Меню

Инцидент от напряжение тока

Анализ опасности поражения током в различных электрических сетях

Степень опасности и исход поражения электрическим током зависят: от схемы «подключения» человека в электрическую цепь; на электрической сети:

трехфазная четырехпроводная с заземленной нейтралью;

трехфазная с изолированной нейтралью.

Нейтральной точкой трансформатора (генератора) называют точку соединения обмоток питающего трансформатора. При нормальном режиме работы электрической сети в этой точке напряжение равно 0. Нейтраль источника питания может быть заземленная и изолированная от земли, это определяет режим ее работы. Заземление нейтрали называют рабочим заземлением R.

Выбор схемы сети и режима нейтрали источника тока осуществляют в зависимости от технологических требований и условий безопасности.

По технологическим требованиям предпочтение отдается четырехпроводной сети, так как эта сеть характеризуется двумя напряжениями — линейным и фазным (380/220 В). Линейным напряжением 380 В питают силовую нагрузку — включают электродвигатели производственного оборудования между фазными проводами. Фазное напряжение = 220 В используют для осветительной установки — подключают лампы между фазным и нулевым проводами. Линейное напряжение всегда больше фазного в 1,73 раза.

По условиям безопасности сети с изолированной нейтралью целесообразно применять, когда имеется возможность поддерживать высокий уровень изоляции сети, обеспечивающий незначительную емкость проводов относительно земли. Это могут быть малоразветвленные сети, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала.

Сети с заземленной нейтралью применяют там, где невозможно обеспечить высокий уровень изоляции электроустановки или нельзя быстро отыскать и устранить ее повреждение.

В силу специфики и незначительной мощности производства по сравнению с другими предприятиями пищевой промышленности на предприятиях общественного питания могут быть использованы одно- и двухфазные сети с заземленной нейтралью, а при эксплуатации средств малой механизации при погрузочно-разгрузочных работах рекомендуют электрическую сеть с изолированной нейтралью. Степень электробезопасности в таких сетях возрастает за счет большого сопротивления изоляции электропроводов по отношению к земле.

Поражение человека электрическим током может быть вызвано однополюсным (однофазным) или двухполюсным (двухфазным) прикосновением к токоведущей части установки.

Однофазное подключение является менее опасным, чем двухфазное, однако оно возникает значительно чаще и является основной причиной электротравматизма. На исход поражения в этом случае оказывает решающее влияние режим нейтрали электросети.

При прикосновении к одной из фаз сети с изолированной нейтралью (рис.) последовательно с сопротивлением человека оказываются включенными сопротивления изоляции и емкости относительно земли двух других неповрежденных фаз.

Рис. Однополюсное прикосновение к сети с изолированной нейтралью при нормальном режиме работы

При нормальной работе электросети напряжение нейтрали источника питания по отношению к земле равно нулю. Напряжения фаз относительно земли одинаковы и равны фазным напряжениям источника питания.

Сопротивление изоляции проводов никогда не равно бесконечно большой величине, обязательно имеют место токи утечки.

Провода и земля в этом случае являются как бы обкладками конденсатора, между которыми возникает электрическое поле. Чем более протяженная электрическая сеть, тем больше ее емкость.

По технологическим требованиям предпочтение отдается четырехпроводной сети, так как эта сеть характеризуется двумя напряжениями — линейным и фазным (380/220 В). Линейным напряжением 380 В питают силовую нагрузку — включают электродвигатели производственного оборудования между фазными проводами. Фазное напряжение = 220 В используют для осветительной установки — подключают лампы между фазным и нулевым проводами. Линейное напряжение всегда больше фазного в 1,73 раза.

По условиям безопасности сети с изолированной нейтралью целесообразно применять, когда имеется возможность поддерживать высокий уровень изоляции сети, обеспечивающий незначительную емкость проводов относительно земли. Это могут быть малоразветвленные сети, не подверженные воздействию агрессивной среды и находящиеся под постоянным надзором квалифицированного персонала.

Сети с заземленной нейтралью применяют там, где невозможно обеспечить высокий уровень изоляции электроустановки или нельзя быстро отыскать и устранить ее повреждение.

В силу специфики и незначительной мощности производства по сравнению с другими предприятиями пищевой промышленности на предприятиях общественного питания могут быть использованы одно- и двухфазные сети с заземленной нейтралью, а при эксплуатации средств малой механизации при погрузочно-разгрузочных работах рекомендуют электрическую сеть с изолированной нейтралью. Степень электробезопасности в таких сетях возрастает за счет большого сопротивления изоляции электропроводов по отношению к земле.

Поражение человека электрическим током может быть вызвано однополюсным (однофазным) или двухполюсным (двухфазным) прикосновением к токоведущей части установки.

Схема прикосновения человека к одной фазе сети с заземленной нейтралью

С увеличением сопротивления изоляции опасность поражения электрическим током уменьшается.

При аварийном режиме работы этой же сети, когда возникает глухое замыкание фазы на землю, напряжение в нейтральной точке может достигать фазного напряжения, напряжение неповрежденных фаз относительно земли становится равным линейному напряжению. В этом случае, если человек прикоснется к одной фазе, он окажется под линейным напряжением, через него пойдет ток по пути «рука — нога». В данной ситуации на исход поражения сопротивление изоляции проводов не играет никакой роли. Такое поражение током чаще всего приводит к летальному исходу.

На предприятиях, где сети разветвленные и имеют значительную протяженность, а следовательно, большую емкость, система с изолированной нейтралью теряет свое преимущество, так как увеличивается ток утечки, снижается сопротивление участка фаза-земля. С точки зрения электробезопасности в таких случаях предпочтение отдается сети с заземленной нейтралью (рис. ).

Схема прикосновения человека к одной фазе сети с заземленной нейтралью

Сопротивлением земли, как и в случае электрической сети с изолированной нейтралью, можно пренебречь.

Примеры свидетельствуют о том, что при прочих равных условиях однофазное подключение человека в сеть с изолированной нейтралью менее опасно, чем в сеть с заземленной нейтралью.

Наиболее опасным является двухфазное подключение человека в электрическую сеть, так как он попадает под линейное напряжение сети вне зависимости от режима нейтрали и условий эксплуатации сети.

Случаи двухфазного прикосновения происходят редко и преимущественно в электроустановках до 1000 В при работах на щитах и сборках, при эксплуатации оборудования с неизолированными токоведущими частями и т. п.

Источник

Негативные явления в электросети — их влияние на нагрузку и способы борьбы

В данной статье будут рассмотрены общие принципы функционирования электросети, негативные процессы, происходящие на линиях электроснабжения и различные методы защиты оконечного оборудования.

Единая энергосистема

Почти все электростанции России объединены в единую федеральную энергосистему, которая является источником электрической энергии для большинства потребителей. Важнейшим и обязательным компонентом любой электростанции является трехфазный турбогенератор переменного тока. Три силовые обмотки генератора индуцируют линейное напряжение. Обмотки симметрично расположены по окружности генератора. Ротор генератора вращается со скоростью 3000 оборотов в минуту, а линейные напряжения сдвинуты относительно друг друга по фазе. Фазовый сдвиг постоянен и равен 120 градусам. Частота переменного тока на выходе генератора зависит скорости вращения ротора, и в номинале составляет 50 Гц.

Напряжение между линейными проводами трехфазной системы переменного тока называется линейным. Напряжение между нейтралью и любым из линейных проводов называется фазным. Оно в корень из трех раз меньше линейного. Именно такое напряжение (фазное 220 В) подается в жилой сектор. Линейное напряжение 380 В используется для питания мощного промышленного оборудования. Генератор выдает напряжение в несколько десятков киловольт. Для передачи электроэнергии, с целью уменьшения потерь, напряжение повышают на трансформаторных подстанциях и подают в Линии Электропередачи (далее ЛЭП). Напряжение в ЛЭП составляет от 35 кВ для линий малой протяженности, до 1200 кВ на линиях протяженностью свыше 1000 км. Напряжение повышают с целью уменьшения потерь, которые напрямую зависят от силы тока. С другой стороны, напряжение ограничивается возможностью изоляции воздуха для ЛЭП и диэлектрика кабеля для кабельных линий. Достигнув крупного потребителя (завод, населенный пункт) электроэнергия опять попадает на трансформаторную подстанцию, где трансформируется в 6–10 кВ, которые уже пригодны для передачи по подземным кабелям. У каждого многоквартирного жилого дома, или административного здания стоит трансформаторная подстанция, которая выдает на выходе предназначенные для потребителя 380 В линейного напряжения и, соответственно, 220 В фазного. В подстанцию типично заводят два или три высоковольтных кабеля, что позволяет оперативно восстановить электроснабжение, в случае повреждений на высоковольтном участке трассы. В зависимости от вида подстанции, это может происходить автоматически, полуавтоматически — по команде диспетчера с центрального пульта, и вручную — приезжает аварийка и электрик переключает рубильник. Подстанция также может выполнять функцию регулятора напряжения, переключая обмотки трансформатора, в зависимости от нагрузки. В России на подстанциях применяют схему с заземленной нейтралью, то есть нейтральный (часто называемый нулевым) провод заземлен. По зданию разводка кабеля происходит пофазно, как с целью распараллеливания нагрузки, так и с целью удешевления оборудования (счетчиков, автоматов защиты). Подстанция в сельской местности и для небольших домов представляет собой обычно трансформаторную будку или просто трансформатор внешнего исполнения. Именно поэтому, на исправление аварии в таком месте отводятся сутки. Автоматической регулировки напряжения такие подстанции не имеют, и выдают номинал обычно в часы минимальных нагрузок, в остальное время занижая напряжение.

Читайте также:  Схема запуска двигателей переменного тока

Нормы качества для электросетей

Документом, устанавливающим нормы качества электроэнергии в России, является ГОСТ 13109-97 принятый 1 Января 1999г. В частности, в нем установлены следующие «нормы качества электрической энергии в системах электроснабжения общего назначения«.

Параметр Номинал Предельно
Напряжение, V 220V ±5% 220V ±10%
Частота, Hz 50 ±0,2 50 ±0,4
Искажения, % 8 12
Провалы, сек 3 30
Перенапряжения, V 280 380

Таким образом, даже при нормальном функционировании электросети использование устройств ИБП для компьютерной техники является обязательным, как для защиты целостности данных, так и для обеспечения исправности оборудования. С точки зрения электроснабжения, все потребители делятся на три категории. Для наиболее массовой категории наших читателей, проживающих в домах с числом квартир более восьми или работающих в офисных зданиях с числом сотрудников более 50 актуальна вторая категория. Это означает максимальное время устранения аварии один час и надежность 0,9999. Третья категория характеризуется временем устранения аварии 24 часа и надежностью 0,9973. Первая категория требует надежности 1 и временем устранения аварии 0.

Виды негативных воздействий в электросети

Все негативные воздействия в электросети делятся на провалы и перенапряжения.

Импульсные провалы обычно вызываются перегрузкой оконечных линий. Включение мощного потребителя, такого как кондиционер, холодильник, сварочный аппарат, вызывает кратковременную (до 1-2 с) просадку питающего напряжения на 10–20%. Короткое замыкание в соседнем офисе или квартире может вызвать импульсный провал, в случае, если вы подключены к одной фазе. Импульсные провалы не компенсируются подстанцией и могут вызывать сбои и перезагрузки компьютерной и другой насыщенной электроникой техники.

Постоянный провал, то есть постоянно или циклично низкое напряжение обычно вызвано перегрузкой линии от подстанции до потребителя, плохим состоянием трансформатора подстанции или соединительных кабелей. Низкое напряжение негативно отражается на работе такого оборудования как кондиционеры, лазерные принтеры и копиры, микроволновые печи.

Полный провал (блекаут), это пропадание напряжения в сети. Пропадание до одного полупериода (10 мс) должно по стандарту выдерживать любое оборудование без нарушения работоспособности. На подстанциях старого образца переключения регулятора напряжения или резерва могут достигать нескольких секунд. Подобный провал выглядит как «свет мигнул». В подобной ситуации все незащищенное компьютерное оборудование «перезагрузится» или «зависнет».

Перенапряжения постоянные — завышенное или циклично завышенное напряжение. Обычно является следствием так называемого «перекоса фаз» — неравномерной нагрузки на разные фазы трансформатора подстанции. В этом случае на нагруженной фазе происходит постоянный провал, а на двух других постоянное перенапряжение. Перенапряжение сильно сокращает срок службы самого разного оборудования, начиная от лампочек накаливания… Вероятность выхода из строя сложного оборудования при включении значительно увеличивается. Самое неприятное постоянное перенапряжение — отгорание нейтрального провода, нуля. В этом случае напряжение на оборудовании может достигать 380 В, и это практически гарантирует выход его из строя.

Временное перенапряжение бывает импульсным и высокочастотным.

Импульсное перенапряжение может происходить при замыкании фазовых жил силового кабеля друг на друга и на нейтраль, при обрыве нейтрали, при пробое высоковольтной части трансформатора подстанции на низковольтную (до 10 кВ), при попадании молнии в кабель, подстанцию или рядом с ними. Наиболее опасны импульсные перенапряжения для электронной аппаратуры.

Высокочастотное перенапряжение характеризуется наличием в силовом кабеле паразитных колебаний высокой частоты. Может нарушить работу высокочувствительной измерительной и звукозаписывающей аппаратуры.

Способы противодействия негативным воздействиям

В нижеприведенную таблицу сведены все виды негативных воздействий в электросети и технические методы борьбы с ними.

Вид негативного воздействия Следствие негативного воздействия Рекомендуемые меры защиты
Импульсный провал напряжения Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Качественные блоки питания. Онлайн ИБП
Постоянный провал (занижение) напряжения Перегрузка оборудования содержащего электромоторы. Неэффективность электрического отопления и освещения. Автотрансформаторные регуляторы напряжения. Импульсные блоки питания.
Пропадание напряжения Выключение оборудования. Потеря данных в компьютерных системах. Батарейные ИБП любого типа, для предотвращения потерь данных. Автономные генераторы, при необходимости обеспечения бесперебойности работы оборудования.
Завышенное напряжение Перегрузка оборудования. Увеличение вероятности выхода из строя. Автотрансформаторные регуляторы напряжения. Сетевые фильтры с автоматом защиты от перенапряжения.
Импульсные перенапряжения Нарушение в работе оборудования содержащего микропроцессоры. Потеря данных в компьютерных системах. Выход оборудования из строя. Сетевые фильтры с автоматом защиты от перенапряжения.
Высокочастотные перенапряжения. Нарушения в работе высокочувствительной измерительной и звукозаписывающей аппаратуры. Сетевые фильтры с ФНЧ. Развязывающие трансформаторы.
Перекос фаз (разница фазного напряжения) Перегрузка трехфазного оборудования. Выравнивания нагрузки по фазам. Содержание в исправности силовой кабельной сети.
Отклонение частоты сети Нарушение работы оборудования с синхронными двигателями и изделий зависящих от частоты сети. Онлайн ИБП. Замена устаревшего оборудования.

Следует отметить, что современные качественные ИБП имеют в своем составе сетевой фильтр и ограничитель напряжения. Время реакции и переключения на батарею достаточно мало для обеспечения надежной бесперебойной работы любых электронных устройств. Использование отдельных стабилизаторов может быть оправданно при большом количестве оборудования, так как цена стабилизатора на 10 КВт примерно равна цене ИБП на 1КВт. Использование отдельного сетевого фильтра гораздо менее оправданно. ИБП не предназначены для систем, требующих непрерывного функционирования. Если мощность такого оборудования превышает 1 КВт, оптимальным решением будет использование автономного дизельного генератора.

Источник

Наведенное напряжение и меры защиты от него

Николай ПетровичАвтор: Николай Петрович

Наведенное напряжение и меры защиты от него

Наведенное напряжение — невидимый враг, который в электрических сетях с высоким U может привести к сильным ожогам, нарушению работы внутренних органов и даже смерти.

В бытовой сети такие риски отсутствуют из-за низкого потенциала, но игнорировать опасность все равно не стоит.

Ниже рассмотрим, что такое наведенное напряжение, и как от него защититься. Укажем причины появления такого фактора на ВЛ (высоковольтной линии), в проводке, квартире и электрических установках.

Знание этих особенностей позволит защититься от негативных воздействий и лучше понимать природу электрического тока в целом.

Что это такое?

Под термином «наведенное напряжение» скрывается потенциал, который возникает в зоне электромагнитного влияния действующих электроустановок или проводников электротока.

Такая наводка может возникать в зоне высоковольтных линий, электрических установок высокого U и даже бытовой сети. Явление наведенного напряжения состоит из 2-х составляющих, которые рассмотрим подробнее.

Читайте также:  Как люди получают электрический ток

Электростатика

Создание потенциала объясняется распространением электрического поля от источника электричества, находящегося в непосредственной близости.

Наибольшее воздействие характерно для двух проводов, которые расположены рядом и находятся параллельно друг относительно друга. При этом один находится под U, а второй нет.

Величина наведенного напряжения зависит от следующих аспектов:

  1. Размер разности потенциалов.
  2. Расстояние от источника питания с напряжением до другого элемента.

Для лучшего понимания систему можно сравнить с одним или несколькими конденсаторами. Формально наводка формируется по всей длине проводника.

Во избежание накопления заряда необходимо заземлить отключенный проводник. В таком случае наведенное напряжение пойдет в землю, а работа будет безопасна для человека.

Для расчета статического напряжения необходимо перемножить два элемента:

  1. Коэффициент емкостного воздействия. Его размер можно получить в справочнике, а сам параметр зависит от расстояния до источника U и типа проводника.
  2. Рабочее напряжение.

Чем больше U и чем ближе находится проводник, тем выше наведенный параметр.

Для расчета максимального наведенного напряжения применяется формула:

Электромагнитная составляющая

Существует еще один тип наводки — ЭМ наведенное напряжение. Его суть состоит в распространении магнитного поля на определенной территории во все стороны от проводника.

Чем сильнее ЭМ поле, тем выше наведенное U в отключенном проводнике.

Наведенная ЭДС в отключенной линии электропередача будет равна:

При заземлении проводника в месте соединения с землей потенциал будет равен нулю, но по мере удаления от этого места он увеличится. Это означает, что максимальный параметр разницы потенциалов будет на наиболее удаленных концах линии (ВЛ или КЛ).

Напряжение в точке х относительно земли будет равно:

В чем опасность?

Наведенное напряжение имеет не меньшую опасность, чем обычный потенциал. Если при КЗ проводника работает релейная защита и отсекает аварийный участок, в случае с наведенным U все сложнее. Здесь защитные устройства не сработают, поэтому человек может оказаться под длительным воздействием негативных факторов.

При КЗ на рабочей линии, которая находится возле отключенного участка, на обесточенной ВЛ наведенное напряжение увеличивается в несколько раз. В результате ремонтный персонал оказывается под действием наведенного U, что может привести к ожогам и даже остановке сердца. Величина параметра может достигать 10-20 тысяч Вольт.

В ПУЭ прописано, что U выше 25 В уже опасно для здоровья человека. Вот почему важно внимательно подходить к этому обстоятельству и принимать меры, обеспечивающие дополнительную защиту. Как защититься от проводки, будет рассмотрено ниже в статье.

Причины появления

При рассмотрении вопроса, связанного с наводкой, важно понимать причины его появления. Для лучшего понимания рассмотрим несколько ситуаций — для квартиры, электрической проводки, электроустановок и ВЛ.

В квартире

Наводка в обычной сети 220 В появляется при обрыве 0-го проводника на ВЛ или до входа в квартиру (дом). Если проверить напряжение с помощью индикатора, лампочка будет светиться в любом из отверстий.

На самом деле, U присутствует только на одном из проводов (фазном), а второй принимает наведенный потенциал. Появляется такое явление, как две фазы в розетке.

После восстановления линии или возврата нуля ситуация нормализуется.

При выполнении ремонтных работ в квартире необходимо отключить входной автомат или достать предохранители, чтобы исключить попадание под напряжение.

В электропроводке

Одним из признаков наведенного напряжения является свечение экономки при отключенном свете. При этом напряжение может достигать 40-60 В.

Такая ситуация возникает при параллельной прокладке линий, питающих розетки и осветительные устройства в квартире.

Для устранения проблемы необходимо пересмотреть маршруты проводки и убедиться в правильности выполнения заземления или зануления.

Но существует еще одна причина. При создании проводки используются 2-х или 3-х жильные провода. Как правило, кабельная продукция укладывается в короба, откуда проводники направляются к своим потребителям.

Если выключатель разделяет не фазный, а нулевой провод, появляется наведенное U. Оно имеет небольшую величину, как отмечалось выше, но ее достаточно для зажигания диодного освещения.

Для решения проблемы необходимо поменять фазу и ноль местами. Сделать это не всегда удается, ведь один из проводов с коробки идет напрямую к источнику света и не проходит через выключатель.

В электроустановках

Выключатели, силовые трансформаторы, трансформаторы тока и напряжения, а также другие электроустановки неизбежно связаны с линией электропередач. Вот почему они часто попадают под наведенное напряжение и чаще всего это происходит при обрыве 0-го проводника.

Во многих электроустановках применяются изолированные кабели, внутри которых находятся плотно уложенные проводники.

Несмотря на небольшую длину участков, может появляться сильная наводка с большими рисками для персонала. Вот почему при выполнении таких работ важно принимать защитные меры, использовать СИЗ и следовать требованиям ПУЭ.

На линии электропередач

Выше мы отмечали, что электростатическая составляющая наводки имеет идентичный потенциал по всей длине проводника. Для расчета нужного значения коэффициент емкостной связи умножается на рабочее влияющее напряжение.

Для обеспечения защиты работников достаточно одного заземления в любой точке.

Отметим, что статическое U может возникнуть не только при наличии рядом ЭМ полей, но и других факторов — молнии или полярного сияния.

В случае с электромагнитной составляющей, ситуация обстоит по-иному. Этот параметр зависит от расстояния до ВЛ под напряжением, величины рабочего тока, длины линии и сопротивления заземления.

Для расчета наведенного U необходимо перемножить три элемента:

  • коэффициент индуктивной связи;
  • длина участка параллельно расположенной линии;
  • сила тока ВЛ под напряжением.

В отличие от электростатической составляющей, заземления в одной точке недостаточно. Это связано с тем, что потенциал в заземленной точке будет нулевым, но при удалении от этого участка он увеличивается. Чем дальше провод от места заземления, тем выше наводка.

Вот почему при одновременной работе в разных местах персонал может оказаться под действием опасного U. Чтобы избежать проблем, необходимо установить заземление непосредственно в месте работы.

Как защититься, меры безопасности

Из сказанного видно, что наведенное напряжение несет большие риски, что требует ответственности реализации мероприятий по защите людей от попадания в опасную зону.

Организационные меры безопасности:

  1. Работники, выполняющие работы в области наводки, должны иметь 3-ю группу по электробезопасности, а руководитель работ — 4-ю.
  2. Наличие опыта работ по ремонту и обслуживанию силовых линий, а также элементов молниезащиты.
  3. Организация параметра безопасности возле рабочего места, выполнение мероприятий, указанных в заявке и наряде-допуске.
  4. Нулевой провод в измеряемой группе считается таковым, что находится под U.
  5. Начало и завершение работ оформляется в письменном виде. Как правило, заполняется журнал допуска с подписью работников, заполняется наряд-допуск.

Измерения и работы нельзя проводить в условиях сильного тумана или ветра, осадков или плохой видимости. Если в процессе измерений работник выявляет поврежденный элемент ВЛ или КЛ, работы останавливаются до устранения неполадки.

При работе на линиях с наводкой необходимо учесть следующие нюансы:

  1. Заземление должно находиться в зоне видимости рабочего места.
  2. При наличии только статического напряжения достаточно одного заземления, но для надежности лучше установить заземлитель в двух местах. Если одно из устройств выйдет из строя, второе подстрахует.
  3. В случае с электромагнитной проводкой принимаются более серьезные меры безопасности. В этом случае заземление ставится непосредственно на рабочем месте. В этом случае наведенный потенциал в месте выполнения работ будет равен нулю.

Заземление — надежный способ защититься от наведенного напряжения. Но даже в этом случае отключенная линия будет находиться под негативным воздействием.

Читайте также:  Мощность переменного тока через сопротивление

Для работы можно выбрать один из вариантов:

  1. Отключение электроустановок, которые находятся параллельно к рабочей линии. В таком случае ремонтные работы должны выполняться как можно быстрее, чтобы исключить простой потребителей без электричества или длительное снижение надежности сети.
  2. Разделение ремонтируемой линии на несколько участков, которые не имеют электрической связи. Здесь работает принцип, который упоминался выше. Речь идет о том, что величина наводки напрямую зависит от длины участка.
  3. Работы под напряжением или с его отключением, но с применением специальных средств персональной защиты. В таком случае действия работника несколько скованы, но зато удается избежать отключения или снижения надежности сети.

Для обеспечения личной безопасности применяются следующие изделия:

  1. Сигнализаторы напряжения — показывают факт наличия U или наводки.
  2. Применение защитной одежды и ковриков на диэлектрической основе во избежание прохождения тока через организм человека.
  3. Использование указателей напряжения, а также электроизолирующих штанг для проверки уровня наведенного U.
  4. Работа в ботах и изолирующих перчатках.

При использовании измерительных устройств и СИЗ необходимо ориентироваться на класс U, для которого они предусмотрены.

Итоги

Опасность наведенного напряжения нельзя недооценивать. При отсутствии необходимой защиты и нахождении отключенной линии в зоне влияния проводника под напряжением наводка может оказаться опасной для жизни.

Осознание возможных рисков, установка заземлений, следованием правилам ПУЭ и применение СИЗ позволяет свести опасность к минимуму.

Эти правила обязательны к выполнению в электроустановках, на КЛ и ВЛ, а также должны приниматься во внимание при выполнении работы в бытовой сети 220 В.

Источник



Что бьёт и убивает: ток или напряжение?

Опасность электричества не миф, хуже того, несмотря на всеобщую осведомленность об этом факте, практически каждый человек может сказать, что ему доводилось при каких-то обстоятельствах ощутить на собственной шкуре электрический удар. Исход подобного воздействия не обязательно плачевен, однако, опасность летального исхода – это неотъемлемый спутник халатного обращения с электричеством.

Именно поэтому на электроустановках устанавливают предупреждающие плакаты, например, «Высокое напряжение! Опасно для жизни!» или «Не влезай! Убьет!». В связи с чем у многих возникает путаница, что убивает ток или напряжение, чего же им стоит опасаться.

В чем отличие между током и напряжением?

Если рассмотреть физический процесс, то электрическая энергия имеет множество различных характеристик, среди которых наиболее часто рассматриваются напряжение и ток. Сразу заметим, что это не одно и то же, но обе они взаимосвязаны.

В каждом веществе присутствует несчетное количество мельчайших атомов, в которых происходит электромагнитное взаимодействие между положительно заряженным ядром и отрицательно заряженными электронами, вращающимися вокруг ядра. В нормальном состоянии элементарные частицы находятся в балансе – заряд ядра полностью скомпенсирован зарядами электронов. Но, воздействие электромагнитного поля на атомы приводит наиболее удаленные электроны в движение, и атомы выходят из равновесия – получают определенный заряд.

Строение атома

Рис. 1. Строение атома

Под напряжением следует понимать разницу между двумя зарядами – в одной точке энергии больше, а в другой меньше. Можно провести аналогию с сообщающимися сосудами, если воды в одной трубке больше, а во второй меньше, то при их соединении вода из первой будет перетекать во вторую. Так же и с напряжением – потенциально в каждой точке имеется определенный заряд энергии, созданный электромагнитным полем, но до тех пор, пока эти точки не соединятся электрической цепью, заряженные частицы не начнут направленного движения.

Что такое напряжение

Рис. 2. Что такое напряжение

Но, с появлением связующей цепи, напряжение между двумя точками приведет к направленному движению заряженных частиц. Это явление получило название электрического тока.

В зависимости от особенностей источника электрической энергии напряжение и ток могут носить:

  • постоянный характер – не зависимо от наличия или отсутствия нагрузки, величина напряжения не меняется, относится к источникам неограниченной мощности;
  • изменяться в зависимости от величины нагрузки – относятся к источника с ограниченной мощностью, где величина питающего напряжения снижается при замыкании цепи;
  • временный – при подключении нагрузки к источнику питания заряд полностью рассеивается через короткий промежуток времени, это конденсаторы, в некоторых ситуациях наведенное напряжение.

Поэтому ток не может протекать без наличия напряжения на участке цепи, но именно ток определяет интенсивность воздействия электрической энергии на человека.

Воздействие тока и напряжения на организм

Чтобы определить степень воздействия на человека, следует отметить, что тело представляет собой проводник электрической энергии, через который может свободно протекать электрический ток. Однако, согласно закону Ома, сила тока на любом участке электрической цепи прямо пропорциональна напряжению, приложенному к этому участку и обратно пропорциональна сопротивлению:

От чего зависит сила тока

  • I – сила тока;
  • U – величина приложенного напряжения;
  • R – сопротивление тела человека.

Рис. 3: от чего зависит сила тока

Как можно судить из вышеприведенного выражения, чем больше омическое сопротивление, тем меньше ток, протекающий через человека. Напряжение электрической сети – величина постоянная и мало зависящая от того, что к ней подключено.

А вот на сопротивление человека влияют многие факторы:

  • состояние кожных покровов в местах прикосновения к токоведущим частям;
  • увлажненность кожи;
  • общее физиологическое состояние организма;
  • состав крови.

Помимо этого прохождение тока будет зависеть и от состава напольного покрытия, если цепь замкнется через ноги. В среднем, сопротивление человека принимается равным 1000 Ом, сухая кожа может иметь сопротивление в 100 000 Ом, но рассчитывать на такой показатель не стоит. Если рассмотреть ситуацию, когда 220 вольт приложено к человеку с сопротивлением 1000 Ом, то удар током достигнет 0,22А или 220 мА, а это опасная величина.

Чтобы представлять себе всю картину, нужно знать следующее:

  • при 1 – 10 мА удар электрическим током не ощущается, человек свободно отпустит токоведущий элемент без угрозы для собственной жизни;
  • от 15 – 50 мА воздействие электричества вызывает сокращения мышц и болезненные ощущения, самостоятельное освобождение человека может оказаться затруднительным;
  • от 50 – 100 мА воздействие электрического тока затрагивает сердце, поэтому становится опасным для жизни;
  • от 100 – 200 мА поражение электрической энергией может нанести летальный урон организму.

Вышеприведенные данные справедливы для переменного тока частотой 50 Гц, это обуславливается наличием амплитудных составляющих и пикового значения, как в положительную, так и в отрицательную сторону. При постоянном токе опасное для жизни значение считается от 300 мА и выше.

Более детально о воздействии электрического тока на организм человека было изложено в нашей статье: https://www.asutpp.ru/dejstvie-elektricheskogo-toka-na-organizm-cheloveka.html

Подводя итоги

Как видите, токовая составляющая, воздействующая на человека, и определяет, какие ситуации считаются опасными, а какие нет. Но, в то же время, без разности потенциалов электрический ток вообще протекать через человека не будет. Прямой тому пример – выполнение работ под напряжением, когда человек свободно касается проводов, а смертельно опасное электричество его не бьет. Проблема решается изолирующей вставкой между землей и ногами человека, которая разрывает электрическую цепь.

Работа под напряжением с изолированной вышки

Рис. 4. Работа под напряжением с изолированной вышки

Помимо этого существует целый разряд электроустановок, которые относятся к безопасным за счет питания низким напряжением. Так, потенциально безопасными можно назвать уровни не более 42 В переменного и 100 В постоянного, а все остальные относятся к опасному или высокому напряжению. Но не испытывайте судьбу, лучше перестраховаться и воспользоваться средствами индивидуальной защиты, а в любой непонятной ситуации воздержаться от взаимодействия с электроустановкой, оборванными проводами или корпусом поломанного бытового прибора, включенного в сеть.

Видео пояснение

Источник