередь, обе схемы выполнены на полевых транзисторах. Расчет их выполнен под напряжение для нагрузки от 5 до 12 Вольт.

Схема 7

Методы регулировки

Существуют три вида регулирования в системах импульсных преобразователей:

  1. Широтно-импульсная модуляция (ШИМ) Распространённый метод, который применяется в массовом производстве управляющих микросхем;
  2. Частотно-импульсное регулирование (ЧИМ). Здесь продолжительность когда ключ находится во включенном режиме должна быть согласована с периодом колебаний в контуре, обеспечивающем малые значения тока и напряжения на ключе в момент переключения. Используется там, где реализованы резонансные схемы.
  3. Комбинированный вид. Метод свойственен системам, в которых используется автоколебательный процесс, а частота переключения находится в зависимости и от напряжений на входе, и выходе преобразователя, и от величины тока в цепи потребителя;
  4. Триггерный метод. Используем исключительно в схеме понижающего регулятора, в котором необходимо, чтобы при закрытом состояния ключа, то есть транзистора, величина напряжения в нагрузке увеличивалась.

Критерии выбора

Критерии которым должен отвечать качественный импульсный преобразователь и стабилизатор:

  • Продолжительный режим работы в экстремальных моментах когда ток в нагрузке максимален;
  • Полная автоматизация регулирования напряжения на выходе. Только тогда можно не бояться ни перегрузок, ни даже короткого замыкания;
  • Высокая надёжность устройства, обусловленная высоким показателем КПД и как следствие низким выделением тепла;
  • Минимальные габариты и вес;
  • Наличие гальванической развязки, которая исключает даже теоретически саму возможность попадания опасного напряжения входа, на выходные контакты, а значит на незащищенный потребитель.

Человек не знакомый с электроникой должен помнить при выборе нужного бытового стабилизатора напряжения что он должен соответствовать главным образом мощности тех приборов, к которым он будет подключен. А также падения и всплескам напряжения, которые могут возникнуть в сети. Лучше выбирать стабилизатор или импульсный понижающий преобразователь напряжения немного с запасом по мощности, так как количество используемых потребителей в квартирах и частных домах постоянно растёт.

Источник