Меню

Исследовательская работа химические источники тока

Химические источники тока. Виды и особенности. Устройство и работа

Химические источники тока (ХИТ) — эта тема имеет высокое практическое значение. Это кардиостимуляторы, электромобили, которые пытаются сохранить экологию, портативные устройства, включая фото и видеотехнику, компьютерную технику, навигаторы. За последние годы прогресс химических источников тока произошел большой, от известных свинцовых аккумуляторов, которые постепенно вытесняются литий-ионными, литий-полимерными и другими аккумуляторами.

В этой области борьба идет за мощность, емкость, которая позволяет максимально долго использовать источники тока. Дополнительным стимулом к их развитию является создание гибких источников тока. Научная составляющая в этой области лежит в плане разработки материалов для таких химических элементов.

Устройство и работа

Химические источники тока состоят из электродов и электролита, который находится в емкости. Электрод, на котором окисляется восстановитель, называется анодом. Электрод, на котором восстанавливается окислитель, называется катодом. В общем получается электрохимическая система.

Попутным результатом такой реакции стало возникновение тока. Восстановитель передает электроны на окислитель, который восстанавливается. Электролит, который находится между электродами, нужен для прохождения реакции. Если перемешать порошки различных двух металлов, то электричество не возникнет, энергия появится в виде теплоты. Электролит необходим для упорядочения процесса движения электронов. Электролит состоит обычно из раствора соли или расплавленного вещества.

Электроды имеют вид решеток или пластин из металла. При помещении их в раствор электролита получается разность потенциалов пластин. Анод отдает электроны, а катод их принимает. На поверхности возникают химические реакции. Когда цепь размыкается, то реакции прекращаются. Если реагенты закончились, то реакция также больше не идет. Если удалить один из электродов, то цепь размыкается.

Khimicheskie istochniki toka foto 1

Из чего состоят химические источники тока

В качестве окислителей применяются соли и кислородосодержащие кислоты, а также нитроорганические вещества, кислород. В качестве восстановителей применяются металлы, оксиды, углеводороды.

Электролит может состоять из:
  • Соли, щелочи и кислоты, растворенные в воде.
  • Соли в растворе, с возможностью электронной проводимости.
  • Расплавленные соли.
  • Твердые вещества с подвижным ионом.
  • Электролиты в виде матрицы. Это растворы жидкости, расплавы, которые находятся в порах электроносителя.
  • Электролиты с ионным обменом. Твердые вещества с закрепленными ионогенными группами, с одним знаком. С другим знаком ионы подвижны. Эта характеристика позволяет создать однополярную проводимость.

Khimicheskie istochniki toka foto 2

Гальванические элементы

Напряжение на ячейке составляет 0,5-4 вольта. В химических образцах источника применяют гальваническую батарею, которая состоит из элементов. Может использоваться параллельная схема нескольких элементов. При последовательной схеме в цепь включены одинаковые батареи. Они должны обладать одинаковыми свойствами, с одной конструкцией, технологией, типоразмером. Для схемы параллельного соединения подойдут элементы с различными свойствами.

Khimicheskie istochniki toka foto 3

Классы
Химические источники тока делятся по следующим свойствам:
  • Размерности.
  • Конструктивным особенностям.
  • Применяемым химическим веществам.
  • Источнику реакции.

Эти свойства создают эксплуатационные параметры источников, которые подходят для определенной области использования.

Деление на классы электрохимических источников основывается на отличии в способе действия устройства. По этим свойствам их различают:
  • Первичные источники – для однократного применения. В них заключен определенный запас веществ, который будет израсходован при реакции. Когда произойдет разряд, ячейка исчерпывает свою способность к работе. Первичные источники, основанные на химических реакциях, называются элементами. Наиболее простой элемент – это батарейка типа АА.
  • Химические источники тока , которые имеют возможность перезаряжаться, называются аккумуляторами, это вторичные многоразовые элементы. Израсходованные химические элементы могут регенерироваться и снова накопить энергию, путем подключения к ним тока. Это называется зарядкой элементов. Такие элементы применяют длительное время, так как их легко зарядить. В процессе разряда вырабатывается электрический ток. К таким источникам можно причислить элементы питания различных видов приборов и устройств, таких как смартфоны, ноутбуки и т.д.
  • Тепловые химические источники тока – это приборы постоянного действия. В результате их работы постоянно поступает новая порция веществ и удаляется использованный продукт реакции.
  • В смешанных элементах находится запас реагента. Другой реагент поступает в устройство снаружи. Время действия устройства имеет зависимость от резерва первого вещества. Комбинированные элементы применяются в качестве аккумуляторов, когда имеется возможность регенерации их заряда через прохождение тока от внешнего питания.
  • Химические источники тока, которые могут возобновлять заряд , заряжаются разными способами. В них можно заменять израсходованные реагенты. Такие источники действуют не постоянно.

Khimicheskie istochniki toka foto 4

Свойства
Основные характеристики ХИТ можно перечислить в таком виде:
  • Разрядное напряжение. Это свойство имеет зависимость от определенной электрохимической системы. А также оказывает влияние процент концентрации электролита, температура, ток.
  • Мощность.
  • Разрядный ток, зависящий от сопротивления цепи.
  • Емкость, наибольшее количество энергии, которое источник выдает при общем разряде.
  • Запас энергии – наибольшая энергия, которая получена при полном разряде устройства.
  • Энергетические свойства и характеристики. Для батарей аккумуляторов это число циклов заряда и разряда, без уменьшения емкости и напряжения (ресурс).
  • Температурный интервал работы.
  • Сохраняемый срок – наибольший допускаемый период времени от изготовления до первого разряда элемента.
  • Время службы – наибольший допускаемый срок работы и хранения. Для элементов на топливе имеют значение сроки работы при постоянной и периодической работе.
  • Полная энергия, отданная за все время работы.
  • Механическая, вибрационная прочность.
  • Возможность функционирования в любом положении.
  • Надежная работа.
  • Простота в уходе.
Сахарная батарея

Чтобы произвести литий-ионные аккумуляторы в Японии закупают материалы в других странах. Это негативно сказывается на экономическом положении страны. Поэтому ученые ищут способы изготовления аккумуляторов из того сырья, которое имеется в наличии. Таким сырьем в Японии стал сахар. Аккумулятор на сахаре в Японии по свойствам имеет надежность и энергоемкость выше обычных аналогов, и стоимость его ниже.

Большой спрос на литий, который вызван резким распространением переносных аккумуляторов, озаботил производителей аккумуляторов, так как этот элемент добывается только в странах с политической нестабильностью. Это явилось вторым фактором поиска альтернативных материалов для недорогих аккумуляторов с высокой надежностью. Сахароза легко преобразуется в дешевый материал для анодного сырья в литий-ионных батареях.

Сахар нагревают в условиях вакуума под давлением до 1500 градусов. Он превращается в порошок, состоящий из углерода, который может повысить заряд на 20% больше аналогичных изделий. Это явилось первым шагом в разработке дешевых батарей. Пока такие виды батарей не составляют конкуренции современным аккумуляторам. Но ученые предполагают, что в будущем подобные разработки вытеснят дорогие изделия.

Требования

Конструктивные особенности химических источников тока должны создавать условия, которые способствовали бы максимальной эффективности химических реакций.

К таким условиям можно отнести:
  • Недопущение утечек тока.
  • Постоянная работа.
  • Герметичность.
  • Раздельное помещение реагентов.
  • Качественное контактирование электролита с электродами.
  • Хороший отвод тока из объекта химической реакции до наружного вывода с наименьшими потерями.
К химическим элементам предъявляются требования:
  • Повышенные значения свойств.
  • Максимальный диапазон температуры работы.
  • Наибольшее напряжение.
  • Минимальная себестоимость электричества.
  • Постоянное значение напряжения.
  • Хорошее сохранение заряда.
  • Безопасное функционирование.
  • Простое обслуживание, или ее отсутствие.
  • Долговременная работа.
Эксплуатация источников тока

Основное достоинство первичных элементов состоит в отсутствии надобности обслуживания. Перед работой нужно просто осмотреть их, определить срок годности. При включении в цепь нельзя путать полярность и допускать повреждения контактов. Сложные конструкции источников требуют особого ухода. Цель его заключается в удлинении срока службы до максимума.

Уход за аккумуляторами требует выполнения следующих мероприятий:
  • Обеспечение чистоты.
  • Контроль параметра напряжения отключенной цепи.
  • Обеспечение необходимого уровня электролита, доливки дистиллированной воды.
  • Проверка концентрации электролита ареометром.

При использовании батареек (гальванических элементов) нужно выполнять требования, которые относятся к применению электрических приборов.

Сфера использования
В современное время химические источники тока используются в:
  • Транспорте.
  • Переносных устройствах.
  • Космической технике.
  • Оборудовании научных исследований.
  • Медицинских приборах.
Применяются в бытовой сфере:
  • Батарейки (сухие).
  • Батареи аккумуляторов электроники.
  • Аккумуляторы на автомобилях.

Большое распространение нашли литиевые химические источники тока. Это обусловлено наличием у лития максимальной удельной энергии. Он отличается наиболее отрицательным потенциалом электрода из металлов. Батареи литий ионного типа опередили все другие источники по размеру значений удельной энергии. В настоящее время ученые разрабатывают различные усовершенствования литиевых аккумуляторов. Разработки ведутся в направлении получения конструкций корпуса сверхмалой толщины, которые будут использоваться для питания смартфонов и подобных им гаджетов, а также создание сверхмощных батарей аккумуляторов.

В последнее время серьезные работы ученых ведутся по изобретению и модернизации топливных батарей – устройств, которые создают электрическую энергию, за счет проведения химических реакций веществ, постоянно подающихся к электродам снаружи. Для окисления берут кислород, а в качестве топлива пытаются использовать водород. На основе таких батарей уже действуют некоторые опытные образцы на электростанциях.

Источник

Химические источники тока

Анализ преобразования энергии химической реакции в электрическую с помощью синтетических источников тока. Характеристика щелочного марганцово-цинкового и графитово-цинкового сухих элементов. Особенность высокотемпературных и полимерных аккумуляторов.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 24.06.2015
Размер файла 93,3 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Государственная Акционерная Железнодорожная Компания

«Ўзбекистан Темир Йўллари»

Ташкентский Институт Инженеров Железнодорожного Транспорта

«А и Т на ж.-д тр-те»

ПО ТЕМЕ: ХИМИЧЕСКИЕ ИСТОЧНИКИ ТОКА

Принял: доц. Азизов А Р

1. ХИМИЧЕСКИЕ ИСТОЧНИКИ ТОКА

Химические источники тока (электрохимические генераторы, ЭХГ) преобразуют энергию химической реакции в электрическую. Реакция протекает с потреблением активных материалов внутри элемента. Когда такие материалы расходуются полностью, ЭХГ теряет способность давать электрический ток. Химические источники тока делятся на первичные и вторичные. Первичные источники не перезаряжаются, т.е. израсходованные активные материалы в них не могут быть регенерированы или заменены, и батарею электропитания приходится выбрасывать. Вторичная (аккумуляторная) батарея может быть перезаряжена. Израсходованные активные материалы в ней могут быть регенерированы, и такая батарея электропитания допускает многократное повторное использование. Топливный элемент (см. ниже) теоретически имеет неограниченный срок службы, поскольку в нем пополняется израсходованный активный материал (топливо), а продукты реакции выводятся.

До Второй мировой войны первичные ЭХГ использовались обычно в тех случаях, когда требовались источники тока малой мощности, а вторичные — при большой потребляемой мощности. В настоящее время в распоряжении конструктора переносного электрооборудования имеется широкий спектр первичных и вторичных источников тока. См. также ЭНЕРГЕТИЧЕСКИЕ РЕСУРСЫ; ТОПЛИВНЫЙ ЭЛЕМЕНТ.

Во всяком ЭХГ имеются два электрода (положительный и отрицательный) и химическое вещество, называемое электролитом, в которое погружены эти электроды. В ЭХГ с наливными элементами используется жидкий электролит, а в т. н. сухих ЭХГ — пастообразный. В ЭХГ обоих типов должно быть достаточно жидкости для протекания химической реакции.

2. ПЕРВИЧНЫЕ ЭХГ

Стаканчиковые элементы. Стаканчиковые элементы, название которых говорит об их конструкции, применяются главным образом в карманных фонарях и радиоприемниках.

Сухой элемент Лекланше. Большинство первичных ЭХГ, выпускаемых в настоящее время промышленностью, относятся к сухим батареям электропитания. Около 25% сухих батарей выполнены на основе марганцово-цинкового элемента Лекланше — одного из первых наливных элементов. В сухом элементе Лекланше имеется графитовый положительный электрод, окруженный электролитом в виде смеси диоксида марганца, графитового порошка, хлорида аммония, хлорида цинка и воды. Эта смесь служит также деполяризующим агентом, предотвращающим образование газообразного водорода внутри элемента. Если не предотвратить образование водорода, то под давлением газа батарейка раздувается, в результате чего нарушается ее герметичность и из нее вытекает электролит. Электролит и графитовый электрод находятся в тонкостенном цинковом стаканчике, который, выполняя функции защитного корпуса, служит также отрицательным электродом батарейки.

ГРАФИТОВО-ЦИНКОВЫЙ СУХОЙ ЭЛЕМЕНТ с графитовым положительным электродом, пастообразным электролитом и деполяризующей смесью в цинковом стаканчике, который служит отрицательным электродом. 1 — изолирующая прокладка; 2 — бесшовный цинковый стаканчик (отрицательный электрод); 3 — изолированная металлическая оболочка; 4 — пористый разделительный стаканчик; 5 — графитовый стержень (положительный электрод); 6 — деполяризующая смесь; 7 — пастообразный электролит; 8 — пространство для расширения; 9 — запрессованные прокладки; 10 — полимерный герметик; 11 — металлическая крышка; 12 — изолирующая прокладка; 13 — металлический колпачок.

В элементе Лекланше электричество вырабатывается за счет химического взаимодействия электролита с цинковым электродом. При подключении к зажимам батарейки внешней нагрузки, скажем лампочки карманного фонарика, через лампочку начинает проходить ток от цинкового электрода к графитовому. Ток не прекращается, пока не растворится почти весь цинк. После этого батарейка теряет работоспособность, и ее необходимо заменить.

Щелочной марганцово-цинковый сухой элемент. Щелочной марганцово-цинковый сухой элемент отличается от сухого элемента Лекланше главным образом тем, что в нем в качестве электролита используется высокоактивная щелочь КОН (гидроксид калия, едкое кали). В щелочном элементе примерно вдвое больше активных веществ, чем в элементе Лекланше, и он очень подходит для многих устройств со сравнительно большой потребляемой мощностью, таких, как лампы-вспышки фотоаппаратов, вращательные электроприводы и мощные стереофонические звуковые системы. Щелочные элементы применяются примерно в 50% бытовой электронной аппаратуры.

Цинкхлоридный сухой элемент. Цинкхлоридные батарейки в настоящее время примерно на 25% удовлетворяют потребность в источниках тока для жестких и сверхжестких условий эксплуатации. Они имеют такие же характеристики, как и у элементов Лекланше, но их емкость на

40% больше. Кроме того, вероятность протечки в них намного меньше. По рабочим характеристикам и стоимости цинкхлоридные батарейки мало отличаются от щелочных и очень хорошо подходят для ламп-вспышек и радиоприемников.

Читайте также:  Определить комплексным методом действующие значения токов всех ветвей

Кнопочные батарейки. В связи с большим спросом на миниатюрные источники тока были разработаны кнопочные (таблеточные) ЭХГ. Диаметр такой батарейки составляет 6-25 мм, толщина — от 1,5 до 12 мм. Срок службы кнопочных батареек нередко больше, чем у обычных стаканчиковых.

Многоэлементные ЭХГ. И стаканчиковые, и кнопочные элементы используются в многоэлементных ЭХГ. Такие батареи электропитания обычно имеют квадратную или прямоугольную форму в плане. Из плоских «галетных» элементов легко составляются пакеты. В многоэлементных сухих ЭХГ чаще всего применяются первичные элементы Лекланше, цинкхлоридные и щелочные первичные элементы.

Вторичные ЭХГ (электрические аккумуляторы) перезаряжаются пропусканием постоянного тока в направлении, противоположном направлению тока в режиме разрядки. При этом активные соединения в элементе восстанавливаются в результате обратной химической реакции.

Свинцовый аккумулятор. Свинцовый аккумулятор — самый распространенный в настоящее время. Его положительным электродом служит свинцовая решетка с ячейками, заполненными пастообразным пероксидом (перекисью) свинца PbO2. Отрицательный электрод, той же формы, несколько тоньше, а его ячейки заполнены пастой из губчатого свинца. Каждый элемент содержит много таких пластин обоих видов. Группы чередующихся электродных пластин разделены изолирующими перегородками из дерева, стекла, пластмассы или резины. Вся сборка, погруженная в электролит (разбавленный раствор серной кислоты), представляет собой один гальванический элемент. Из нескольких элементов, соединенных последовательно, составляется батарея. ЭДС одного элемента равна 2 В. Состояние свинцового аккумулятора оценивается путем измерения относительной плотности электролита. Непосредственно после зарядки она составляет примерно 1,26, а по мере разрядки понижается почти до 1,0 (это объясняется тем, что серная кислота образует химическое соединение с материалом пластин, давая в остатке воду).

БАТАРЕЯ СВИНЦОВЫХ АККУМУЛЯТОРОВ автомобильного типа с положительным электродом из пероксида свинца, отрицательным — из металлического свинца и электролитом из разбавленной серной кислоты в эбонитовом корпусе. 1 — эбонитовый корпус; 2 — цельная крышка корпуса; 3 -положительный зажим; 4 — указатель уровня электролита; 5 — вентиляционно-заливная пробка; 6 — отрицательный зажим; 7 — перегородка; 8 — соединитель; 9 — скрепляющая скоба; 10 — отрицательная пластина; 11 — разделительная прокладка; 12 — положительная пластина; 13 — отстойная камера. химический ток цинковый полимерный

Свинцовая батарея недорога, имеет довольно большую ЭДС и хорошо сохраняет заряд. Она способна без повреждения давать кратковременно большой ток и очень хорошо подходит для пуска автомобильных двигателей. Ее можно сотни раз перезаряжать без ухудшения рабочих характеристик. Однако она приходит в негодность, если ее надолго оставляют разряженной.

Железо-никелевый аккумулятор. Положительным электродом такого аккумулятора, предложенного Т.Эдисоном, служит оксид никеля, отрицательным — железо, электролитом — гидроксид калия. В процессе разрядки оксид никеля превращается в никель, железо — в оксид железа, а электролит не меняется. Такой аккумулятор легче свинцового и не повреждается при хранении в разряженном состоянии. Его ЭДС меньше, чем у свинцового, и несколько понижается в ходе разрядки, в среднем составляя ок. 1,2 В. С учетом своего большого срока службы и сравнительно низких потерь он применяется главным образом в промышленном оборудовании.

Никель-кадмиевый аккумулятор. Никель-кадмиевый аккумулятор допускает многократную перезарядку, сохраняет почти постоянной ЭДС в процессе разрядки и более неприхотлив, чем все другие аккумуляторы. Он хорошо работает при пониженных температурах и может быть герметизирован. Последнее означает, что его можно переворачивать вверх дном, не боясь пролить электролит; он не требует периодического добавления воды. Такие аккумуляторы обладают достоинством многократной перезарядки.

В заряженном состоянии положительным электродом служит пероксид никеля, отрицательным — металлический кадмий. Электролит — гидроксид калия. Средняя ЭДС аккумулятора ок. 1,2 В. Никель-кадмиевые аккумуляторы широко применяются в малых переносных бытовых электроприборах в тех случаях, когда желательна возможность перезарядки. В качестве автомобильных они слишком дороги.

Другие перезаряжаемые ЭХГ. Здесь мы скажем несколько слов о высокотемпературных аккумуляторах, полимерных аккумуляторах и топливных элементах.

Высокотемпературные аккумуляторы работают при 300-400? C; в качестве отрицательного электрода в них обычно используется металлический натрий или литий, в качестве положительного — сера, хлор или сульфид железа. Они отличаются высокой плотностью мощности и энергии (в 2-4 раза больше, чем в свинцовых аккумуляторах) и, в перспективе, низкой стоимостью. Их широкому применению препятствуют значительное тепловыделение и коррозия.

Полимерные аккумуляторы. В качестве возможного материала для электродов аккумуляторов исследуются такие недорогие и легкие электропроводящие полимеры, как полиацетилен и полианилин. Перезаряжаемые БЭ с проводящими пластмассовыми электродами в соответствующем электролите смогут, по-видимому, успешно конкурировать как со свинцовыми, так и с никель-кадмиевыми аккумуляторами.

Топливные элементы. Топливные элементы отличаются от других ЭХГ в двух важных отношениях. Во-первых, они могут работать в непрерывном режиме без простоев для перезарядки, так как их активный материал подводится из внешнего источника. Во-вторых, их электролит в процессе работы не изменяется. Топливные элементы в принципе более экономичны и дешевы, чем другие ЭХГ, так как их активный материал представляет собой обычное топливо, а не металл особой очистки. Их теоретический КПД близок к 100%.

Топливные элементы ожидает ряд применений, в которых важны их малые размеры и высокая экономичность. Они могут использоваться как автономные источники тока для автомобилей и катеров, электрогенераторы для индивидуальных домашних хозяйств, переносные силовые блоки для инструментов и другого оборудования.

В топливных элементах одного из наиболее перспективных типов в качестве топлива используется газообразный водород, в качестве окислителя — кислород, а электролитом служит гидроксид калия. Водород и кислород вводятся в элемент через пористые трубчатые электроды и вступают в реакцию окисления, образуя воду. С электродов снимается возникающее при этом напряжение. Исследуются возможности работы топливных элементов на еще более дешевых энергоносителях, таких, как бензин и природный газ. См. также ТОПЛИВНЫЙ ЭЛЕМЕНТ.

3. СОЛНЕЧНЫЕ БАТАРЕИ

Солнечные (фотоэлектрические) батареи преобразуют солнечную энергию в электрическую. По своему принципу действия они, в общем, аналогичны транзистору. Обычно их изготавливают из полупроводникового кремния, легированного небольшими добавками таких примесей, как мышьяк и бор. Типичные размеры солнечных элементов 20?10?0,4 мм. Солнечный элементарный источник тока можно представить в виде двух сложенных тонких листков, соединенных между собой так, что образуется p-n-переход. В одном листке примесными являются атомы бора, в другом — мышьяка. При освещении элемента между двумя слоями кремния, как между электродами обычной батареи электропитания, возникает ЭДС. Но в кремниевой солнечной батарее ЭДС существует, пока на нее падает солнечный свет. Когда она вырабатывает электрический ток, в ней не происходит никаких химических превращений. Поэтому ее срок службы не ограничен. Некоторые солнечные батареи преобразуют в электроэнергию ок. 1/7 энергии солнечного света. См. также ТРАНЗИСТОР.

4. ЯДЕРНЫЕ ИСТОЧНИКИ ТОКА

В ядерном реакторе атомной электростанции за счет энергии ядерного топлива выделяется тепло, которое используется для получения пара, приводящего в действие электрогенератор. Ядерный же источник тока преобразует ядерную энергию непосредственно в электрическую.

Ядерная батарея электропитания состоит из радиоактивного источника, испускающего электроны с большой кинетической энергией, коллектора, собирающего эти электроны, и изолятора, сквозь который электроны проходят на пути к коллектору. Зажимы, предусмотренные на коллекторе и радиоактивном источнике, служат внешними выводами батареи.

Накапливаясь на коллекторном электроде, отрицательно заряженные электроны заряжают и его. Поскольку электроны уходят с электрода радиоактивного источника, на нем остается положительный заряд. В результате между двумя электродами возникает ЭДС. Если к двум зажимам присоединить провод, то по нему пойдет ток от коллектора к радиоактивному источнику, так же, как и в случае ЭХГ.

Ядерные батареи электропитания отличаются очень большими ЭДС, которые можно понижать при помощи электросхем деления напряжения. Такие генераторы тока применяются на искусственных спутниках Земли и межпланетных станциях, а также в труднодоступных точках на Земле для питания научной аппаратуры, длительное время работающей автоматически.

1. Коровин Н.В. Электрохимические генераторы. М., 1974

2. Лидоренко Н.С., Мучник Г.Ф. Электрохимические генераторы. М., 1982

3. Кромптон Г. Вторичные источники тока. М., 1985

4. Кромптон Г. Первичные источники тока. М., 1986

Источник

Исследовательская работа на тему: «Химический источник электрического тока» (7-9 класс)

Муниципальное бюджетное учреждение дополнительного образования Первомайского района города Ростова-на-Дону «Дом детского творчества»

Тема: «Химический источник электрического тока»

Бобыльченко Валерий Юрьевич

Педагог дополнительного образования

МБУ ДО ДДТ Первомайского р-на

Химические источники тока в течение многих лет прочно вошли в нашу жизнь. В быту потребитель редко обращает внимание на отличия используемых химических источниках тока. Для него это батарейки и аккумуляторы. Обычно они используются в устройствах таких, как карманные фонари, игрушки, радиоприемники или автомобили. В том случае, когда потребляемая мощность относительно велика (10Ач), используются аккумуляторы, в основном кислотные, а также никель — железные и никель — кадмиевые. Они применяются в портативных электронных вычислительных машинах, носимых средствах связи, аварийном освещении и пр.

В силу ряда обстоятельств химические генераторы электрической энергии являются наиболее перспективными. Их преимущества проявляются через такие параметры, как высокий коэффициент выхода энергии; бесшумность и безвредность; возможность использования в любых условиях, в том числе в космосе и под водой, в стационарных и переносных устройствах, на транспорте и т.д.

В последние годы такие аккумуляторы широко применяются в резервных источниках питания ЭВМ и электромеханических системах, накапливающих энергию для возможных пиковых нагрузок и аварийного питания электроэнергией жизненно – важных систем.

Актуальность темы

В технике и быту постоянно растет число таких приборов и устройств, для которых требуются автономные, малогабаритные легкие и надежные источники тока. Гальванический элемент или, проще говоря – батарейка, огромную мощность не способна дать, но без неё невозможно обойтись в тех случаях, когда обычная сеть не доступна либо не целесообразно.

Изготовить простейший гальванический элемент

— Ознакомление с историей создания первых гальванических элементов.

— Изучить устройство и принцип действия гальванических элементов.

— Гальванические элементы сегодня .

Химические источники тока: основные характеристики

Уже более двух столетий человечество использует энергию химических реакций между различными веществами для получения постоянного тока.

Принцип работы

Окислительно-восстановительная реакция, протекающая между веществами, обладающими свойствами окислителя и восстановителя, сопровождаются выделением электронов, движение которых образует электрический ток. Однако, чтобы использовать его энергию, необходимо создать условия для прохождения электронов через внешнюю цепь, в противном случае она при простом смешивании окислителя и восстановителя выделяется во внешнюю среду теплом.

Поэтому все химические источники тока имеют два электрода:

анод, на котором происходит окисление;

катод, осуществляющий восстановление вещества.

Электроды на расстоянии помещены в сосуд с электролитом — веществом, проводящим электрический ток за счет процессов диссоциации среды на ионы.

hello_html_6e7949a9.png

Принцип преобразования химической энергии в электрическую

Гальванические элементы — устройство, принцип работы, виды и основные характеристики

Гальванический элемент — это химический источник электрического тока, основанный на взаимодействии двух металлов и/или их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Таким образом, в гальванических элементах химическая энергия переходит в электрическую.

Предпосылки к появлению гальванических элементов. В 1786 году итальянский профессор медицины, физиолог Луиджи Алоизио Гальвани обнаружил интересное явление: мышцы задних лапок свежевскрытого трупика лягушки, подвешенного на медных крючках, сокращались, когда ученый прикасался к ним стальным скальпелем. Гальвани тут же сделал вывод, что это — проявление «животного электричества».

hello_html_207a1a87.png

После смерти Гальвани, его современник Алессандро Вольта, будучи химиком и физиком, придет к однозначному выводу о том, что ток появляется в цепи из-за наличия в ней двух проводников из разных металлов, помещенных в жидкость, и это вовсе не «животное электричество», как думал Гальвани. Подергивание лапок лягушки было следствием действия тока, возникающего при контакте разных металлов (медные крючки и стальной скальпель).

Вольта покажет те же явления, которые демонстрировал Гальвани на мертвой лягушке, но на совершенно неживом самодельном электрометре, и даст в 1800 году точное объяснение возникновению тока: «проводник второго класса (жидкий) находится в середине и соприкасается с двумя проводниками первого класса из двух различных металлов… Вследствие этого возникает электрический ток того или иного направления».

hello_html_75508bfb.png

В одном из первых экспериментов Вольта опустил в банку с кислотой две пластинки — цинковую и медную — и соединил их проволокой. После этого цинковая пластина начала растворяться, а на медной стали выделяться пузырьки газа. Вольта предположил и доказал, что по проволоке протекает электрический ток.

Так был изобретён «элемент Вольта» — первый гальванический элемент. Для удобства Вольта придал ему форму вертикального цилиндра (столба), состоящего из соединённых между собой колец цинка, меди и сукна, пропитанных кислотой. Вольтов столб высотою в полметра создавал напряжение, чувствительное для человека.

Это изобретение в последствии использовали другие учёные в своих исследованиях. Так, например, в 1802 году русский академик В. В. Петров сконструировал Вольтов столб из 2100 элементов для получения электрической дуги. В 1836 году английский химик Джон Дэниель усовершенствовал элемент Вольта, поместив цинковый и медный электроды в раствор серной кислоты. Эта конструкция стала называться «элементом Даниэля». В 1859 году французский физик Гастон Плантэ изобрёл свинцово-кислотный аккумулятор. Этот тип элемента и по сей день используется в автомобильных аккумуляторах. В 1865 году французский химик Ж. Лекланше предложил свой гальванический элемент (элемент Лекланше), состоявший из цинкового стаканчика, заполненного водным раствором хлористого аммония или другой хлористой соли, в который был помещён агломерат из оксида марганца(IV) MnO2 с угольным токоотводом. Модификация этой конструкции используется до сих пор в солевых батарейках для различных бытовых устройств. В 1890 году в Нью-Йорке Конрад Губерт, иммигрант из России, создаёт первый карманный электрический фонарик. А уже в 1896 году компания National Carbon приступает к массовому производству первых в мире сухих элементов Лекланше «Columbia».

Читайте также:  В отсутствие тока в проводнике 1 расположенном перпендикулярно плоскости от наблюдателя

Опыты В.В. Петрова

Василий Владимирович Петров (1761 — 1834) — русский физик-экспериментатор, электротехник-самоучка, академик Петербургской академии наук Основоположник отечественной электротехники [1].

После открытия Алессандро Вольта прибора, способного создавать непрерывный поток электрических зарядов учёные получили возможность проводить новые опыты с электричеством. В Петербурге опыты с Вольтовым столбом проводил профессор физики Медико-хирургической Академии Василий Владимирович Петров. Он заказал 100 цинковых и 100 медных кружков диаметром по 10 дюймов. Каждый кружок весил более фунта. Из них Петров составил Вольтов столб, применив вместо суконных прокладок бумажные кружки, пропитанные водным раствором нашатыря. Однако мощность прибора не удовлетворила Петрова. Для опытов, которые он задумал, эта батарея была слабовата, и ученый заказал другую — «наипаче огромную батарею, состоявшую иногда из 4200 медных и цинковых кружков».

hello_html_4fcc6d3d.png

Батарея В.В. Петрова

В этой батарее Петров не стал располагать кружки столбиком. Столб из 4200 кружков получался, по расчетам Петрова, высотой в 40 футов, то есть более 12 метров. Обращаться с таким столбом было бы затруднительно, пришлось бы ломать потолки в лаборатории, и батарея поднялась бы над крышей здания, как фабричная труба. А главное, ученый опасался, что под тяжестью столба влага из прокладок в нижней части батареи будет выдавлена, и ожидаемого результата не получится.

Петров заказал ящики из красного дерева, разгороженные на восемь отделений. Внутренние стенки ящика и все перегородки он облил расплавленным сургучом. Когда сургуч застыл, получилась твердая, совершенно водонепроницаемая корка, служившая прекрасной изоляцией.

В каждое отделение Петров уложил по 525 медных и цинковых кружков. Все секции своей батареи Петров соединил изолированными проводами, употребляя для изоляции шелк, сургуч, воск, лаки. Это было крупной технической новинкой. Но никто из ученых не понимал тогда, как важно тщательно изолировать проводники. Петров доказал, что только надежно изолированная батарея способна дать наиболее сильный ток.

С помощью своего вольтова столба Петров создал электрическую дугу, — открыл один из видов электрического разряда — дуговой разряд.

Гальванические элементы сегодня

Гальванические элементы сегодня называют батарейками. Широко распространены три типа батареек: солевые (сухие), щелочные (их называют еще алкалиновыми, «alkaline» в переводе с английского — «щелочной») и литиевые. Принцип их работы — все тот же, описанный Вольта в 1800 году: два металла взаимодействуют через электролит , и во внешней замкнутой цепи возникает электрический ток.

Напряжение батарейки зависит как от используемых металлов, так и от количества элементов в «батарейке». Батарейки, в отличие от аккумуляторов, не способны к восстановлению своих свойств, поскольку в них происходит прямое преобразование энергии химической, то есть энергии составляющих батарейку реагентов (восстановителя и окислителя), в энергию электрическую.

Входящие в батарейку реагенты, в процессе ее работы расходуются, ток при этом постепенно уменьшается, поэтому действие источника заканчивается после того как реагенты прореагируют полностью.

Солевые батарейки

Марганцево-цинковые элементы, которые называют солевыми батарейками — это «сухие» гальванические элементы, внутри которых нет жидкого раствора электролита.

Цинковый электрод (+) — это катод в форме стакана, а анодом служит порошкообразная смесь из диоксида марганца с графитом. Ток течет через графитовый стержень. В качестве электролита используется паста из раствора хлорида аммония с добавлением крахмала или муки для загущения, чтобы ничего не текло.

Обычно производители батареек не указывают точный состав солевых элементов, тем не менее, солевые батарейки являются самыми дешевыми, их обычно используют в тех устройствах, где энергопотребление крайне низко: в часах, в пультах дистанционного управления, в электронных термометрах и т. п.

Щелочные (алкалиновые) батарейки

Щелочной элемент питания — марганцево-цинковый гальванический элемент питания, в котором в качестве катода используется диоксид марганца, в качестве анода — порошкообразный цинк, а в качестве электролита — раствор щёлочи, обычно в виде пасты гидроксида калия.

Эти батарейки обладают целым рядом преимуществ (в частности, существенно большей ёмкостью, лучшей работой при низких температурах и при больших токах нагрузки).

Щелочные батарейки, в сравнении с солевыми, могут обеспечивать больший ток в течение длительного времени. Больший ток становится возможным, поскольку цинк здесь используется не в виде стакана, а в виде порошка, обладающего большей площадью соприкосновения с электролитом. В качестве электролита применяется гидрооксид калия в виде пасты.

Именно благодаря способности данного вида гальванических элементов в течение длительного времени отдавать значительный ток (до 1 A), щелочные батарейки наиболее распространены в настоящее время. Они служат в 1,5 раза дольше солевых, если разряд идет малым током.

Литиевые батарейки

Еще одним достаточно распространенным видом гальванических элементов являются литиевые батарейки — одиночные неперезаряжаемые гальванические элементы, в которых в качестве анода используется литий или его соединения. Благодаря использованию щелочного металла они обладают высокой разностью потенциалов.

Катод и электролит литиевого элемента могут быть очень разными, поэтому термин «литиевый элемент» объединяет группу элементов с одинаковым материалом анода. В качестве катода могут использоваться например: диоксид марганца, монофторид углерода, пирит, тионилхлорид и др.

Литиевые батарейки отличается от других элементов питания высокой продолжительностью работы и высокой стоимостью. Литиевые элементы широко применяются в современной портативной электронной технике: для питания часов на материнских платах компьютеров, для питания портативных медицинских приборов, наручных часов, калькуляторов, в фототехнике и т. д.

Практическая часть

hello_html_633cce86.jpg

Ряд напряжений металлов – необходим в нашем случае. Мы, как и Алессандро Вольта, будем знать – чем дальше металлы отстоят друг от друга, тем большее напряжение удастся получить.

В своих опытах, как и классики, мы использовали медь и цинк. При погружении пластинок в электролит, между ним и цинковой пластинкой, происходит химическая реакция, в результате которой на пластинке скапливаются отрицательные заряды и она заряжается отрицательно. В результате реакции происходящей в гальваническом элементе, цинковый электрод постепенно растворяется.

На медном электроде, при работе гальванического элемента, образуются мельчайшие пузырьки водорода, изолирующие поверхность меди от электролита. Явление называется газовой поляризацией, в гальваническом элементе оно вредно, с ним борются. Для удаления выделяющегося водорода, в электролит вводятся вещества связывающие водород, называемые деполяризаторами. В их роли часто выступают соединения марганца, медный купорос. В простых опытах, можно применить аптечный перманганат калия.

Приборы и материалы.

Для сборки гальванических элементов, в качестве медных электродов, можно использовать проволоку, провод, фольгу. Цинк можно извлечь из сухих элементов, применить оцинкованные изделия. Вместо цинкового, можно попробовать применить электрод из алюминия или железа. Поваренная соль для электролита, немного мягкого монтажного провода. Непременно нужен вольтметр или мультиметр, кусачки, ножницы. В качестве сосудов, можно применять неметаллические емкости подходящего размера. Стеклянные, удобнее легких пластиковых стаканчиков – они тяжелее, устойчивее, опрокинуть их труднее. Очень хорошо, если найдется слаботочная низковольтная нагрузка – кварцевые часы. «Высоковольтная» батарея из проволоки и саморезов.

hello_html_m2a8abd66.png

Первоначально мы собрали такую батарею (см. рисунок). Здесь применяется «классическая» пара металлов – медь-цинк. Идея состоит в применении в качестве цинкового электрода, оцинкованного болта. Понятно, что на длительную работу, такой элемент не рассчитан – тонкий слой цинка быстро растворится, однако, для кратковременного эксперимента это и не важно. В качестве медного электрода применена проволока – также, широко доступный материал, кроме того – удобнейший монтаж элементов в батарею – все элементы соединены последовательно – плюс одного к минусу следующего. При этом напряжение суммируется, ток остается прежним.

Опыт 1. Сборка батареи – в качестве емкости использовано ячейки от коробочных конфет. После установки электродов на стенках между ячейками, заполняем емкости электролитом. Мы использовали раствор поваренной соли – столовую ложку с горкой на 0,5 л теплой воды.

Опыт 2. Вместо цинка использовали свинец в качестве электрода. Электролит поместили в стеклянный стакан. Напряжение получили низкое – 0, 02 В.

Опыт 3. Вместо свинца использовали графит. Напряжение – больше 1В. На графите выделился водород в виде пузырьков.

Опыт 4. Оцинкованный болт и медь. Напряжение меньше 1 В.

Опыт 5. Последовательно увеличиваем количество стаканов. В качестве нагрузки поочередно подключаем кварцевые часы и светодиод, соблюдая полярность.

Практика предъявляет к современным гальваническим элементам весьма разнообразные требования. В следствие все возрастающего и весьма разнообразного спроса на гальванические элементы в последнее время вновь расширяются научные исследования, направленные на разработку новых и усовершенствование старых типов элементов.

Гальванические элементы как источники электрической энергии обладают существенными преимуществами: они могут быть различных размеров и форм, не имеют макроскопически подвижных, подверженных износу частей, относительно легки и автономны, мало чувствительны к вибрации и колебаниям температуры, работают бесшумно, хорошо регулируются. Их КПД довольно высок (до 90%), так как превращение химической энергии в электрическую совершается в них без промежуточной тепловой стадии, а электродные процессы в некоторых случаях близки к обратимым.

Список литературы

1. Электротехнический справочник. В 3-х т. Т.2. Электротехнические изделия и устройства/под общ. ред. профессоров МЭИ (гл. ред. И. Н. Орлов) и др. 7 изд. 6 испр. и доп. М.: Энергоатомиздат, 1986. 712 с.

2. Багоцкий В.С., Скундин А.М. Химические источники тока. М.: Энергоиздат, 1981. 360 с.

3. Кромптон. Т. Первичные источники тока. Москва. «Мир». 1986.г.

Источник



Научно-исследовательская работа. Химический источник электрического тока

1 Научно-исследовательская работа Химический источник электрического тока Выполнил: Харитонов Никита Александрович Учащийся 3 В класса Муниципального бюджетного образовательного учреждения «Гимназия 2» имени Баки Урманче Нижнекамского муниципального района Республики Татарстан Руководители: Мухаметьянова Чулпан Маликовна, учитель начальных классов высшей квалификационной категории муниципального бюджетного образовательного учреждения «Гимназия 2» имени Баки Урманче Нижнекамского муниципального района Республики Татарстан Харитонова Людмила Александровна, преподаватель муниципального бюджетного учреждения дополнительного образования «Детская школа искусств» Нижнекамского муниципального района Республики Татарстан

2 2 Оглавление Введение 3 Глава 1. Основная часть. 1.1 Что такое электричество? Что такое химический ток? Химическое электричество и его источники Классификация первичных химических источников электрического тока Вторичные химические источники тока 9 Глава 2. Экспериментальная часть. 10 Заключение. 13 Список использованной литературы. 14 Приложения. 15

3 3 Введение Недавно, на мой день рождения, мне подарили игрушечного робота, работающего на соленой воде. Я был очень удивлён, что робот работает не от обычной батарейки, а от какого-то необычного источника питания. Заинтересовав этим вопросом родителей, мы стали изучать научную литературу по данному вопросу. Оказалось, что это обычный химический источник электрического тока более простой аналог широко известных батареек и аккумуляторов. Вот так мы и выбрали тему для своего исследования. А помогала нам моя учительница. Объект исследования: химические источники электрического тока. Предмет исследования: медно-цинковый элемент питания. Гипотеза исследования: предположим, что мы сможем в домашних условиях собрать химический источник электрического тока с достаточным напряжением, для работы электродвигателя игрушечного робота. Цель исследования: изготовить элемент питания на основе химического источника электрического тока. Задачи исследования: 1. Ознакомиться с устройством и процессами, протекающими в химическом источнике электрического тока. 2. Подобрать материалы и собрать химический источник электрического тока в домашних условиях. 3. Применить на практике изготовленный элемент питания.

4 4 Методы исследования: исследование проводилось через анализ, наблюдение, сбор информации из книг, журналов, интернет-сайтов, эксперимент. Практическая значимость: практическая значимость нашей исследовательской работы заключается в том, что любой заинтересованный человек способен собрать в домашних условиях элементы питания, способные вырабатывать достаточное количество электроэнергии для работы устройств, работающих от одной — двух батареек (1,5-3 вольта). Изготовление таких элементов питания не требует особых знаний и умений, а материалы для их изготовления есть в каждом доме.

5 5 Глава 1. Основная часть 1.1 Что такое электричество? В повседневной жизни мы часто сталкиваемся с таким понятием как «электричество». Без электричества представить нашу современную жизнь практически невозможно. Скажите, как можно обойтись без освещения и тепла, без электродвигателя и телефона, без компьютера и телевизора? Электричество настолько глубоко проникло в нашу жизнь, что мы порой и не задумываемся, что это за волшебник помогает нам в работе. Суть электричества сводится к тому, что поток заряженных частиц движется по проводнику (проводник это вещество, способное проводить электрический ток) в замкнутой цепи от источника тока к потребителю. Двигаясь, поток частиц выполняет определённую работу. Это явление называется «электрический ток». Силу электрического тока можно измерить. Единица измерения силы тока Ампер, получила своё название в честь французского ученого, который первым исследовал свойства тока. Имя ученого-физика Андре Ампер. Открытие электрического тока и других новшеств, связанных с ним, можно отнести к периоду: конец девятнадцатого начало двадцатого века. Но наблюдали первые электрические явления люди ещё в пятом веке до нашей эры. Они замечали, что потёртый мехом или шерстью кусок янтаря притягивает к себе лёгкие тела, например, пылинки. Древние греки даже

6 6 научились использовать это явление для удаления пыли с дорогих одежд. Ещё они заметили, что если сухие волосы расчесать янтарным гребнем, они встают, отталкиваясь друг от друга. Вернёмся ещё раз к определению электрического тока. Ток направленное движение заряженных частиц. Если мы имеем дело с металлом, то заряженные частицы это электроны. Слово «янтарь» погречески это электрон. Таким образом, мы понимаем, что всем нам известное понятие «электричество» имеет древние корни. Электричество это наш друг. Оно помогает нам во всём. Утром мы включаем свет, электрический чайник, ставим подогревать пищу в микроволновую печь, пользуемся лифтом, едем в трамвае, разговариваем по сотовому телефону. Трудимся на промышленных предприятиях, в банках и больницах, на полях и в мастерских, учимся в школе, где тепло и светло. И везде «работает» электричество. Как и многое в нашей жизни, электричество, имеет не только положительную, но и отрицательную сторону. Электрический ток, как волшебника-невидимку, нельзя рассмотреть, учуять его по запаху. Определить наличие или отсутствие тока можно только, используя приборы, измерительную аппаратуру. Первый случай поражения электрическим током со смертельным исходом был описан в 1862 году. Трагедия произошла при непреднамеренном соприкосновении человека с токоведущими частями. В дальнейшем случаев поражения электрическим током произошло немало. 1.2 Что такое химический ток? Электрическую энергию можно получать различными способами, один из них осуществляется за счет преобразования энергии химических реакций. Впервые химический ток из химических растворов получил Алессандро Вольта. Он использовал соленую воду и металлы цинк и медь. Таким образом, была собрана первая соляная батарейка, которую назвали

Читайте также:  В трехфазной цепи линейное напряжение равно 220 в линейный ток 2 а активная мощность 380вт

7 7 «Вольтовым столбом». Потом ее всячески совершенствовали, но изначально все было предельно просто. Электрический химический ток вырабатывается в результате высвобождения электронов в процессе окислительно-восстановительных реакций. При этом участвуют непосредственно окислитель, восстановитель (в виде электродов), которые помещены в раствор электролита. «Собрать» ток возможно только при замыкании цепи. Движение электронов осуществляется от отрицательно заряженного электрода к положительному. 1.3 Химическое электричество и его источники. Одной из основных характеристик источников химического тока, или просто батареек, считается возможность вторичного их использования. Выделяют 3 вида таких источников. Гальванический элемент. Самые обычные батарейки, которые используются в различных электрических приборах: от фонарика до заводных игрушек. После того как в батарейке расходуется запас химических веществ, реакция проходить больше не может и ток не вырабатывается. Такие батарейки просто выбрасывают. Существуют два вида гальванических элементов, вырабатывающих первичный ток соляные и щелочные. В первом случае в реакции участвуют электроды из марганца и цинка, а в качестве электролита выступает раствор хлорида аммония с различными загустителями. Во втором, электроды погружены в гидроксид калия. Щелочные элементы обладают большей емкостью и способны работать в более экстремальных условиях. Аккумуляторы. Повсеместно используются источники вторичного тока, которые заряжаются за счет электроэнергии. В этих случаях возможно возобновление окислительно-восстановительной реакции в реагентах. Для большинства современных электроприборов применяют литий полимерные аккумуляторы, которые дают больший выход энергии. Топливные элементы. Мало отличаются от обычных батареек, но действуют по совершенно другому механизму. В этом случае система

8 8 остается открытой, и необходимые химические вещества постоянно поступают из вне. Причем в качестве восстановителя может выступать обычный водород, а окислителя воздух или кислород в чистом виде. Такие элементы используются в условиях космического пространства для обеспечения электроэнергией космических станций. Столь несложные конструкции используются в повседневной жизни каждым. Сейчас трудно представить человека, который, собираясь в дорогу, не возьмет с собой около десятка электроприборов, которые работают либо на батарейках, либо за счет аккумулятора. Современные информационные технологии позволяют работать и общаться далеко от источников электроэнергии за счет именно таких долговечных батареек. И сложно представить, что изобретены они были в самом начале XIX века. 1.4 Классификация первичных химических источников электрического тока. Классификация первичных химических источников электрического тока предусматривает три группы. Первая группа — простые элементы Лекланше напряжением 1,5 В. Отрицательными полюсами являются дно цинкового стаканчика, положительный латунный колпачок на конце графитового стержня. Они имеют простой солевой электролит, малую емкость и не имеют специального защитного корпуса; стаканчик обернут кабельной бумагой. В процессе работы элемент быстро разрушается, электролит через бумажную оболочку протекает внутрь аппарата. Вторая группа — конструктивно усовершенствованные элементы Лекланше. Изделия характеризуются плотной набивкой активных элементов, что увеличивает их емкость на 30%, и наличием более эффективного хлоридного электролита. Показателем качества является внешний вид дна. Если дно отрицательного вывода элемента плоское, то его следует отнести к первой или второй группе. Конструкция дна, выполненная в виде

9 9 штампованной фасонной шайбы, позволяет отнести элемент к третьей группе. Третья группа — это элементы с хлоридным электролитом и специальными добавками в активные материалы. Их конструкция более герметична, а между цинковым стаканчиком и металлическим или пластмассовым корпусом есть особая прокладка. Элементы третьей труппы бывают двух разновидностей: емкость у первых увеличена на 60-70%, у вторых — почти вдвое. Их срок годности увеличен до 24 мес. Отсутствие единых требований к маркировке элементов на международном уровне не позволяет точно определить их принадлежность к группам. Цилиндрические алкалиновые элементы, использующие щелочной электролит и металлический стакан, отличаются высокой степенью герметичности и емкостью, в три раза большей, чем у цементов с хлоридным электролитом. Ил срок службы составляет до 5 лет, а масса на 15-20% больше, чем у предыдущих цементов. В маркировку этих изделий дополнительно вносится буква L. 1.5 Вторичные химические источники тока К вторичным источникам тока относят аккумуляторы. В них в качестве электролита используют раствор серной кислоты (кислотные аккумуляторы с положительным электродом из диоксида свинца и отрицательным — из губчатого свинца) и раствор гидроксида калия (щелочные аккумуляторы систем гидроксида никель-железа, гидроксида никель-кадмия и др.). Их ассортимент подразделяется по числу элементов, емкости, напряжению и по форме. Номинальная емкость аккумулятора (А*ч) — количество электричества, которое он может отдать при разряде до определенного снижения напряжения. На количество циклов и емкость аккумулятора влияют характер подключения нагрузки (непрерывный, переменный или импульсный), отбираемая мощность (максимальная, средняя, минимальная), режим заряда

10 10 (нормальный, ускоренный, быстрый/форсированный), постоянный режим подзаряда. Зарядные и разрядные характеристики определяют время стандартного или быстрого заряда и допустимые при этом напряжение и токи. При стандартном времени заряда, емкость аккумулятора больше, чем при быстром, что позволяет обеспечить большие разрядные токи и время работы. При импульсной (повторно-кратковременной) нагрузке, когда время рабочего цикла меньше следующей за ним паузы, величина разрядного тока может быть в несколько раз больше, чем при обычном разряде. Учитывая эти обстоятельства, выпускаются отдельные группы аккумуляторов с одним профилирующим параметром. В конструкции аккумуляторов в виде элементов или батарей предусмотрено наличие встроенного или автономного зарядного устройства. В бытовой радиоэлектронной аппаратуре широко применяются никелькадмиевые аккумуляторы. По сравнению с кислотными аккумуляторами щелочные аккумуляторы лучше переносят тряску, короткие замыкания и при равных электрических показателях в три раза легче. Кислотные аккумуляторы отличаются большой емкостью, способностью подзаряжаться от генератора во время использования, значительным током разряда. В то же время они способны терять свои свойства при хранении и несвоевременной зарядке. Их применяют в автомобилях, например для питания термоэлектрических холодильников. За последние годы конструкция кислотных аккумуляторов существенно изменилась. Появились необслуживаемые или малообслуживаемые аккумуляторы, обеспечена иммобилизация («неподвижность») электролита, выпушены герметизированные модели, улучшена работа в буферных режимах со сроком службы до 25 лет и увеличением ресурса до 800 циклов. Сформирована единая стандартизация кислотных аккумуляторов.

11 11 К преимуществам литиевых аккумуляторов относятся высокое рабочее напряжение 3,6 В, малые габаритные размеры, наличие встроенных микропроцессорных устройств в зарядных системах. Для удобства потребителей в конструкции химических источников тока (например, алкалические элементы Duracell, Energizer) предусмотрены электрохимические индикаторы, позволяющие оценить величину электрической энергии по интенсивности окраски полосы тестера, появлению надписей или др. Глава 2. Экспериментальная часть. Изучив научную литературу по нашей проблеме, мы сделали вывод, что элемент питания нашего робота является хлористосвинцово-магниевым элементом. Это первичный химический источник тока, в котором анодом служит магний, катодом хлористый свинец в смеси с графитом, а электролитом водный раствор хлорида натрия, известного нам как поваренная соль. Так как в бытовых условиях мы не имели аналогичных материалов, для создания своего элемента питания мы выбрали медь и цинк. Медь является широкодоступным материалом, а для изготовления цинковой пластины использовали стаканчик щелочной батарейки, предварительно её разобрав. Оборудование и материалы для проведения эксперимента: — цинковый стаканчик; — медный стержень; — водный раствор хлорида натрия; — пластичный диэлектрический материал; — обрезки медных проводов; — мультиметр; — игрушка «Робот», со съемным химическим источником электрического тока;

12 12 — светодиодный фонарь «Яркий луч», работающий от одной батареи типа AA (LR6) 1,5 вольта. Ход эксперимента: для начала мы протестировали оригинальный элемент питания робота. Он был собран по прилагающийся инструкции и залит электролитом (раствор натрий хлорида и воды, в соотношении один к пяти). Спустя две минуты нами был произведен замер напряжения на контактах элемента питания (Приложение 1). Следующим этапом эксперимента стало изготовление медно-цинкового элемента питания, с последующим замером выдаваемого им напряжения (Приложение 2). Так как напряжение нашего источника питания не было достаточным для работы робота, мы изготовили дополнительный элемент питания и соединили их последовательно, для повышения номинального напряжения. После этого, мы подключили наши элементы питания к контактам электродвигателя робота с помощью медных проводов и убедились в работоспособности батарей (Приложение 3). В целях контрольной проверки нашего источника питания, мы подключили светодиодный фонарь. Сравнили яркость свечения фонаря от нашего элемента питания и батареи купленной в магазине (Приложение 4). В результате эксперимента были сделаны следующие наблюдения: — оригинальный элемент питания, прилагавшийся к роботу, выдал большее напряжение (около 1,5 вольт), но робот проработал лишь 19 минут; — собранный нами один химический источник электрического тока показал меньшее напряжение ( 0,8 вольт), но 2 последовательно соединенных элемента (1,6 вольт) проработали в течение 87 минут. — явных различий в яркости свечения светодиодного фонаря мы не обнаружили. Научное обоснование: в нашем элементе питания цинковый стаканчик действует как анод (отрицательный электрод), а медный стержень катод

13 13 (положительный электрод). Электролитом является водный раствор натрия хлорида (раствор поваренной соли). Химический источник электрического тока собранный нами в домашних условиях с применением легко доступных материалов доказал свою работоспособность. Элементы питания такого вида могут применяться для устройств и приборов с малым энергопотреблением. Заключение При проведении нашего эксперимента мы научились изготавливать, из подручных материалов, химический источник электрического тока в

14 14 домашних условиях. Сделанные нами элементы питания подтвердили нашу гипотезу. Мы смогли получить достаточное напряжение для работы электродвигателя робота и свечения фонаря, на достаточно большой промежуток времени. Выводы: 1. Проанализировав научную литературу, мы выяснили, что первый химический источник электрического тока был изобретен более ста лет назад. Со временем начали применяться другие материалы и вещества, улучшающие свойства элементов питания, но строение их практически не изменилось. 2. Элемент питания, прилагавшийся к роботу это хлористосвинцовомагниевый элемент. Так как в бытовых условиях мы не имели аналогичных материалов, для создания своего элемента питания мы выбрали медь и цинк. Медь является широкодоступным материалом, а для изготовления цинковой пластины использовали стаканчик щелочной батарейки, предварительно её разобрав. В качестве электролита использовали водный раствор хлорида натрия растворив поваренную соль в воде, в соотношении один к пяти (в соответствии с инструкцией к хлористосвинцово-магниевому элементу питания робота). 3. Собранный нами элемент питания показал прекрасный результат по времени работы. Наша батарейка проработала в четыре раза дольше, чем прилагавшийся к роботу элемент питания, но значительно уступила ему по размерам, весу и удобству использования.

15 15 Список использованных источников и литературы 1. Багоцкий, В.С. Химические источники тока/ В. С. Багоцкий, А. М. Скундин. — Москва: Энергоиздат, с. 2. Жуков, В. А. Моя первая энциклопедия/ В. А. Жуков, Ю.Н.Касаткина, Д.С.Щигель Москва: АСТ, с. 3. Поваляев, О. А. Набор лабораторного оборудования «Электрические явления»/ О.А.Поваляев, Я.В.Надольская Москва: ООО «Научные развлечения», Мариуш, Л. Обо всём на свете/энциклопедия для детей/ Л. Мариуш, Б. Маевская Москва: Владис, с. 5. Окслейд, К. Юному эрудиту обо всём/энциклопедия для детей/ К. Окслейд, А. Гэнери Москва: Махаон, с Батарейка 7. Электрический_ток a/video/?watch=elektrohimiya istochniki toka _hit htm

16 16 Приложение 1. Замер напряжения хлористосвинцово-магниевого элемента питания робота. Рис.1. Состав элемента питания робота. Рис.2. Замер напряжения.

17 Приложение 2. Собранный нами химический источник электрического тока. Последовательное соединение элементов питания. 17 Рис.3. Инструменты и материалы для сборки элементов питания. Рис.4. Замер напряжения собранного элемента питания.

18 Рис.5. Замер напряжения последовательно соединенных элементов питания. 18

19 Приложение 3. Подключение и проверка работоспособности самодельных батареек на игрушечном роботе. 19 Рис.6. Проверка работоспособности параллельно соединенных элементов питания на электродвигателе робота.

20 20 Приложение 4. Работа светодиодного фонаря от элементов питания собранных нами в домашних условиях. Рис.7. Работа светодиодного фонаря от элементов питания собранных нами в домашних условиях. Рис.8. Работа светодиодного фонаря от элементов питания собранных нами в домашних условиях.

Источник