Меню

Исследование цепи переменного тока с последовательным соединением rlc

Последовательная RLC-цепь

Рассмотрим цепь, состоящую из последовательно соединенных резистора, конденсатора и катушки индуктивности.

Напряжение на зажимах цепи

Выполнив подстановку, получим

Подставим в последнее выражение ток в цепи, зная, что он равен

В итоге получим выражение

Из этого выражения можно увидеть сдвиг фаз каждого элемента. У резистора он отсутствует, то есть напряжение и ток совпадают по фазе, у катушки индуктивности напряжение опережает ток на угол π/2, а у конденсатора, напротив, отстает.

Сдвиг фаз RLС-цепи можно определить по формуле

Полное сопротивление RLС-цепи

Амплитудное значение тока

При построении векторной диаграммы RLC-цепи возможны три случая:

1 – Цепь носит активный характер, сдвиг фаз равен нулю, индуктивное и емкостное сопротивления равны. При этом в такой цепи наблюдается резонанс напряжений.

2 – Цепь носит индуктивный характер, в этом случае индуктивное сопротивление больше чем емкостное.

На векторной диаграмме, как правило, сначала откладывают вектор напряжения на катушке индуктивности, а затем из него вычетают напряжение на конденсаторе. После этого проводят вектор общего напряжения и определяют сдвиг фаз φ.

3 – Цепи носит емкостной характер, при этом емкостное сопротивление больше чем индуктивное.

Построение векторной диаграммы выполняется аналогично цепи индуктивного характера, за тем исключением, что здесь сдвиг фаз отрицателен и вычитается индуктивное напряжение из напряжения на емкости.

Цепь состоит из последовательно включенных резистора сопротивлением 25 Ом, конденсатора емкостью 200 мкФ и катушки индуктивности 30 мГн. Ток, протекающий в цепи, равен 0,75 А. Определите U,UR,UL,UC,φ. Постройте векторную диаграмму и определите характер цепи.

Найдем напряжение на каждом из элементов

Сдвиг фаз равен

Из векторной диаграммы можно сделать вывод, что цепь носит емкостной характер.

Источник

6 Переменный ток в цепи с последовательным соединением элементов r, l, c

Переменный ток в цепи с последовательным соединением элементов r, l, c

Предположим, что имеется цепь, содержащая резистор R, катушку с индуктивностью L и конденсатор с емкостью С. Подведем к зажимам цепи переменное напряжение u. По цепи потечет переменный ток i. На отдельных участках цепи возникнут падения напряжений, для которых в соответствии со вторым законом Кирхгофа можно записать:

.

Определим, какую форму изменения будут иметь падения напряжений на участках цепи, если ток изменяется по закону:

.

Падения напряжений на участках цепи определяются из соотношений известных из курса физики:

, , ( i=C).

После подстановки в исходные уравнения значения тока i получим:

(т.к. (sin kx)’ = k cos kx, = k sin(kx+π/2 ))

( т.к. ∫ sin kx dx = — 1/k cos kx).

Проанализируем полученные уравнения. Величины , и имеют размерность [B] и представляют собой соответственно амплитудные значения напряжений резисторе, катушке индуктивности и конденсаторе.

Величины R, и имеют размерность [Ом] и называются соответственно: R — активное сопротивление, xL — реактивное индуктивное сопротивление, xC — реактивное емкостное сопротивление.

Активное сопротивление R не зависит от частоты тока, а реактивные сопротивления xL и xC являются функцией частоты тока .

Сравнение фаз тока и напряжений позволяет сделать следующие выводы:

− в цепи с активным сопротивлением ток и напряжение совпадают по фазе j=0;

− в цепи с индуктивностью ток отстает от напряжения на угол 90°;

− в цепи с емкостью ток опережает напряжение на 90°.

Для соответствующих участков электрической цепи векторные диаграммы токов и напряжений будут выглядеть следующим образом.

Треугольники напряжений, сопротивлений и мощностей

На векторных диаграммах можно выделить прямоугольный треугольник напряжений.

В зависимости от соотношения xL и xC возможны три режима работы цепи:

а) напряжение цепи опережает ток по фазе на угол j и цепь в целом имеет активно-индуктивный характер;

б) напряжение цепи отстает по фазе от тока на угол j и цепь в целом имеет активно-емкостный характер;

в) напряжение и ток совпадают по фазе, характер цепи в целом чисто активный. Такой режим цепи называется резонансом напряжений, при котором UL=UC, xL =xC. Настроить цепь в резонанс напряжений можно путем изменения xL или xC, т.е. изменяя C, L или f (частота, при которой наступает резонанс f = 1/(2π√LC) ). При резонансе напряжений сопротивление цепи минимально, а ток максимальный.

Читайте также:  Чем объясняется взаимодействие двух параллельных проводников с токами

Цепи электроснабжения в строительной отрасли чаще всего имеют активно-индуктивный характер, поэтому далее рассмотрим соответствующие треугольники с положительным углом j.

По теореме Пифагора можно установить связь между полным напряжением цепи и напряжениями на ее отдельных участках:

.

Если разделить стороны треугольника напряжений на ток (в цепи с последовательным соединением элементов ток одинаков во всех участках), то (в соответствии с законом Ома) получим треугольник сопротивлений.

Здесь х=xL — xC — реактивное сопротивление цепи, а Zполное сопротивление цепи:

.

Полученное уравнение устанавливает связь межу различными сопротивлениями цепи.

Если умножить стороны треугольника напряжений на ток, то получим треугольник мощностей:

Здесь Р=URIактивная мощность, которая выделяется на активных сопротивлениях цепи. Она связана с необратимыми преобразованиями электрической энергии, то есть с совершением работы (полезной) в электроустановке. Активная мощность измеряется в ваттах [Вт].

Q=UxIреактивная мощность. Связана в электроустановках с совершением обратимых преобразований энергии, полезной работы она не совершает. В электроустановках затрачивается на создание электрических (С) и магнитных (L) полей. Реактивная мощность измеряется вольт амперах реактивных [вар].

Реактивная мощность оказывает существенное влияние на режим работы электрической цепи. Циркулируя по проводам трансформаторов, генераторов, двигателей, линий электропередач, она нагревает их. Поэтому расчет проводов и других элементов устройств переменного тока производят из полной мощности, которая учитывает активную и реактивную мощности.

S=UI — полная мощность, измеряется в вольт амперах [В*А]. Из треугольника мощностей определим:

.

Коэффициент мощности

Из треугольника мощностей можно записать:

,

.

Множитель cosj — называется коэффициентом мощности. Коэффициент мощности это отношение активной мощности к полной. Он показывает, какая часть от полной мощности потребленной электроустановкой из сети затрачивается на совершение полезной работы. Очевидно, чем выше коэффициент мощности, тем эффективнее преобразование энергии в электроустановке. Наилучшее значение cosj=1, в этом случае вся потребленная из сети энергия затрачивается на совершение полезной работы.

И приведенных соотношений можно выразить ток, потребляемый электроустановкой из сети:

.

Из выражения следует, что чем ниже cosj, тем больший ток потребляет она из сети на совершение той же самой работы. На практике пропускная способность линий электропередач (ЛЭП) ограничена, поэтому снижение cosj электроприемников ведет к повышенной загрузке их током, и еще больше ограничивает их пропускную способность.

При снижении cosj повышаются потери энергии DР в ЛЭП, что следует из выражения:

,

здесь R — активное сопротивление ЛЭП. Увеличение потерь энергии ведет к возрастанию стоимости ее транспортировки.

Таким образом, задача повышения cosj является важной народно-хозяйственной проблемой.

Повысить cosj можно, уменьшив (желательно до нуля) потребляемую из сети реактивную мощность. Так как низкий cosj имеют электродвигатели, трансформаторы и т.п. электроустановки, работающие на холостом ходу или с недогрузкой, то для повышения cosj необходимо обеспечить полную загрузку этих электроустановок и своевременное их отключение. Указанные мероприятия называют организационными.

Для повышения cosj применяют синхронные компенсаторы и конденсаторные батареи. Эти устройства способны вырабатывать реактивную энергию необходимую потребителям.

Электрические цепи однофазного переменного тока с параллельным соединением элементов R, L, C

Цепь с параллельным соединением элементов состоит из ряда параллельных ветвей, включенных между двумя узлами. Рассмотрим простейшую цепь.

По первому закону Кирхгофа для токов можно записать:

.

Действующие значения токов в отдельных ветвях будут определяться:

, , .

Построение векторных диаграмм для параллельного соединения элементов цепи начинают с вектора U (т.к. оно одинаково для всех участков цепи).

Цепь в зависимости от соотношения сопротивлений xL и xC также может иметь индуктивный, емкостный или чисто активный характер.

Режим, когда I1=I, т. е. I2 + I3 =0 называют режимом резонанса токов. Для рассмотренной схемы условие возникновения резонанса также может быть записано:

.

Уменьшение тока в цепи при резонансной частоте свидетельствует о значительном возрастании сопротивления цепи при этой частоте. Поэтому режим резонанса токов часто используется в электрических фильтрах, когда требуется подавить какую-либо гармонику в электрическом сигнале.

Читайте также:  Физика для 8 классов тесты по теме электрический ток

На построенных диаграммах можно выделить треугольник токов.

IA — активная составляющая тока;

IP — реактивная составляющая тока.

Связь между полным током и его составляющими выражается:

.

Параллельное соединение реальных элементов электрической цепи

Реальные элементы электрической цепи отличаются от идеализированных, рассмотренных выше. Рассмотрим электрическую цепь.

К цепи подведено напряжение U. В соответствии с первым законом Кирхгофа для мгновенных значений токов получим:

Действующие значения токов в ветвях равны:

, ,

где , .

Построение векторной диаграммы начинают с вектора напряжения U. Затем откладывают токи I1 и I2 в ветвях. Токи сдвинуты по отношению к напряжению на фазы, соответственно j1 и j2, которые определяются из выражений:

, .

В ветви 1 (R1, C) ток опережает напряжение на угол j1. В ветви 2 (R2, L) ток отстает от напряжения на угол j2. Находим полный ток I как векторную сумму токов I1 и I2. Между общим напряжением и полным током обозначаем угол сдвига фаз j.

Далее откладывают падения напряжений на участках R1, R2, xC, xL.

Для ветви 1. Падение напряжения на R1 совпадает по фазе с током I1. Падение напряжения на xC перпендикулярно току I1 и отстает от него.

Для ветви 2. Падение напряжения на R2 совпадает по фазе с током I2. Падение напряжения на xL перпендикулярно току I2 и опережает его.

Однако сумма падений напряжений на ветвях равна напряжению на зажимах АB цепи.

Источник

Последовательное соединение элементов RLC

В электрической цепи, помимо активного сопротивления, могут быть включены одновременно два реактивных элемента: индуктивность L и ёмкость С. Работа цепи в этом случае будет зависеть от того, какой из реактивных элементов преобладает.

Как известно, элементы L и С обладают противоположными свойствами. В зависимости от того, какой из двух реактивных элементов преобладает, цепь будет вести себя как активно-индуктивная (действие индуктивности сильнее) или активно-ёмкостная (сильнее действие ёмкости). Действие более «слабого» реактивного элемента буден нейтрализовано действием более «сильного» элемента.

Рис. 61. Последовательное соединение элементов RLC

Чтобы понять процессы, происходящие в такой цепи, рассмотрим векторную диаграмму для случая преобладания индуктивности (рис. 62). Преобладание индуктивности возникает, если индуктивное сопротивление XL больше ёмкостного сопротивления XC.

Рис. 62. Векторная диаграмма для цепи с последовательным соединением

элементов RLC. Индуктивность в цепи преобладает

В последовательной цепи переменного тока, общее напряжение, приложенное к цепи, равно векторной сумме напряжений на элементах, входящих в цепь.

Прежде всего, проводится вектор тока I, одинаковый во всех элементах последовательной цепи. Затем, последовательно строятся векторы напряжений на элементах цепи: Uа, UL, и UC. При построении векторов напряжений учитываем их сдвиг по фазе относительно тока.

На диаграмма можно выделить прямоугольный треугольник напряжений, в котором гипотенузой является напряжение Uоб, а катетами являются напряжение Uа и разность напряжений (UL-UC).

По теореме Пифагора, для прямоугольного треугольника:

От треугольника напряжений можно перейти к треугольнику сопротивлений и к треугольнику мощностей. Если стороны треугольника напряжений, в масштабе, поделить на ток, то получится треугольник сопротивлений. Если же стороны треугольника напряжений умножить на ток, получим треугольник мощностей.

Используя теорему Пифагора, из треугольника сопротивлений и треугольника мощностей можно записать формулы для сопротивлений и мощностей:

полное сопротивление цепи (Ом);

полная мощность (ВА).

Все рассмотренные формулы записаны для случая, когда в цепи преобладает индуктивность. Однако, они будут справедливы и в случае, когда преобладает ёмкость. При этом, в скобке, входящей в формулу, будет получаться отрицательное значение. Этот факт не имеет значения и не влияет на результат вычисления.

Векторная диаграмма цепи, в которой преобладает ёмкость показана на рис. преобладает емкость, то диаграмма примет вид, показанный на рис. 63. Преобладание ёмкости возникает в случае, когда ёмкостное сопротивление XC больше индуктивного сопротивления XL.

Рис. 63. Векторная диаграмма для цепи с последовательным соединением

элементов RLC. В цепи преобладает ёмкость

Для построения диаграммы в масштабе смотри раздел «Графическое изображение синусоидальных величин».

Читайте также:  Из за чего техника бьет током

Пример 15. Последовательное соединение элементов RLC в цепи синусоидального тока.

В цепи последовательно соединены элементы: активное сопротивление R = 12 Ом, индуктивное сопротивление ХL = 32 Ом и емкостное ХС = 16 Ом. Общее напряжение, приложенное к цепи Uоб=120 В.

Определить ток в цепи, напряжение на каждом элементе, а также активную, реактивную и полную мощность.

Полное сопротивление цепи

.

По закону Ома находим ток в цепи:

Напряжения на элементах цепи:

на резисторе Uа= I*R;

Мощности, выделяющиеся в цепи:

активная, выделяющаяся в сопротивлении,

Р = I 2 ·R=36 ·12 = 432 Вт;

реактивная, выделяющаяся в реактивных элементах,

Q = I 2 · (XL— XC) = 6 2 ·16 = 576 Вар;

полная, выделяющаяся в цепи в целом

S =UI = 120·6 = 720 ВА.

При построении векторной диаграммы к задаче по рис.63 или 63 нужно, прежде всего выбрать масштаб. Например 20В в одном см. Он одинаков для всех напряжений. Также, нужно выбрать масштаб для тока, например 1A в см.

Источник



Лабораторная работа: Исследование цепи переменного тока с последовательным соединением активного сопротивления индуктивности

Министерство образования Российской Федерации

Пермский Государственный Технический Университет

Кафедра электротехники и электромеханики

«Исследование цепи переменного тока с последовательным соединением активного сопротивления, индуктивности и емкости»

Исследование влияний величины индуктивности катушки на электрические параметры цепи однофазного синусоидального напряжения, содержащей последовательно соединенные катушки индуктивности и конденсатор. Опытное определение условий возникновения в данной цепи резонанса напряжений.

Табл. 1. Паспортные данные электроизмерительных приборов.

Цепь с последовательным соединением конденсатора и катушки с подвижным ферромагнитным сердечником изображена на рис. 1, а схема замещения этой цепи на рис. 2.

Для данной цепи справедливы следующие соотношения:

где U, I – действующие значения напряжения источника питания и тока;

z – полное сопротивление цепи;

r K – активное сопротивление катушки, обусловленное активным сопротивлением провода катушки и потерями в стали ферромагнитного сердечника;

x – реактивное сопротивление;

x LK – индуктивное сопротивление катушки;

x C – емкостное сопротивление конденсатора;

φ K – угол сдвига фаз между напряжением на катушке и током в ней;

φ – угол сдвига фаз между напряжением источника и током цепи;

ƒ – частота тока источника;

L K – индуктивность катушки;

С – емкость конденсатора.

Ток отстает по фазе от напряжения при x LK > x C и опережает по фазе напряжение при x LK xC . Берем 3 ий результат измерений: I = 2.0 А, UrK = 23.8 В, ULK = 196.6 В, UC = 168 В.

б). xLK = xC . Берем 6 ий результат измерений: I = 3.1 А, UrK = 35.5 В, ULK = 257.6 В, UC = 255 В.

в). xLK ий результат измерений: I = 2.0 А, UrK = 21.9 В, ULK = 133.2 В, UC = 165 В.

Вывод: при увеличении индуктивности катушки с 170 до 260 мГн полное сопротивление цепи z падает, а сила тока I, напряжения на конденсаторе UC и катушке UK , косинус угла сдвига фаз cos φ возрастают. Реактивное сопротивление катушки меньше сопротивления конденсатора, по-этому падение напряжения на катушке меньше, чем на конденсаторе, действие конденсатора пре-обладающее и общее напряжение U отстает от силы тока I(векторная диаграмма в).

При индуктивности катушки равной примерно 260 мГн, полное сопротивление цепи достигает наименьшего значения z = 11.6 Ом, сила тока при этом достигает наибольшего значения I = 3.1 А, а напряжения на катушке и конденсаторе выравниваются UC = UK =260 В, косинус угла сдвига фаз между напряжением и током равен 1. Реактивное сопротивление катушки и конденсатора равны, падения напряжения на обоих равны и общее напряжение синфазно силе тока(диаграмма б).

При дальнейшем увеличении индуктивности с 260 до 380 мГн полное сопротивление увеличивается, а сила тока, напряжения на катушке и конденсаторе, косинус угла сдвига фаз падают. Реактивное сопротивление катушки больше сопротивления конденсатора, поэтому падение напряжения на катушке больше, чем на конденсаторе, действие катушки преобладающее и общее напряжение U опережает силу тока I(диаграмма а).

Источник