Меню

Источник радиоволн переменный ток

Теория Радиоволн

Теория радиоволнНемного теории. Радиоволны, что это такое? Откуда они берутся, и как работают? Попробую объяснить как можно проще и на доступном языке, не используя терминов и формул. Радиоволны везде, различные электромагнитные излучения, разных частот постоянно окружают нас, они повсюду в пространстве. Телевидение, радиоволна FM диапазона, интернет, сотовая связь – радиоволны плотно вошли в нашу жизнь, и никто не представляет себе существования без этого чуда современного времени. Быстрые и невидимые они передают информацию мгновенно и на большие расстояния. Из курса физики, раздела «электродинамика», известно, что если по проводнику протекает электрический ток, то возникает электромагнитное поле, образующее электромагнитную волну, которая излучается в окружающее пространство, и распространяется в нём со скоростью, близкой к скорости света.

Интенсивность излучения электромагнитной волны пропорциональна скорости изменения электромагнитного поля. Интенсивность возникновения электромагнитных волн, резко возрастает, если переменный электрический ток протекает в так называемом «разомкнутом проводе» (однопроводная линия). Происходит это из-за того, что при возникновении в таком проводнике электрического тока очень высокой частоты, ёмкость проводника относительно земли, становится достаточной для возникновения в нём ёмкостного тока. Сопротивление этой ёмкости обратно пропорционально частоте переменного тока, подводимого к проводнику, такой проводник называют передающей антенной. Следовательно, излучение электормагнитной волны зависит от частоты тока в проводе. Чем выше частота, тем больший ток будет протекать в антенне, и тем интенсивнее будет излучаться электромагнитная волна.

Электормагнитные волны могут иметь разное положение в пространстве. Положение волн в пространстве определяется положением передающей антенны относительно земли. Свойство волн менять своё положение в пространстве в зависимости от положения передающей антенны характеризуется таким параметром как плоскость поляризации. Поляризация пересекает волну и вектор электрического поля. Плоскость поляризации может быть в горизонтальном или вертикальном положении. Электромагнитные волны с горизонтальным вектором называют горизонтально поляризованными волнами, волны с вертикальным вектором – вертикально поляризованными.

Из выше сказанного, так же следует, что свойства и параметры электромагнитных волн зависят от тока в проводнике, который их порождает. Например, если по проводу течёт переменный электрический ток синусоидальной формы с частотой 1000 МГц, электромагнитные волны которые породит этот ток, будут иметь такую же форму и частоту.

Радиоволны бывают различной длинны, такие параметры как частота и длинна волны определяют способность волн распространяться в пространстве, в различных средах и с различными преградами. Например, длинные волны имеют способность огибать посторонние предметы при распространении в пространстве. А ультракороткие волны (диапазона УКВ), распространяются в основном прямолинейно и практически не огибают преграды, такие как высокие здания, горы, большие деревья. На распространение волн УКВ, особенно дециметровых, сантиметровых и миллиметровых, сильное влияние оказывает рельеф местности и различные метеоусловия. Поэтому передающие антенны УКВ диапазона, например, эфирные телевизионные ретрансляторы, устанавливают как можно выше над поверхностью земли, что бы увеличить дальность распространения сигнала, и помочь тем самым миновать внешние преграды.

Из того же раздела электродинамики, известно что если электромагнитные линии пересекут проводник, то в нем образуется переменный ток, так называемая Электродвижущая сила (ЭДС). Для возникновения ЭДС, проводник должен двигаться в магнитном поле, этот принцип воплощён в генераторах переменного тока, обмотка якоря, движется в магнитном поле, благодаря чему в обмотке и появляется электрический ток. Но если проводник оставить в покое и вокруг него создать движущееся магнитное поле, в нём также возникнет ток. Этот принцип и заложен в приёмной антенне. Радиоволна и есть движущееся магнитное поле, которое порождает в приёмной антенне электрические сигналы, передающиеся по кабелю в декодирующее и преобразовывающее устройство (приёмник).

Источник

Диапазон радиоволн и их распространение

В учебниках по физике приведены заумные формулы на тему диапазона радиоволн, которые порой не до конца понятны даже людям со специальным образованием и опытом работы. В статье постараемся разобраться с сутью, не прибегая к сложностям. Первым, кто обнаружил радиоволны, был Никола Тесла. В своем времени, где отсутствовало высокотехнологичное оборудование, Тесла не до конца понимал, что это за явление, которое он впоследствии назвал эфиром. Проводник с переменным электрическим током является началом радиоволны.

диапазон радиоволн

Источники радиоволн

К природным источникам радиоволн относятся астрономические объекты и молнии. Искусственным излучателем радиоволн является электрический проводник с движущимся внутри переменным электрическим током. Колебательная энергия высокочастотного генератора распространяется в окружающее пространство посредством радиоантенны. Первым рабочим источником радиоволн был радиопередатчик-радиоприёмник Попова. В этом устройстве функцию высокочастотного генератора выполнял высоковольтный накопитель, подключенный на антенну − вибратор Герца. Созданные искусственным способом радиоволны применяются для стационарной и мобильной радиолокации, радиовещания, радиосвязи, спутников связи, навигационных и компьютерных систем.

Диапазон радиоволн

диапазон частот радиоволн

Применяемые в радиосвязи волны находятся в диапазоне частот 30 кГц − 3000 ГГц. Исходя из длины и частоты волны, особенностей распространения, диапазон радиоволн подразделяется на 10 поддиапазонов:

  1. СДВ — сверхдлинные.
  2. ДВ — длинные.
  3. СВ — средние.
  4. КВ — короткие.
  5. УКВ — ультракороткие.
  6. МВ — метровые.
  7. ДМВ — дециметровые.
  8. СМВ — сантиметровые.
  9. ММВ — миллиметровые.
  10. СММВ — субмиллиметровые

Диапазон частот радиоволн

Спектр радиоволн условно поделен на участки. В зависимости от частоты и длины радиоволны подразделяются на 12 поддиапазонов. Диапазон частот радиоволн взаимосвязан с частотой переменного тока сигнала. Частотные диапазоны радиоволн в международном регламенте радиосвязи представлены 12 наименованиями:

радиоволны распространение радиоволн

При увеличении частоты радиоволны ее длина уменьшается, при уменьшении частоты радиоволны — увеличивается. Распространение в зависимости от своей длины – это важнейшее свойство радиоволны.

Распространение радиоволн 300 МГц − 300 ГГц называют сверхвысокими СВЧ вследствие их довольно высокой частоты. Даже поддиапазоны очень обширны, поэтому они, в свою очередь, поделены на промежутки, в которые входят определенные диапазоны телевизионные и радиовещательные, для морской и космической связи, наземной и авиационной, для радиолокации и радионавигации, для передачи данных медицины и так далее. Несмотря на то что весь диапазон радиоволн разбит на области, обозначенные границы между ними являются условными. Участки следуют друг за другом непрерывно, переходя один в другой, а иногда и перекрываются.

Особенности распространения радиоволны

частотные диапазоны радиоволн

Распространение радиоволн – это передача энергии переменным электромагнитным полем из одного участка пространства в другой. В вакууме радиоволна распространяются со скоростью света. При воздействии окружающей среды на радиоволны распространение радиоволн может быть затруднено. Это проявляется в искажении сигналов, изменении направления распространения, замедлении фазовой и групповой скоростях.

Читайте также:  Зарядное устройство для акб автомобиля с регулировкой тока

Каждая из разновидностей волн применяется по-разному. Длинные лучше могут обходить преграды. Это означает, что диапазон радиоволн может распространяться по плоскости земли и воды. Применение длинных волн широко распространено в подводных и морских суднах, что позволяет быть на связи в любой точке местонахождения в море. На волну длиной в шестьсот метров с частотой пятьсот килогерц настроены приемники всех маяков и спасательные станций.

Распространение радиоволн в различных диапазонах зависит от их частоты. Чем меньше длина и выше частота, тем прямее будет путь волны. Соответственно, чем меньше ее частота и больше длина, тем она более способна огибать преграды. Каждый диапазон длин радиоволн обладает своими особенностями распространения, однако на границе соседних диапазонов резкого изменения отличительных признаков не наблюдается.

распространение радиоволн в различных диапазонах

Характеристика распространения

Сверхдлинные и длинные волны огибают поверхность планеты, распространяясь поверхностными лучами на тысячи километров.

Средние волны подвержены более сильному поглощению, поэтому способны преодолевать расстояние лишь 500-1500 километров. При уплотнении ионосферы в данном диапазоне возможна передача сигнала пространственным лучом, который обеспечивает связь на несколько тысяч километров.

Короткие волны распространяются лишь на близкие расстояния вследствие поглощения их энергии поверхностью планеты. Пространственные же способны многократно отражаться от земной поверхности и ионосферы, преодолевать большие расстояния, осуществляя передачу информации.

Сверхкороткие способны передавать большой объем информации. Радиоволны этого диапазона проникают сквозь ионосферу в космос, поэтому для целей наземной связи практически непригодны. Поверхностные волны этих диапазонов излучаются прямолинейно, не огибая поверхность планеты.

В оптических диапазонах возможна передача гигантских объемов информации. Чаще всего для связи используется третий диапазон оптических волн. В атмосфере Земли они подвержены затуханию, поэтому в реальности передают сигнал на расстояние до 5 км. Зато использование подобных систем связи избавляет от необходимости получать разрешения от инспекций по электросвязи.

Принцип модуляции

Для того чтобы передать информацию, радиоволну нужно модулировать сигналом. Передатчик испускает модулированные радиоволны, то есть измененные. Короткие, средние и длинные волны имеют амплитудную модуляцию, поэтому они обозначаются как АМ. Перед модуляцией несущая волна движется с постоянной амплитудой. Амплитудная модуляция для передачи изменяет ее по амплитуде, соответственно напряжения сигнала. Амплитуда радиоволны изменяется прямо пропорционально напряжению сигнала. Ультракороткие волны имеют частотную модуляцию, поэтому они обозначаются как ЧМ. Частотная модуляция накладывает дополнительную частоту, которая несет информацию. Для передачи сигнала на расстояние его нужно промодулировать более высокочастотным сигналом. Для принятия сигнала нужно отделить его от поднесущей волны. При частотной модуляции помех создается меньше, однако радиостанция вынуждена вещать на УКВ.

Факторы, влияющие на качество и эффективность радиоволн

диапазон длин радиоволн

На качество и эффективность приема радиоволн влияет метод направленного излучения. Примером может послужить спутниковая антенна, которая направляет излучение в точку нахождения установленного приемного датчика. Этот метод позволил существенно продвинуться в области радиоастрономии и сделать множество открытий в науке. Он открыл возможности создания спутникового вещания, передачи данных беспроводным методом и многое другое. Выяснилось, что радиоволны способны излучать Солнце, многие планеты, находящиеся вне нашей Солнечной системы, а также космические туманности и некоторые звезды. Предполагается, что за пределами нашей галактики существуют объекты, обладающие мощными радиоизлучениями.

На дальность радиоволны, распространение радиоволн оказывают влияние не только солнечное излучение, но и метеоусловия. Так, метровые волны, по сути, не зависят от метеоусловий. А дальность распространения сантиметровых сильно зависит от метеоусловий. Происходит из-за того, что водной среде во время дождя или при повышенном уровне влажности в воздухе короткие волны рассеиваются или поглощаются.

Также на их качество влияют и препятствия, оказывающиеся на пути. В такие моменты происходит замирание сигнала, при этом значительно ухудшается слышимость или вообще пропадает на несколько мгновений и более. Примером может послужить реакция телевизора на пролетающий самолет, когда мигает изображение и появляются белые полосы. Это происходит за счет того, что волна отражается от самолета и проходит мимо антенны телевизора. Такие явления с телевизорами и радиопередатчиками чаще происходят в городах, поскольку диапазон радиоволн отражается на зданиях, высотных башнях, увеличивая путь волны.

Источник

Радиоволны и электрические колебания

Итак что же такое радиоволны? Если бросить на водную поверхность камень то на ней появятся волны, расходящиеся кругами. Это – водяные волны. Они создаются в воде и в ней же распространяются.
Если взять, к примеру, воздух как среду, то в нём распространяются звуковые волны: удалите воздух, и звуки исчезнут. Что же такое радиоволны и что является их средой?
Существует такое определение: Радиоволны – это РАСПРОСТРАНЯЮЩИЕСЯ В ПРОСТРАНСТВЕ ПЕРЕМЕННЫЕ ЭЛЕКТРИЧЕСКИЕ ПОЛЯ.
Попробуем разобраться. Из физики известно, что вокруг проводника с электрическим током существует магнитное поле, а вокруг тела с электрическим зарядом – электрическое поле. Полями называют “ФОРМЫ МАТЕРИИ, В КОТОРЫХ ОБНАРУЖИВАЮТСЯ ДЕЙСТВИЯ КАКИХ – ЛИБО СИЛ”. Например, в поле земного тяготения обнаруживается притяжение к земле.
Форма материи, в пределах которой сказывается действие электрических сил, называется ЭЛЕКТРИЧЕСКИМ ПОЛЕМ. Сильнее заряд – и поле сильнее. Нет заряда – нет поля.
Форма материи вокруг магнита или проводника с током, где обнаруживается действие магнитных, сил называется МАГНИТНЫМ ПОЛЕМ. Сильнее ток – сильнее магнитное поле. Нет тока и нет поля.
Переменный ток создаёт и переменное магнитное поле.
Тоже самое можно сказать и о переменном электрическом поле. Если вызвавший его заряд периодически меняет не только свою величину, но и полярность, то такое поле называется ПЕРЕМЕННЫМ ЭЛЕКТРИЧЕСКИМ ПОЛЕМ.
Переменные электрические и магнитные поля неотделимы друг от друга. Если возникло одно поле, то оно создаёт вокруг себя и другое. Электромагнитные волны, т.е. взаимосвязанные переменные электрические и магнитные поля, распространяются в воздушном и безвоздушном пространстве, а также во многих других средах со скоростью света, равной 300000 км/сек.
РАДИОВОЛНЫ – это возникающие и распространяющиеся в пространстве (среде) электромагнитные поля, в следствии прохождения по проводнику переменного тока высокой частоты. Переменным называется ток, меняющий не только свою величину, но и направление (вектор). Слово “переменный” относится именно к направлению. Движение переменного тока в проводнике напоминает движение маятника. Электроны двигаются вперёд, потом назад, потом снова меняют направление на первоначальное и т.д. Они как бы колеблются около некоторого центрального положения. Отсюда существует термин: ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ.
ПЕРИОДОМ электрических колебаний переменного тока называется время, через которое электроны повторяют движение в одном направлении. Период зависит от частоты внешнего электромагнитного поля, являющимся причиной возникновения движения электронов в проводнике. Чем больше частота, тем меньше период и наоборот. Количество периодов совершаемых переменным электрическим током за 1 секунду называется ЧАСТОТОЙ ПЕРЕМЕННОГО ЭЛЕКТРИЧЕСКОГО ТОКА. Количество периодов или изменение полярности электромагнитного поля называется ЧАСТОТОЙ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ а также и ЧАСТОТОЙ ИЗЛУЧАЕМОЙ АНТЕННОЙ РАДИОВОЛНЫ

Источник



Читайте также:  Трансформаторы тока сообщение по физике

Источник радиоволн переменный ток

Излуч е ние и приём радиов о лн. Излучение радиоволн — процесс возбуждения бегущих электромагнитных волн радиодиапазона в пространстве, окружающем источник колебаний тока или заряда. При этом энергия источника преобразуется в энергию распространяющихся в пространстве электромагнитных волн. Приём радиоволн является процессом, обратным процессу излучения. Он состоит в преобразовании энергии электромагнитных волн в энергию переменного тока. И. и п. р. осуществляются с помощью передающих и приёмных антенн.

Излучение радиоволн. Источником первичных электрических колебаний могут быть переменные токи, текущие по проводникам, переменные поля и т. п. Однако переменные токи относительно низкой частоты (например, промышленной частоты 50 гц) для излучения непригодны: на этих частотах нельзя создать эффективный излучатель. Действительно, если электрические колебания происходят, например, в катушке индуктивности, размеры которой малы по сравнению с длиной волны l , соответствующей частоте колебаний тока, текущего в катушке, для каждого участка с одним направлением тока, например А (рис. 1), существует другой участок В, удалённый от А на расстояние, меньшее, чем l /2, в котором в тот же момент времени направление тока противоположно. На больших расстояниях от витка волны, излученные элементами А и В, ослабляют друг друга. Так как виток состоит из таких пар противофазных элементов, то он, а следовательно вся катушка, излучает плохо. Также плохо излучает колебательный контур, содержащий катушку индуктивности и конденсатор. В каждый момент времени заряды на обкладках конденсатора равны по величине, противоположны по знаку и удалены друг от друга на расстояние, значительно меньшее, чем l /2.

Из сказанного следует, что для эффективного излучения радиоволн необходима незамкнутая (открытая) цепь, в которой либо нет участков с противофазными колебаниями тока или заряда, либо расстояние между ними не мало по сравнению с l /2. Если размеры цепи таковы, что время распространения изменений электромагнитного поля в ней сравнимо с периодом колебаний тока или заряда (скорость распространения возмущений конечна), то условия квазистационарности не выполняются (см. Квазистационарный процесс) и часть энергии источника уходит в виде электромагнитных волн. Для практических целей обычно применяют электромагнитные волны с l l . Для того чтобы диполь излучал значительную долю подводимой к нему мощности, его длина не должна быть мала по сравнению с l /2. С этим связана трудность излучения очень длинных волн. Если l подобрано правильно и потери энергии на нагрев проводников диполя и линии малы, то преобладающая доля мощности источника тратится на излучение. Таким образом, диполь является потребителем мощности источника, подобно включенному в конец линии активному сопротивлению, потребляющему подводимую мощность. В этом смысле диполь обладает сопротивлением излучения Rи, равным тому активному сопротивлению, в котором потреблялась бы такая же мощность.

Описанный выше диполь является простейшей передающей антенной и называется симметричным вибратором. Впервые такой вибратор использовал Г. Герц (1888) в опытах, обнаруживших существование радиоволн. Электрические колебания в диполе Герца (см. Герца вибратор) возбуждались с помощью искрового разряда — единственного известного в то время источника электрических колебаний. Наряду с симметричным вибратором применяется (для более длинных волн) несимметричный вибратор (рис. 6), возбуждаемый у основания и излучающий равномерно в горизонтальной плоскости.

Наряду с проволочными антеннами (проволочными вибраторами) существуют и другие виды излучателей радиоволн. Широкое применение получила магнитная антенна. Она представляет собой стержень из магнитного материала с высокой магнитной проницаемостью m , на который намотана катушка из тонкого провода. Силовые линии магнитного поля магнитной антенны повторяют картину силовых линий электрического поля проволочного диполя (рис. 7, а, б), что обусловлено принципом двойственности.

Если в стенках радиоволновода или объёмного резонатора, где текут переменные поверхностные токи сверхвысоких частот, прорезать щель так, чтобы она пересекла направление тока, то распределение токов резко искажается, экранировка нарушается и электромагнитная энергия излучается наружу. Распределение полей щелевого излучателя подобно распределению полей магнитной антенны. Поэтому щелевой излучатель называется магнитным диполем (рис. 7, в, г; см. также Щелевая антенна). Диаграмма направленности магнитного и щелевого излучателей, так же как и электрического диполя, представляет собой тороид.

Более направленное излучение создают антенны, состоящие из нескольких проволочных или щелевых излучателей. Это — результат интерференции радиоволн, излучаемых отдельными излучателями. Если токи, питающие их, имеют одинаковые амплитуду и фазу (равномерное синфазное возбуждение), то на достаточно далёком расстоянии в направлении, перпендикулярном излучающей поверхности, волны от отдельных излучателей имеют одинаковые фазы и дают максимум излучения. Поле, созданное в других направлениях, значительно слабее. Некоторое увеличение напряжённости поля имеет место в тех направлениях, где разность фаз волн, приходящих от крайних излучателей, равна (n + 1) p /2, где n — целое число. В этом случае сечение диаграммы направленности плоскостью содержит ряд лепестков (рис. 8), наибольший из которых называется главным и соответствует максимуму излучения, остальные называются боковыми.

В современной антенной технике применяются антенные решётки, содержащие до 1000 излучателей. Поверхность, на которой они расположены, называется апертурой (раскрывом) антенны и может иметь любую форму. Задавая различное распределение амплитуд и фаз токов на апертуре, можно получить любую форму диаграммы направленности. Синфазное возбуждение излучателей, образующих плоскую решётку, позволяет получить очень высокую направленность излучения, а изменение распределения тока на апертуре даёт возможность изменять форму диаграммы направленности.

Читайте также:  Выберите предметы которые не проводят ток

Для повышения направленности излучения, которое характеризуется шириной главного лепестка, необходимо увеличивать размеры антенны. Связь между шириной главного лепестка q , наибольшим размером апертуры L и излучаемой длиной волны l определяется формулами:

для синфазного возбуждения и

если излучатели расположены вдоль некоторой оси, а сдвиг фаз в них подобран так, что максимум излучения направлен вдоль этой оси (рис. 9). С — постоянные, зависящие от распределения амплитуды токов по апертуре.

Если радиоволновод постепенно расширяется к открытому концу в виде воронки или рупора (рис. 10), то волна в волноводе постепенно преобразуется в волну, характерную для свободного пространства. Такая рупорная антенна даёт направленное излучение.

Очень высокая направленность излучения (до долей градуса на дециметровых и более коротких волнах) достигается с помощью зеркальных и линзовых антенн. В них благодаря процессам отражения и преломления сферический фронт волны, излучаемой электрическим или магнитным диполем либо рупорным излучателем, преобразуется в плоский. Однако из-за дифракции волн в этом случае диаграмма также имеет главный и боковые лепестки направленности. Зеркальная антенна представляет собой металлическое зеркало 1, чаще в виде части параболоида вращения или параболического цилиндра, в фокусе которого находится первичный излучатель (рис. 11). Линзы для радиоволн представляют собой трёхмерные решётки из металлических шариков, стерженьков и т.п. (искусственные диэлектрики) или набор прямоугольных волноводов.

Приём радиоволн. Каждая передающая антенна может служить приёмной. Если на электрический диполь действует распространяющаяся в пространстве волна, то её электрическое поле возбуждает в диполе колебания тока, которые затем усиливаются, преобразуются по частоте и воздействуют на выходные приборы. Можно показать, что диаграммы направленности диполя в режимах приёма и передачи одинаковы, т. е. что диполь принимает лучше в тех направлениях, в которых он лучше излучает. Это является общим свойством всех антенн, вытекающим из принципа взаимности: если расположить две антенны — передающую А и приёмную В — в начале и в конце линии радиосвязи, то генератор, питающий антенну А, переключенный в приёмную антенну В, создаёт в приёмном устройстве, переключенном в антенну А, такой же ток, какой, будучи включенным в антенну А, он создаёт в приёмнике, включенном в антенну В. Принцип взаимности позволяет по свойствам передающей антенны определить её характеристики как приёмной.

Энергия, которую диполь извлекает из электромагнитной волны, зависит от соотношения между его длиной l, длиной волны l и углом y между направлением v прихода волны и диполем. Существен также угол j между направлением вектора электрической волны и диполем (рис. 12). Наилучшие условия приёма, при j = 0. При j = p/2 электрический ток в диполе не возбуждается, т. е. приём отсутствует. Если же 0 j p /2, то очевидно, что энергия, извлекаемая приёмной антенной из поля

(Ecos j ) 2 . Иными словами, эта энергия связана с поляризацией приходящей волны. Из сказанного выше следует, что в случае излучающего и принимающего диполей для наилучших условий приёма необходимо, чтобы оба диполя лежали в одной плоскости и чтобы приёмный диполь был перпендикулярен направлению распространения волны. При этом приёмный диполь извлекает из приходящей волны столько энергии, сколько несёт с собой эта волна, проходя через сечение в форме квадрата со стороной равной

Шумы антенны. Приёмная антенна всегда находится в таких условиях, когда на неё, кроме полезного сигнала, воздействуют шумы. Воздух и поверхность Земли вблизи антенны, поглощая энергию, в соответствии с Рэлея — Джинса законом излучения создают электромагнитное излучение. Шумы возникают и за счёт джоулевых потерь в проводниках и диэлектриках подводящих устройств.

Все шумы внешнего происхождения описываются так называемой шумовой, или антенной, температурой TA. Мощность Рш внешних шумов на входе антенны в полосе частот Dn приёмника равна:

(kБольцмана постоянная). На частотах ниже 30 Мгц преобладающую роль играют атмосферные шумы. В области сантиметровых волн решающий вклад вносит излучение поверхности Земли, которое попадает в антенну обычно за счёт боковых лепестков её диаграммы направленности. Поэтому для слабонаправленных антенн антенная температура, обусловленная Землёй, высока; она может достигать 140—250 К; у остронаправленных антенн она составляет обычно 50—80 К, а специальными мерами её можно снизить до 15—20 К.

О конкретных типах антенн, их характеристиках и применении см. в ст. Антенна.

Лит.: Хайкин С. Э., Электромагнитные волны, 2 изд., М. — Л., 1964; Гольдштейн Л. Д., Зернов Н. В., Электромагнитные поля и волны, М., 1956; Рамо С., Уиннери Дж., Поля и волны в современной радиотехнике, пер. с англ., 2 изд., М. — Л., 1950.

Под редакцией Л. Д. Бахража.

Рис. 11. Схема зеркальной антенны: 1 — параболический отражатель; 2 — волновод, соединяющий двухщелевой излучатель 3 с генератором; 4 — образуемый излучателем сферический фронт волны; 5 — плоский фронт волны после отражения от зеркала.

Рис. 1. Виток катушки индуктивности.

Рис. 8. Сечение диаграммы направленности антенны плоскостью.

Рис. 3. Структура электрического Е и магнитного H полей вблизи диполя: пунктир — силовые линии электрического поля; тонкие линии — силовые линии магнитного поля; О — точка наблюдения.

Рис. 4. Мгновенные картины электрических силовых линий вблизи диполя для промежутков времени, отстоящих друг от друга на 1 /8 периода Т колебаний тока.

Рис. 12 к ст. Излучение и приём радиоволн.

Рис. 2. Электрический диполь.

Рис. 10. Cxeмa рупорного излучателя. Стрелками показаны силовые линии электрического поля; точки — силовые линии магнитного поля, перпендикулярные плоскости рисунка, выходящие из его плоскости (крестики — уходящие за плоскость).

Рис. 7. Сопоставление электрического диполя (а), магнитного (6) и щелевого (в, г) излучателей; 1 — проводник с током; 2 — стержень из материала с высокой магнитной проницаемостью; 3 — металлический экран, в котором прорезана щель; 4 — проводники, идущие от генератора высокочастотных электрических колебаний; 5 — силовые линии электрического поля; 6 — силовые линии магнитного поля.

Рис. 6. Несимметричный вибратор; Г — генератор электрических колебаний.

Рис. 5. Пространственная диаграмма направленности электрического диполя.

Рис. 9. Принцип действия антенны, излучающей вдоль оси системы диполей; S — путь, пройденный волной, на котором отставание фазы компенсируется опережением фазы излучающего тока.

Источник