Меню

Инвертор реактивной мощности своими руками схема

—>Мой сайт —>

Персональный сайт

  • RSS
  • —>Вход
  • —>Регистрация
  • —>Главная

—>

« Март 2021 »
Пн Вт Ср Чт Пт Сб Вс
1 2 3 4 5 6 7
8 9 10 11 12 13 14
15 16 17 18 19 20 21
22 23 24 25 26 27 28
29 30 31

—>

ENERGY SAVER .

FREE DOWLOAD FILE .

http://depositfiles.com/files/g9kjs1gu8

Инвертор реактивной мощности

Устройство предназначено для питания бытовых потребителей переменным током. Номинальное напряжение 220 В, мощность потребления 1-5 кВт. Устройство может использоваться с любыми счетчиками, в том числе с электронными и электронно-механическими, даже имеющими в качестве датчика тока шунт или воздушный трансформатор.

Устройство, собранное по предлагаемой схеме, просто вставляется в розетку и от него питается нагрузка. Вся электропроводка остается нетронутой. Заземление не нужно. Счетчик при этом учитывает примерно четверть потребленной электроэнергии.

Теоретические основы

При питании активной нагрузки фазы напряжения и тока совпадают. Функция мощности, представляющая собой произведение мгновенных значений напряжения и тока, имеет вид синусоиды, расположенной только в области положительных значений. Счетчик электрической энергии вычисляет интеграл от функции мощности и регистрирует его на своем индикаторе. Если к электрической сети вместо нагрузки подключить емкость, то ток по фазе будет опережать напряжение на 90 градусов. Это приведет к тому, что функция мощности будет расположена симметрично относительно положительных и отрицательных значений. Следовательно, интеграл от неё будет иметь нулевое значение, и счетчик ничего считать не будет.

Принцип работы инвертора состоит в том, что конденсатор заряжают от сети в течение первого полупериода сетевого напряжения, а в течение второго — разряжают через нагрузку потребителя. Пока нагрузка питается от первого конденсатора, второй также заряжают от сети без подключения нагрузки. После этого цикл повторяется. Таким образом, нагрузка получает питание, по форме в виде пилообразных импульсов, а ток, потребляемый из сети- почти синусоидальный, только его аппроксимирующая функция опережает по фазе напряжение. Следовательно, счетчик учитывает не всю потребленную электроэнергию. Достичь смещения фаз до 90 градусов невозможно, так как фактически заряд

каждого конденсатора завершается за четверть периода сетевого напряжения, но аппроксимирующая функция тока через счетчик при правильно подобранных параметрах емкости и нагрузки может опережать напряжение до 70 градусов, что позволяет счетчику учитывать всего четверть от фактически потребленной электроэнергии.

Для питания нагрузки, чувствительной к форме напряжения, на выходе устройства можно установить фильтр. В этом случае питание нагрузки будет осуществляться почти правильной синусоидой.

Принципиальная схема устройства

Принципиальная схема приведена на рис.1. Основными элементами являются инверторный тиристорный мост VD 7 – VD 10 с конденсаторами C 1, С2. Тиристоры VD 7 и VD 8, открываясь поочередно, позволяют конденсаторам C 1 и С2 заряжаться от сети в соответствующие полупериоды сетевого напряжения. Тиристоры VD 9 и VD 10 предназначены для разряда конденсаторов через нагрузку.

Импульсы управления тиристорами формируются на вторичных обмотках трансформаторов Т2 и Т3 при открывании транзисторных ключей VT 1 и VT 2. Сигнал управления транзистором VT 1, соответствующий положительной полуволне сетевого напряжения, выделяется параметрическим стабилизатором VD 1, R 1 и через гальваническую развязку на оптроне ОС1 подается на базу транзистора. Транзистор открыт в течение всего времени положительной полуволны. В момент его открывания переходный процесс тока в первичной обмотке трансформатора Т2 приводит к появлению импульсов во вторичных обмотках. Эти импульсы открывают тиристоры VD 7 и VD 10. Тиристоры остаются в открытом состоянии, пока токи через них не достигнут нулевых значений. Это приводит к заряду конденсатора С1 и к разряду С2.

При появлении отрицательной полуволны сетевого напряжения транзистор VT 1 закрывается, а VT 2 открывается сигналом, выделяемом элементами VD 2, R 5 и ОС2. Работа каскада на транзисторе VT 2 в отрицательный полупериод аналогична, и приводит к открыванию VD 8, VD 9, что приводит к заряду конденсатора С2 и к разряду С1.

Блок питания транзисторных ключей и формирователей импульсов построен по простейшей схеме и состоит из трансформатора Т1, выпрямительного моста Br 1 и фильтра С3.

http://imageshack.us/f/835/022fq.jpg/

Детали и конструкция

Тиристоры VD 7- VD 10 должны быть рассчитаны на импульсный ток в открытом состоянии не менее 30 А и постоянное обратное напряжение не менее 310 В. Кроме указанных на схеме, допускается применение тиристоров КУ202К- КУ202М. Каждый тиристор должен быть установлен на радиаторе площадью не менее указанной в нижеследующей таблице.

Транзисторы VT 1, VT 2 должны быть рассчитаны на импульсный ток коллектора не менее 1 А и напряжение коллектор-эмиттер не менее 40 В. Возможно применение транзисторов КТ815, КТ817, КТ819, КТ826, КТ827 с любыми буквенными индексами.

Читайте также:  Мощность тена для инкубатора

В качестве оптронов ОС1, ОС2 можно использовать оптроны АОТ110 с любыми буквенными индексами или другие транзисторные оптроны, рассчитанные на номинальный выходной ток не менее 10 мА и напряжение не менее 30 В.

Диоды VD — VD 6 – типа КД105, КД102, КД106. Br 1- любые низковольтные выпрямительные диоды или диодная сборка на ток не менее 200 мА.

Резисторы: R 1, R 5 типа МЛТ-2, остальные резисторы типа МЛТ-0.25.

Накопительные конденсаторы С1 и С2 должны быть рассчитаны на напряжение не менее 400В. Они могут быть электролитическими, например К50-7. Их емкость выбирается в зависимости от мощности нагрузки, подключаемой к выходу устройства и должна быть не менее указанной в таблице.

Допускается применение батарей из нескольких конденсаторов, включенных параллельно. При малых нагрузках не рекомендуется завышать емкость конденсаторов, так как возрастают потери в схеме и снижается эффективность устройства.

Конденсатор С3 – любой электролитический емкостью 1000-2000 мкФ.

Трансформатор T 1 – любой мощностью около 10-20 Вт. Напряжение вторичной обмотки должно быть 12 В.

Трансформаторы Т2 и Т2 намотаны на кольцевом ферритовом сердечнике внешним диаметром не менее 10 мм. Все обмотки одинаковые и содержат по 100-200 витков провода диаметром 0.1-0.15 мм.

Устройство в целом собирают в каком-либо корпусе. Очень удобно (особенно в целях конспирации) использовать для этого корпус от бытового стабилизатора напряжения, которые в недалеком прошлом широко использовались для питания ламповых телевизоров.

Наладка

При наладке схемы соблюдайте осторожность! Помните, что не вся низковольтная часть схемы имеет гальваническую развязки от электрической сети! Применение плавких предохранителей – обязательно! Накопительные конденсаторы работает в тяжелом режиме, поэтому их нужно разместить в прочном металлическом корпусе.

Низковольтный блок питания проверяют отдельно от других модулей. Он должен обеспечивать ток не менее 0.2 А при напряжении на выходе 16 В.

Настройку схемы управления тиристорами рекомендуется выполнять при отключенной нагрузке и отсоединенных накопительных конденсаторах С1, С2.

С помощью осциллографа проверяют наличие прямоугольных импульсов на стабилитронах VD 1, VD 2. Амплитуда этих импульсов должна быть около 5 В, частота 50 Гц, скважность 1/1. Если скважность существенно отличается, то подбирают сопротивления резисторов R 1, R 5.

После этого подключают осциллограф поочередно к база-эмиттерным переходам транзисторов VT 1, VT 2. Если оптронные узлы работают нормально, то на базах транзисторов будут прямоугольные импульсы амплитудой около 1В и частотой 50 Гц. При отсутствии этих импульсов подбирают резисторы R 2, R 6.

В заключении осциллограф подключают поочередно к управляющим электродам тиристоров VD 7- VD 10 и измеряют сигналы относительно соответствующих катодов. Должны наблюдаться короткие импульсы амплитудой около 1 В, частотой 50 Гц. Если импульсы отсутствуют или их амплитуда ниже 0.7 В, увеличивают сопротивления R 17, R 18.

На этом настройку схемы управления устройства можно считать завершенной. При подключении нагрузки на выходе устройства будет напряжение, равное нулю. После подключения накопительных конденсаторов напряжение на нагрузке появится и будет иметь вид пилообразных импульсов, приведенных на рис.2. Амплитуда этих импульсов около 310 В, частота 50 Гц.

Если нагрузка допускает произвольную форму питающего напряжения (нагревательные элементы, котлы, печи, освещение лампами накаливания и т.п), тогда на этом можно закончить. Если нагрузка требует синусоидального напряжения, перед нагрузкой следует включить фильтр. Как правило, достаточно простейшего Г-образного LC -фильтра (рис.3). При индуктивности дросселя L около 20 мГн и емкости конденсатора С 100 мкФ (только неполярный!), на нагрузке мощностью 2 кВт получается синусоида с незначительными искажениями (рис.4). Такие искажения допускают практически все потребители, даже точная электронная аппаратура.

После испытания устройства под нагрузкой полезно убедиться, что ток потребления из сети опережает по фазе напряжение. Для этого потребуется двулучевой осциллограф. Последовательно с устройством следует включить малое мощное сопротивление (например, кусок спирали от электроплитки), и параллельно ему подключить один канал осциллографа для измерения тока. Второй канал осциллографа включают параллельно входу устройства, для измерения напряжения. Осциллограммы тока и напряжения должны быть смешены относительно друг друга по фазе на величину, как можно ближе к 90 градусов (рис.5). Малое фазосмещение свидетельствует о потере емкости накопительных конденсаторов С1 и С2. Полное отсутствие- о пробое силовых тиристоров или неправильной работе схемы управления.

Читайте также:  Коэффициент эффективности использования установленной мощности определяется отношением

Источник



Инвертор реактивной мощности

На этой странице будет представлено описание и предложена принципиальная схема несложного устройства для экономии электроэнергии, так называемый инвертор реактивной мощности. Устройство полезно при использовании, например, таких часто употребимых бытовых электроприборов, как бойлер, электродуховка, электрочайник и других, в том числе не нагревательных электронных устройств, телевизор, компьютер и др. Устройство может использоваться с любыми счетчиками, в том числе и сэлектронными, даже имеющими в качестве датчика шунт или воздушный трансформатор. Устройство просто вставляется в розетку 220 В 50 Гц и от него питается нагрузка, при этом вся электропроводка остается нетронутой. Заземление не требуется. Счетчик при этом будет учитывать примерно четверть потребленной электроэнергии.

Увеличить (Скачать)
Инвертор реактивной мощности, принципиальная схема для ознакомительных целей

Получить рабочую схему данного устройства с указанием номиналов элементов и подробной инструкцией по сборке и настройке можно здесь.

Немного теории . При питании активной нагрузки фазы напряжения и тока совпадают. Функция мощности, представляющая собой произведение мгновенных значений напряжения и тока, имеет вид синусоиды, расположенной только в области положительных значений. Счетчик электрической энергии вычисляет интеграл от функции мощности и регистрирует его на своем индикаторе. Если к электрической сети вместо нагрузки подключить емкость, то ток по фазе будет опережать напряжение на 90 градусов. Это приведет к тому, что функция мощности будет расположена симметрично относительно положительных и отрицательных значений. Следовательно интеграл, от нее будет иметь нулевое значение, и счетчик ничего не будет считать. Иными словами попробуйте включить любой неполярный конденсатор после счетчика. Вы увидите, что на него счетчик никак не реагирует. Причем, независимо от емкости. Принцип работы инвертора, простой, как двери и состоит в использовании 2-х конденсаторов, первый из которых заряжают от сети в течение первого полупериода сетевого напряжения, а в течение второго — разряжают через нагрузку потребителя. Пока нагрузка питается от первого конденсатора второй также заряжают от сети без подключения нагрузки. После этого цикл повторяется.

Таким образом, нагрузка получает питание, по форме в виде пилообразных импульсов, а ток потребляемый от сети- почти синусоидальный, только его апроксимирующая функция опережает по фазе напряжение. Следовательно счетчик учитывает не всю потребленную электроэнергию. Достичь смещения фаз 90 градусов не возможно, так, как заряд каждого конденсатора завершается за четверть периода сетевого напряжения, но апроксимирующая функция тока через электрощетчик при правильно подобранных параметрах емкости конденсаторов и нагрузки может опережать напряжение до 70 градусов, что позволяет счетчику учитывать всего четверть от фактически потребленной электроэнергии. Для питания нагрузки, чувствительной к форме напряжения, на выходе устройства можно установить фильтр, чтобы приблизить форму питающего напряжения к правильной синусоиде.

Проще говоря инвертор представляет собой несложное электронное устройство, преобразующее реактивную мощность в активную (полезную). Устройство включается в любую розетку, а от него питается мощный потребитель (или группа потребителей). Оно сделано таким образом, что потребляемый им ток по фазе опережает напряжение на 45..70 градусов. Поэтому счетчик воспринимает устройство как емкостную нагрузку и не учитывает большую часть фактически потребленной энергии. Устройство, в свою очередь, инвертируя полученную неучтенную энергию, питает потребители переменным током. Инвертор рассчитан на номинальное напряжение 220 В и мощность потребителей до 5 кВт. При желании мощность может быть увеличена. Главным достоинством устройства является то, что оно одинаково хорошо работает с любыми счетчиками, в том числе с электронными, электронно-механическими и даже новейшими, которые имеют в качестве датчика тока шунт или воздушный трансформатор. Вся электропроводка остается нетронутой. Заземление не нужно. Схема представляет собой мост на базе четырех тиристоров с несложной схемой управления. Собрать и настроить устройство можно самостоятельно, имея даже небольшой радиолюбительский опыт.

Источник

Компенсация реактивной мощности в квартире, быту и на производстве

Слишком высокая или как еще её называют, реактивная энергия и мощность, способствуют значительному ухудшению работы электрических сетей и систем. Мы предлагаем рассмотреть в нашей статье как производится автоматическая компенсация реактивной мощности (крм) и перекомпенсация в сетях на предприятиях, в квартире и в быту.

Зачем нужна компенсация реактивной мощности

Чем больше требуется энергии — тем выше становится уровень потребления топлива. И это не всегда оправдано. Компенсация мощности, т.е, её правильный расчет, поможет сэкономить в промышленных распределительных электросетях на производстве до 50 % затрачиваемого топлива, а в некоторых случаях и больше.

Читайте также:  Увеличение мощности ваз 21083 карбюратором

Нужно понимать, что тем больше ресурсов затрачено на производство, тем выше будет цена конечного продукта. При возможности снизить стоимость изготовления товара, производитель либо предприниматель, сможет снизить его цену, чем привлечь потенциальных клиентов и потребителей.

Как наглядный пример – пара диаграмм ниже. Эти векторы визуально передают полный эффект от работы установки.

Диаграмма доДиаграмма до работы установки Диаграмма послеДиаграмма после работы установки

Кроме этого, мы также избавляемся от потерь в электросетях, от чего эффект следующий:

  • напряжение ровное, без перепадов;
  • увеличивается долговечность проводов (abb – авв, аку) и индукционной обмотки в жилых помещениях и на заводе;
  • значительная экономия на работе домашних трансформаторов и выпрямителей тока;
  • проведенная компенсация мощности и реактивной энергии значительно продлит время работы мощных устройств (асинхронный двигатель трехфазный и однофазный).
  • значительное снижение электрических затрат.

Общая схема преобразователя

Теория и практика

Чаще всего реактивная энергия и мощность потребляется при использовании трехфазного асинхронного двигателя, здесь и нужна компенсация сильнее всего. Согласно последним данным: 40 % — потребляют двигатели (от 10 кв), 30 – трансформаторы, 10 – преобразователи и выпрямители, 8% — расход освещения

Для того чтобы этот показатель уменьшить, используются конденсаторные устройства или установки. Но существует огромное количество подтипов этих электроприборов. Какие бывают конденсаторные установки и как они работают?

Видео: Что такое компенсация реактивной мощности и для чего она нужна?

Для того чтобы производилась компенсация энергии и реактивной мощности конденсаторными батареями и синхронными двигателями, понадобится установка энергосбережения. Чаще всего используют подобные устройства с реле, хотя вместо него может быть установлен контактор либо тиристор. Дома используются релейные приборы дуговой компенсации. Но если проводится компенсация реактивной энергии и мощности на заводах, у трансформаторов (там, где несимметричная нагрузка), то намного целесообразнее применять тиристорные устройства.

В отдельных случаях возможно использование комбинированных устройств, это приборы, которые одновременно работают и через линейный преобразователь, и через реле.

Чем поможет использование установок:

  • подстанция снизит скачки напряжения;
  • электрические сети станут более безопасными для работы электрических приборов, исчезнут проблемы компенсации электричеста и мощности у холодильных установок и сварочных аппаратов;
  • кроме этого, они очень просты в установке и эксплуатации.

Как установить конденсаторные устройства

Предварительно понадобится схема работы электросети, и документы от ПУЭ, по которым и проводится решение о компенсации энергии и реактивной мощности ДСП. Далее необходим экономический расчет:

  • сумма потребления энергии всеми приборами (это печи, цод, автоматические машины, холодильные установки и прочее);
  • сумма поступления тока в сеть;
  • вычисление потерь в цепях до поступления энергии к приборам, и после этого поступления;
  • частотный анализ.

Далее нужно сгенерировать часть мощности сразу на месте её поступления в сеть при помощи генератора. Это называется централизованная компенсация. Она может проводится также при помощи установки cos, electric, schneider, tg.

Но существует также индивидуальная однофазная компенсация реактивной энергии и мощности (либо поперечная), её цена намного ниже. В этом случае производится установка упорядоченных регулирующих устройств (конденсаторов), непосредственно у каждого потребителя питания. Это оптимальный выход, если регулируется трехфазный двигатель или электропривод. Но у этого типа компенсации есть существенный недостаток – она не регулируется, и поэтому называется еще и нерегулируемой или нелинейной.

Статические компенсаторы или тиристоры работают при помощи взаимоиндукции. В этом случае переключение производят при помощи двух или более тиристоров. Самый простой и безопасный метод, но его существенным недостатком является то, что гармоники генерируются вручную, что значительно усложняет процесс монтажа.

Продольная компенсация

Продольная компенсация производится методом варистора или разрядника.

продольная компенсация реактивной мощности

Продольная компенсация реактивной мощности

Сам процесс происходит из-за наличия резонанса, который образуется из-за направления индуктивных зарядов друг другу на встречу. Данная технология и теория компенсации мощности применяется для реактивных и тяговых двигателей, сталеплавильной или станочной техники Гармоники, к примеру, и именуется еще искусственная.

Техническая сторона компенсации

Существует огромное количество производителей и типов установок конденсаторных установок:

  • тиристорные;
  • регуляторы на ферросплавном материале (Чехия);
  • резисторные (производятся в Петербурге);
  • низковольтные;
  • реакторы детюнинг (Германия);
  • модульные – самые новые и дорогостоящие на данный момент приборы;
  • контакторы (Украина).

Их стоимость разнится в зависимости от организации, для боле точной и исчерпывающей информации посетите форум, где обсуждается компенсаций реактивной мощности.

Источник