Меню

Испытание измерительного трансформатора тока

ЭЛЕКТРОлаборатория

Доброе время суток, дорогие друзья!

Вот и пришел новый 2015 год. Надеюсь, что этот год будет не хуже предыдущего. В общем, с Новым Годом, друзья!

Хочу начать год со статьи о трансформаторах тока. Конечно, мой рассказ будет скорее общим, чем научным.

Для досконального изучения вопроса предлагаю воспользоваться технической литературой или хотя бы ИНСТРУКЦИУЙ ПО ПРОВЕРКЕ ТРАНСФОРМАТОРОВ ТОКА, ИСПОЛЬЗУЕМЫХ В СХЕМАХ РЕЛЕЙНОЙ ЗАЩИТЫ И ИЗМЕРЕНИЯ (РД 153-34.0-35.301-2002).

Итак, приступим.

Простейший и самый распространенный трансформатор тока (ТТ) — двухобмоточный. Он имеет одну первичную обмотку с числом витков w1 и одну вторичную обмотку с числом витков w2. Обмотки находятся на общем магнитопроводе, благодаря которому между ними существует хорошая электромагнитная (индуктивная) связь.

Первичная обмотка, изолированная от вторичной обмотки на полное рабочее напряжение аппарата, включается последовательно в рассечку цепи контролируемого первичного тока, а вторичная обмотка замыкается на нагрузку (измерительные приборы и реле), обеспечивая в ней протекание вторичного тока, практически пропорционального переменному первичному току. Чем меньше полное сопротивление нагрузки zн и полное сопротивление вторичной обмотки zT2, тем точнее соблюдается пропорциональность между первичным и вторичным токами, т.е. тем меньше погрешности ТТ. Идеальный режим работы ТТ — это режим КЗ вторичной обмотки. Один вывод вторичной обмотки обычно заземляется, поэтому он имеет потенциал, близкий к потенциалу контура заземления электроустановки.

Вот внешний вид ТТ до 1000 В:

clip_image001clip_image003

А вот внешний вид ТТ выше 1000 В:

clip_image004clip_image005

Трансформаторы тока для защиты предназначены для передачи измерительной информации о первичных токах в устройства защиты и автоматики. При этом они обеспечивают:

1) масштабное преобразование переменного тока различной силы в переменный вторичный ток приемлемой силы (чаще всего это 1 или 5А) для питания устройств релейной защиты;

2) изолирование вторичных цепей и реле, к которым имеет доступ обслуживающий персонал, от цепей высокого напряжения. Аналогичные функции выполняют и ТТ для измерений, предназначенные для передачи информации измерительным приборам.

Между ТТ для защиты и для измерений нет принципиальной разницы. Существующие различия заключаются в неодинаковых требованиях к точности и к диапазонам первичного тока, в которых погрешности ТТ не должны превышать допустимых значений. К ТТ для измерений предъявляется требование ограничения сверху действующего значения вторичного тока при протекании тока КЗ по первичной обмотке, для них устанавливается номинальный коэффициент безопасности приборов. Это требование не предъявляется к ТТ для защиты, которые должны обеспечивать необходимую точность трансформации тока и при КЗ. Номинальный коэффициент безопасности фактически является верхним пределом для номинальной предельной кратности ТТ для измерений. Поэтому в стандартах некоторых стран (например, в германских правилах VDE 0414 «Regeln für Meßwandler») для всех ТТ нормируется номинальная предельная кратность (Nenn Überstromziffer «n»), причем ее ограничение для измерительных ТТ задается в форме n … .

При анализе явлений в ТТ необходимо учитывать положительные направления первичного и вторичного токов в соответствующих обмотках, а также ЭДС, индуктируемой во вторичной обмотке, от которых зависят знаки (плюс или минус) в формулах и углы векторов на векторных диаграммах.

В технике релейной защиты приняты положительные направления для токов и ЭДС, показанные на рисунке 1. Звездочками отмечены однополярные зажимы обмоток, например их начала, которые по ГОСТ обозначаются символами Л1 у первичной обмотки и И1 у вторичной обмотки.

clip_image007

а, б — схемы условных обозначении; в — схема замещения

Рисунок 1 — Схемы ТТ

Приняты положительными: направление для первичного тока от начала к концу первичной обмотки и направление для вторичного тока от начала вторичной обмотки (по внешней цепи нагрузки) к концу вторичной обмотки, соответственно этому внутри вторичной обмотки — направление вторичного тока и вторичной ЭДС (от конца к началу обмотки).

При указанных положительных направлениях векторы первичного и вторичного токов совпадают по фазе при отсутствии угловой погрешности, а мгновенная вторичная ЭДС равна взятой со знаком «плюс» первой производной по времени от потокосцепления вторичной обмотки.

По причине существенной нелинейности характеристики намагничивания ферромагнитного магнитопровода к анализу явлений в ТТ неприменим принцип наложения (суперпозиции). Даже при номинальном первичном токе и номинальной нагрузке индукция в магнитопроводе не равна разности индукций, которые были бы созданы отдельно взятыми первичным и вторичным токами. Результирующий магнитный поток в магнитопроводе ТТ определяется только совместным одновременным действием первичного и вторичного токов и даже гипотетически не может корректно рассматриваться как разность потоков, раздельно созданных первичным и вторичным токами.

Классификация ТТ

По ГОСТ 7746-89 ТТ подразделяются по следующим основным признакам:

— по роду установки:

для работы на открытом воздухе (категория размещения 1 по ГОСТ 15150-69 [22]);

для работы в закрытых помещениях (категории размещения 3 и 4 по ГОСТ 15150-69);

для работы в подземных установках (категория размещения 5 по ГОСТ 15150-69);

для работы внутри оболочек электрооборудования

по принципу конструкции: опорные (О), проходные (П), шинные (Ш), встроенные (В), разъемные (Р). Допускается по ГОСТ 7746-89 [14] сочетание нескольких перечисленных принципов, а также конструктивное исполнение, не подпадающее под перечисленные признаки;

по виду изоляции: с литой изоляцией (Л), с фарфоровой покрышкой (Ф), с твердой изоляцией (кроме фарфоровой и литой) (Т), маслонаполненные (М), газонаполненные (Г);

по числу ступеней трансформации: одноступенчатые и каскадные;

по числу магнитопроводов со вторичными обмотками, называемых кернами, объединенных общей первичной обмоткой: с одним керном, с несколькими кернами;

по назначению кернов: для измерения, для защиты, для измерения и защиты, для работы с нормированной точностью в переходных режимах;

по числу коэффициентов трансформации: с одним коэффициентом трансформации; с несколькими коэффициентами трансформации, получаемыми путем изменения числа витков первичной или(и) вторичной обмоток, а также путем применения вторичных обмоток с отпайками.

Структура условного обозначения ТТ по ГОСТ 7746-89

Снимок

В стандартах на трансформаторы отдельных видов ГОСТ 7746-89 [14] допускает ввод в буквенную часть обозначения дополнительных букв. Допускается исключение или замена отдельных букв, кроме Т, для обозначения особенностей конкретного ТТ.

Основные (номинальные) параметры ТТ

По ГОСТ 7746-89 к номинальным параметрам ТТ относятся:

— номинальное напряжение ТТ Uном — номинальное напряжение цепей, для которых предназначен данный аппарат. Встроенные ТТ не имеют паспортного параметра номинального напряжения;

— номинальный первичный ток ТТ I1ном;

— номинальный вторичный ток ТТ I2ном;

— номинальный коэффициент трансформации ТТ (коэффициент трансформации – отношение первичного номинального тока ко вторичному. Обычно записывается, например, 150/5 и тогда равен 30, т.е. при любом первичном токе вторичный будет в тридцать раз меньше);

— номинальная вторичная нагрузка с номинальным коэффициентом мощности cosj (1 или 0,8 индуктивный). Обозначается zн. ном (сопротивление нагрузки) или Sн. ном (номинальная мощность нагрузки);

— номинальный класс точности ТТ (керна для ТТ с несколькими кернами) (обычно для измерений класс точности не хуже 0,5, а для систем РЗиА не хуже 10);

— номинальная предельная кратность ТТ, обслуживающего релейную защиту — К10ном, К5ном;

— номинальный коэффициент безопасности для приборов — Кd ном;

— номинальная частота ТТ — fном.

Испытания измерительных трансформаторов тока.

Объектом испытания в измерительных трансформаторах тока и напряжения являются, прежде всего, изоляция трансформаторов, обмотки трансформаторов как первичная, так и вторичная, а также трансформаторное железо сердечника.

Трансформаторы тока изготавливаются со следующим исполнением внутренней изоляции:

· Бумажно-бакелитовая (трансформаторы серии ТП 6-35кВ); керамическая (трансформаторы тока 6-10кВ типов ТПОФ, ТПФ и др).

Читайте также:  Двухполюсник в цепях переменного тока

· Литая эпоксидная (трансформаторы тока типов ТПОЛ, ТПШЛ, ТШЛ и др. 6-35кВ).

Объём испытаний трансформаторов тока:

1) измерение сопротивления изоляции первичной и вторичной (вторичных) обмоток (К, М)

2) испытание повышенным напряжением изоляции обмоток (М)

3) снятие характеристик намагничивания трансформаторов (К)

4) измерение коэффициента трансформации (К).

Примечание : К – капитальный ремонт, испытание при приёмке в эксплуатацию; М – межремонтные испытания

Сопротивление изоляции.

В процессе эксплуатации измерения проводятся:

на трансформаторах тока 3-35кВ – при ремонтных работах в ячейках (присоединениях), где они установлены.

Измеренные значения сопротивления изоляции должны быть не менее значений, приведённых в таблице 1.

Снимок т1

для трансформаторов напряжения 3-35кВ – при проведении ремонтных работ в ячейках, где они установлены, если работы не проводятся – не реже 1 раза в 4 года.

Испытание повышенным напряжением.

Значения испытательного напряжения основной изоляции трансформаторов тока и напряжения приведены в таблице 2. Длительность испытания трансформаторов тока и напряжения с фарфоровой изоляцией – 1 минута, с органической изоляцией – 5 минут.

Допускается проведение испытаний трансформаторов тока совместно с ошиновкой. При совместном испытании измерительных трансформаторов с элементами ошиновки или другими аппаратами, продолжительность испытания принимается равной времени испытания для тех элементов сети, к которым подключены трансформаторы. Например, при испытании трансформаторов тока установленных в ячейке КРУ продолжительность испытания устанавливается равной 1 минуте (изоляторы ошиновки ячейки – фарфоровые).

Снимок т2

Значение испытательного напряжения для изоляции вторичных обмоток, вместе с присоединёнными к ним цепями, принимается равным 1кВ.

Продолжительность приложения испытательного напряжения – 1 минута.

Измерение сопротивления обмоток постоянному току.

Отклонение измеренного сопротивления обмотки постоянному току от паспортных значений, или от измеренных на других фазах не должно превышать 2%. При сравнении измеренных значений с паспортными данными измеренные значения сопротивления должны приводиться к заводской температуре. При сравнении с другими фазами измерения должны производиться при одинаковой температуре.

Измерения сопротивления обмоток постоянному току производятся у трансформаторов тока на напряжение 110кВ и выше и у связующих обмоток каскадных трансформаторов напряжения.

В качестве дополнительных измерений при комплексных испытаниях данный вид измерения может использоваться и для трансформаторов тока и напряжения всех типономиналов.

Измерение коэффициента трансформации.

Отклонение измеренного коэффициента трансформации от указанного в паспорте или от измеренного на исправном трансформаторе тока или напряжения, однотипном с проверяемыми, не должно превышать 2%.

Для проверки коэффициента трансформации трансформаторов тока собирают схему, представленную на рисунке 8. У встроенных трансформаторов тока коэффициент трансформации проверяется только на рабочих ответвлениях — остальные части обмоток не проверяются.

Ток в первичной цепи трансформатора пропорционален току во вторичной цепи. Коэффициент пропорциональности токов и будет искомым коэффициентом трансформации.

Разделительный трансформатор создаёт на своей вторичной обмотке напряжение порядка 5В и ток прядка 1000А (в зависимости от испытуемого трансформатора тока).

Снятие характеристик намагничивания трансформаторов тока.

Характеристика снимается методом повышения напряжения на вторичных обмотках до начала насыщения (но не выше 1800В), с одновременным измерением тока в испытуемой обмотке с помощью амперметра.

При наличии у обмоток ответвлений характеристика снимается на рабочем ответвлении, при этом на нерабочих ответвлениях замеры не производятся.

Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных трансформаторов тока, однотипных с проверяемыми.

Отличия от значений, измеренных на заводе-изготовителе или от измеренных на исправном трансформаторе тока, однотипном с проверяемыми, не должны превышать 10%.

Характеристики намагничивания снимаются для проверки исправности трансформаторов тока. При этом убеждаются в том, что нет накоротко замкнутых витков и повреждения сердечника, оцениваются возможности использования трансформатора в схеме релейной защиты в конкретных условиях.

Характеристика намагничивания представляет собой зависимость подводимого ко вторичной обмотке напряжения от тока в этой обмотке. Схема для снятия характеристики намагничивания представлена на рисунке 7.

Характеристику намагничивания снимают до номинального тока трансформатора (тока вторичной обмотки), в тех случаях, если это требуется (для особо ответственных трансформаторов) характеристику снимают до начала насыщения трансформатора тока (для 5-амперных трансформаторов – до достижения тока 10А).

Если при снятии характеристики необходимо напряжение выше 250В используют повышающие трансформаторы с более высоким напряжением.

Вольт-амперная характеристика является основной при оценке исправности ТТ. Используются такие характеристики и для определения погрешностей ТТ.

Наиболее распространенная неисправность ТТ — витковое замыкание — выявляется по резкому снижению ВАХ и изменению ее крутизны. Снятая характеристика сопоставляется с типовой характеристикой намагничивания или с характеристиками намагничивания исправных ТТ, однотипных с проверяемым, чаще всего с характеристиками ТТ других фаз того же присоединения. Для такого сравнения достаточно совпадения характеристик с точностью в пределах их заводского разброса.

clip_image019 clip_image021

а — ТТ ТВ-35, 300/5 А; б — ТТ ТВД-500, 2000/1;

1 — исправный трансформатор тока; 2 — закорочен один виток;

3 — закорочены два витка; 4 — закорочены восемь витков

Рисунок. Вольт-амперные характеристики при витковых замыканиях во вторичной обмотке

На этом у меня на сегодня все.

Будут вопросы, постараюсь на них ответить.

Добавить комментарий Отменить ответ

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.

Источник

Испытание измерительных трансформаторов тока и напряжения

Перед началом испытаний проводят визуальный осмотр проверяя технический паспорт, состояние фарфора изоляторов, число и место установки заземлений вторичных обмоток. Проверка заземления вторичных обмоток выполняется там, где оно может безопасно отсоединяться без снятия высокого напряжения, на панели защиты.

Также проверяется резьба в ламелях зажимов трансформаторов тока. Трансформаторы класса токов Д и З проверяют на комплектность, номер комплекта должен совпадать.

Встроенные трансформаторы проверяют на сухость и устанавливают в соответствиями с надписями “верх”/”низ”. У выключателей с встроенными трансформаторами тока проверяют наличие уплотнения труб и сборных коробок, через которые проходят цепи трансформаторов тока.

При осмотре масляных трансформаторов удаляют резиновую шайбу из-под заливной пробки.

Проверка сопротивления изоляции обмоток

Мегаомметром на напряжение 1-2,5 кВ проверяют сопротивление первичной изоляции, каждой из вторичных обмоток и сопротивление между обмотками.

Испытание прочности изоляции обмоток производится напряжением 2 кВ на протяжении одной минуты.

Изоляцию вторичных обмоток разрешается испытывать одновременно с цепями вторичной коммутации переменным током напряжением 1 кВ в течение 1 мин.

Все испытания проводятся в соответствии с нормами.

Проверка полярности вторичных обмоток трансформаторов тока

Данная проверка проводится методом импульсов постоянного тока при помощи гальванометра.

Схема проверки полярности вторичных обмоток трансформаторов тока

Замыкая цепь контролируют направление отклонения стрелки прибора, при отклонении вправо, однополярные зажимы те, что присоединены к “плюсам” батареи и прибора. Для испытаний, в качестве источника тока, используются аккумуляторы или сухие батареи.

Проверка коэффициента трансформации трансформаторов тока

Нагрузочным трансформатором НТ в первичную обмотку подается ток, близкий к номинальному, не менее 20% номинального. Коэффициент трансформации проверяется на всех ответвлениях для всех вторичных обмоток.

Схема проверки коэффициента трансформации трансформаторов тока

Если на встроенных трансформаторах отсутствует маркировка, она восстанавливается следующим образом:

Подается напряжение Х автотрансформатора AT или потенциометра на два произвольно выбранных ответвления трансформатора тока. Вольтметром V измеряют напряжение между всеми ответвлениями. Максимальное значение напряжения будет на крайних выводах А и Д, между которыми заключено полное число витков вторичной обмотки трансформатора тока. На определенные таким образом начало и конец обмотки подают от автотрансформатора напряжение из расчета 1 В на виток (число витков определяют по данным каталога). После этого, измеряя напряжение по всем ответвлениям, которое будет пропорционально числу витков, определяют их маркировку.

Схема определения отпаек встроенных трансформаторов тока при отсутствии маркировки

Снятие характеристик намагничивания трансформаторов тока

Витковое замыкание во вторичной обмотке — самый распространенный дефект трансформаторов. Обнаруживается он во время проверки характеристик намагничивания, основных при оценке неисправностей, определении погрешностей. Выявляется дефект по снижению намагничивания и уменьшению крутизны.

Читайте также:  Источники инверторного типа с переменным током

При замыкании даже нескольких витков, характеристики резко снижаются.

Характеристики намагничивания при витковых замыканиях во вторичных обмотках

Полученные характеристики оцениваются сравнением с типовыми значениями, либо с данными полученными при проверке других однотипных трансформаторов с теми же коэффициентов и классом точности.

Не рекомендуется снимать характеристики реостатом, из-за возможности появления остаточного намагничивания стали сердечника трансформатора тока при отключении тока.

Схемы снятия характеристик намагничивания

В протокол проверки обязательно записывают по какой схеме проводилась проверка, для того чтобы полученные значения можно было использовать при следующих проверках.

Для трансформаторов высокого класса точности и с большим коэффициентом трансформации достаточно снимать характеристику до 220 В. При снятии характеристик намагничивания вольтметр включают в схему до амперметра, чтобы проходящий через него ток не входил в значение тока намагничивания. Амперметр и вольтметр, применяемые при измерениях, должны быть электромагнитной или электродинамической системы.

Пользоваться приборами детекторными, электронными и другими, реагирующими на среднее или амплитудное значение измеряемых величин, не рекомендуется во избежание возможных искажений характеристики.

Проверка трансформаторов напряжения

Проверка трансформаторов напряжения не отличается от проверки силовых трансформаторов. Отличается методы проверки дополнительной обмотки 5-стержневых трансформаторов напряжения типа НТМИ, так как обмотка соединена в разомкнутый треугольник.

Полярность проверяется поочередным подключением “плюса” батареи ко всем выводам обмотки, а “минус” остается нулевым. При верном подключении наблюдают отклонение стрелок гальванометра в одну сторону.

После включения трансформатора в сеть необходимо измерить напряжение небаланса.

Источник

Проверка трансформатора тока

Устройства для пропорционального преобразования переменного тока до значений, безопасных для его измерений, называют трансформаторами тока.

Такие трансформаторы находят широкое применение в сфере электроснабжения и электроэнергетике и изготавливаются в различных конструктивных исполнениях, — от небольших моделей, размещаемых непосредственно на электронных платах, до сооружений внушительных размеров, устанавливаемых на специальные строительные конструкции.

Проверка ТТ проводится с целью выявления его работоспособности, при этом не производится оценка метрологических характеристик, которые определяют класс точности и сдвига фаз между вектором первичного и вторичного токов.

Перечень возможных неисправностей

Ниже приведены наиболее распространённые причины неисправностей ТТ:

  • механические повреждения магнитопровода;
  • повреждения изоляции корпуса;
  • механические повреждения обмоток:
  • обрывы обмоток;
  • снижение изоляции проводников обмотки, создающее межвитковые замыкания;
  • механический износ выводов обмотки и контактов.

Методы проверок

Для оценки работоспособности трансформатора проводится внешний визуальный осмотр и проверка электрических характеристик.

Внешний визуальный осмотр

С него начинается каждая проверка, и она позволяет оценить:

  • состояние внешних поверхностей деталей;
  • наличие сколов и трещин на изоляции;
  • состояние клеммных или болтовых соединений;
  • наличие видимых дефектов.

Проверка изоляции

Испытания изоляции

В случае установки в составе высоковольтного оборудования трансформатор тока смонтирован в линии нагрузки, при этом он входит в линию конструктивно, и в таком случае испытания изоляции проводятся при проведении совместных высоковольтных испытаний отходящей линии сотрудниками службы изоляции. По результатам проведенных испытаний оборудование может быть допущено в эксплуатацию.

Проверка состояния изоляции

Для проведения измерения сопротивления изоляции следует использовать мегомметр с Uвых соответствующий требованиям техдокументации на ТТ. Для большинства существующих высоковольтных устройств проверку сопротивления изоляции следует проводить прибором с Uвых в 1 Кв.

Мегомметром проводят измерения сопротивление изоляции между:

  • корпусом и обмотками (каждой из обмоток);
  • каждой из обмоток и всеми остальными.

К эксплуатации могут быть допущены собранные токовые цепи с величиной сопротивления изоляции не менее 1 мОм.

Оценка работоспособности трансформатора тока

1. Прямой метод проверки

Прямая проверка — наиболее проверенный способ, также называемый проверкой схемы под нагрузкой.

Для проведения следует использовать штатную цепь включения трансформатора в цепи первичного и вторичного оборудования или же, собрать новую цепь для проверки, при которой ток величиной от 20 до 100 % от номинальной величины проходит по первичной обмотке трансформатора и замеряется во вторичной.

Численное значение замеренного первичного тока нужно разделить на численное значение замеренного тока вторичной обмотки. Полученное значение и будет коэффициентом трансформации, которое следует сравнить с паспортным значением, что позволит судить об исправности трансформатора.

Трансформатор тока может содержать не одну, а несколько вторичных обмоток. До начала испытаний все обмотки должны быть надежно подключены к нагрузке или же закорочены. В противном случае, в разомкнутой вторичной обмотке, при условии появлении тока в первичной обмотке, возникнет напряжение в несколько КВ, опасное для жизни человека и могущее привести к повреждению оборудования.

Магнитопроводы большинства высоковольтных трансформаторов тока нуждаются в заземлении. Для этого в их конструкции предусмотрена специальная клемма, которая маркируется буквой “З”.

На практике очень часто возникают какие-либо ограничения по проверке трансформаторов под нагрузкой, обусловленные особенностями эксплуатации и безопасности испытаний. В связи с этим часто используются иные способы проверки.

2. Косвенные методы

Каждый из перечисленных ниже способов проверки может предоставить лишь частичную информации о состоянии трансформаторов. Поэтому эти способы необходимо применять в комплексе.

Определение правильности маркировки выводов обмоток

Целостность обмоток ТТ и их выводов следует определять замером их активных сопротивлений с проверкой или последующим нанесением маркировки.

Определение начала и конца каждой из обмоток следует проводить способом, позволяющим установить полярность.

Проверка полярности выводов обмоток.

Для проведения испытаний к вторичной обмотке присоединить амперметр или вольтметр магнитоэлектрического типа с определенной полярностью на его выводах.

Определение полярности выводов обмоток

Рекомендуется использовать прибор с нулем посередине шкалы, однако, допускается использовать и с нулем, расположенным в начале шкалы.

Все остальные вторичные обмотки трансформатора необходимо, из соображений безопасности, зашунтировать.

К первичной обмотке ТТ необходимо подключить источник постоянного тока, затем последовательно подключить к нему сопротивление для ограничения тока разряда. Достаточно использовать обыкновенный элемент питания (батарейку) с лампочкой накаливания. Вместо выключателя можно просто коснуться проводом от лампочки клеммы первичной обмотки ТТ и затем отвести его.

При совпадении полярности стрелка сдвинется вправо и возвратится назад. Если прибор подключен с обратной полярностью, то стрелка будет сдвигаться влево.

При отключении питания у однополярных обмоток стрелка сдвигается толчком влево, а в противном случае – толчком вправо.

Таким же образом следует проверить полярность подключения других обмоток трансформатора.

Снятие характеристики намагничивания.

Зависимость напряжения на клеммах вторичных обмоток от протекающего по ним тока намагничивания называется вольт-амперной характеристикой, сокращенно ВАХ. Она свидетельствует о правильности работы обмотки и магнитопровода, позволяет оценить их исправность.

Для того, чтобы исключить влияние помех со стороны расположенного рядом силового оборудования, характеристику ВАХ следует снимать, предварительно разомкнув цепь первичной обмотки.

Для построения характеристики ВАХ необходимо пропускать переменный ток различных величин через обмотку ТТ и измерять напряжение на входе обмотки. Такие испытания можно проводить любым лабораторным стендом с блоком питания, имеющим выходную мощность, позволяющую нагружать обмотку до насыщения магнитопровода трансформатора, при котором кривая насыщения обратится в горизонтальное положение.

Полученные по замерам данные нужно занести в таблицу протокола. По табличным данным строятся графики ВАХ.

Перед началом проведения замеров и после их окончания следует в обязательном порядке производить размагничивание магнитопровода методом нескольких постепенных увеличений тока в обмотке и последующим снижением тока до нуля.

Важно

Для измерения значений токов и напряжений следует использовать приборы электромагнитной или электродинамической систем, которые могут воспринимать действующие значения тока и напряжения.

Наличие в обмотке короткозамкнутых витков уменьшает величину выходного напряжения в обмотке и снижает крутизну ВАХ. В связи с этим, при первом использовании исправного ТТ необходимо сделать замеры и построить график ВАХ, а при последующих проверках ТТ через определенное нормативами время следует контролируют состояние выходных параметров.

Читайте также:  Трансформаторы тока по кузнецову

Источник



Испытание измерительного трансформатора тока

Наружный осмотр

При наружном осмотре измерительных трансформаторов проверяют наличие паспорта, состояние фарфора изоляторов, а также число и место установки заземлений вторичных обмоток. Заземление вторичных обмоток Измерительных трансформаторов надлежит выполнять в одном месте — на панели защиты или на клеммной сборке, т. е. там, где заземление может быть безопасно отсоединено без снятия высокого напряжения.

Кроме того, проверяют исправность резьбы в ламелях зажимов трансформаторов тока. У трансформаторов тока классов Д и 3, предназначенных для работы в цепях дифференциальной и земляной защит, проверяют также их комплектность. Все трансформаторы данного комплекта должны иметь один и тот же номер комплекта.

Встроенные трансформаторы тока перед установкой должны быть высушены, а при монтаже необходимо следить, чтобы они были установлены в соответствии с заводскими надписями «верх» и «низ». У выключателей с встроенными трансформаторами тока проверяют наличие уплотнения труб и сборных коробок, через которые проходят цепи трансформаторов тока.

При осмотре измерительных трансформаторов напряжения необходимо убедиться в отсутствии проворачивания проходных штырей.

Перед включением в эксплуатацию трансформаторов напряжения, залитых маслом, необходимо удалить резиновую шайбу из-под пробки для заливки масла.

проверка сопротивления изоляции обмоток

Сопротивление изоляции обмоток измерительных трансформаторов проверяют мегомметром на напряжение 1000—2500 в. При этом измеряют сопротивление изоляции первичной и каждой из вторичных обмоток по отношению к корпусу, а также сопротивление изоляции между всеми обмотками.

Электрическую прочность изоляции вторичных обмоток испытывают напряжением 2000 в переменного тока в течение 1 мин.

Изоляцию вторичных обмоток трансформаторов тока допускается испытывать совместно с цепями вторичной коммутации переменным током напряжением 1000 В в течение 1 мин.

Электрическую прочность изоляции первичных обмоток испытывают по нормам, приведенным в п. 4 настоящего раздела.

Проверка полярности вторичных обмоток трансформаторов тока

Проверка полярности производится методом импульсов постоянного тока при помощи гальванометра: по схеме, приведенной на рис. 10.

Рис. 10. Схема проверки полярности вторичных обмоток трансформаторов тока
Б — батарея или аккумулятор; К — кнопка; R доб — ограничительное сопротивление 1сш; Г—гальванометр.

При замыкании цепи тока следят за направлением отклонения стрелки прибора. Если при замыкании цепи стрелка отклоняется вправо, то однополярными зажимами будут те, к которым присоединены «плюс» батареи и «плюс» прибора.

В качестве источника постоянного тока используют сухие батареи или аккумуляторы

напряжением 2—6 В. При использовании аккумуляторов необходимо применять ограничительное сопротивление.

проверка коэффициента трансформации трансформаторов тока

Коэффициент трансформации проверяют по схеме, приведенной на рис. 11. При помощи нагрузочного трансформатора НТ в первичную обмотку подают ток, равный или близкий к номинальному, но не менее 20% номинального. Коэффициент трансформации проверяют для всех вторичных обмоток и на всех ответвлениях.

Рис. 11. Схема проверки коэффициента трансформации трансформаторов тока а — выносных; б — встроенных

При проверке встроенных трансформаторов, у которых отсутствует маркировка, ее необходимо восстановить, что наиболее просто сделать следующим образом.

По схеме, приведенной на рис. 12, подают напряжение Х автотрансформатора AT или потенциометра на два произвольно выбранных ответвления трансформатора тока. Вольтметром V измеряют напряжение между всеми ответвлениями. Максимальное значение напряжения будет на крайних выводах А и Д, между которыми заключено полное число витков вторичной обмотки трансформатора тока. На определенные таким образом начало и конец обмотки подают от автотрансформатора напряжение из расчета 1 В на виток (число витков определяют по данным каталога). После этого, измеряя напряжение по всем ответвлениям, которое будет пропорционально числу витков, определяют их маркировку.

Рис. 12. Схема определения отпаек встроенных трансформаторов тока при отсутствии маркировки

Снятие характеристик намагничивания трансформаторов тока

Наиболее распространенный дефект трансформаторов тока — витковое замыкание во вторичной обмотке. Этот дефект лучше всего выявляется при проверке характеристики намагничивания, которая является основной для оценки исправности и определения погрешностей или тождественности трансформаторов, предназначенных для дифференциальных и земляных защит. Витковое замыкание выявляется по снижению характеристики намагничивания и уменьшению ее крутизны.

На рис. 13 видно, что даже при закорачивании всего 1—2 витков происходит резкое снижение характеристики, определяемой при этом испытании.

При проверке же коэффициента трансформации замыкания небольшого числа витков практически не обнаруживается.

Рис. 13. Характеристики намагничивания при витковых замыканиях во вторичных обмотках (трансформатор тока типа ТВ-35 300/5 а)
1 — исправный трансформатор тока; 2 — закорочены два витка; 3 — закорочены восемь витков

Оценка полученной характеристики намагничивания производится путем сопоставления ее с типовой или с характеристиками, полученными на других однотипных трансформаторах тока того же коэффициента трансформации и класса точности.

Кривые намагничивания рекомендуется снимать по схеме с автотрансформатором (рис. 14,а). При пользовании потенциометром (схема на рис. 14,6) характеристика для того же трансформатора получится несколько выше, а при пользовании реостатом (схема на рис. 14,в) — еще выше (рис. 15).

Снимать характеристику при помощи реостата не рекомендуется, так как возможно появление остаточного намагничивания стали сердечника трансформатора тока при отключении тока.

Рис. 14. Схемы снятия характеристик намагничивания
а — с автотрансформатором; б — с потенциометром; в — с реостатом

Рис. 15. Характеристики намагничивания трансформаторов тока, снятые различными способами (трансформатор тока типа TB-35 150/5 А)
1 — с реостатом; 2 — с потенциометром; 3 — с автотрансформатором

Для того чтобы при последующих эксплуатационных проверках можно было сравнивать характеристики намагничивания с ранее снятыми, в протоколе проверки надо отмечать по какой схеме снималась характеристика. Для построения характеристики намагничивания достаточно снять ее до начала насыщения (при токе 5—10 А).

Для трансформаторов высокого класса точности и с большим коэффициентом трансформации достаточно снимать характеристику до 220 В. При снятии характеристик намагничивания вольтметр следует включать в схему до амперметра, чтобы проходящий через него ток не входил в значение тока намагничивания. Амперметр и вольтметр, применяемые при измерениях, должны быть электромагнитной или электродинамической системы.

Пользоваться приборами детекторными, электронными и другими, реагирующими на среднее или амплитудное значение измеряемых величин, не рекомендуется во избежание возможных искажений характеристики.

Проверка трансформаторов напряжения

Методы проверки трансформаторов напряжения не отличаются от методов проверки и испытания силовых трансформаторов, описанных выше.

Некоторую особенность составляет проверка дополнительной обмотки 5-стержневых трансформаторов напряжения типа НТМИ. Эта обмотка соединена в разомкнутый треугольник. Проверка полярности ее производится по схеме, приведенной на рис. 16, путем поочередного подключения «плюса» батареи на все три вывода обмотки высшего напряжения в то время, как «минус» батареи, остается постоянно включенным на нулевой вывод. При правильном соединении обмоток отклонение гальванометра во всех случаях будет в одну сторону.

Рис. 16. Схема проверки полярности дополнительной обмотки 5- стержневого трехфазного трансформатора

Рис. 17. Имитация однофазного замыкания на землю путем исключения одной фазы 5-стержневого трансформатора напряжения на этой обмотке, которое при симметричном первичном напряжении не должно превышать 2—3 В. Полное отсутствие напряжения небаланса свидетельствует об обрыве цепи дополнительной обмотки трансформатора напряжения типа НТМИ должно быть напряжение 100 В.

После включения трансформатора в сеть необходимо измерить напряжение небаланса.

Как заказать услуги в нашей компании

Позвоните нам по номеру 8 (915) 208-27-05 или оставьте свой номер, чтобы мы могли вам перезвонить

Один звонок и наши специалисты приедут к вам в кратчайшие сроки.

Источник