Меню

Из каких основных элементов состоит трансформатор тока

Принцип работы и устройство трансформатора

Трансформатор напряжения

Трансформатор (преобразовывать, трансформировать) представляет собой электромагнитное устройство статического типа, содержащее две или более обмотки, связанные индуктивно. С помощью метода электромагнитной индукции преобразует переменный ток в постоянный. Состоит из проволочных изолированных или ленточных катушек (обмоток), подвергающихся воздействию магнитного общего потока, намотанных на сердечник из ферромагнитного мягкого материала.

  • Немного об этапах развития
  • Виды трансформаторов
    • Автотрансформатор
    • Силовой
    • Трансформатор тока
    • Трансформатор напряжения
    • Импульсного действия
    • Разделительный тип
    • Пик-трансформатор
    • Сдвоенный дроссель
    • Броневой трехфазный
  • Основные составляющие
    • Магнитная система
    • Обмотки
    • Бак для охлаждения
  • Применение трансформаторов

Немного об этапах развития

При производстве трансформаторов используют свойства материалов: металлические, магнитные, неметаллические. Для производства современного оборудования применили свои знания и открытия многие исследователи прошлых лет. А. Г. Столетов выявил петлю гистерезиса и особенную структуру ферромагнитного сплава. Теорию электромагнитных цепей разработали Братья Гопкинсоны.

Электромагнитная индукция открыта М. Фарадеем, это явление заложено в основу действия трансформатора. Схема первого трансформатора впервые появилась в работах Генри и Фарадея в 1831 году. Но ученые тогда еще не рассматривали прибор в качестве преобразователя переменного тока.

Француз-механик в 1848 году запатентовал индукционную катушку, которая стала прообразом трансформатора. В 1876 году впервые изобрел трансформатор Яблочков П. Н. , прибор представлял собой стержень с несколькими обмотками. Трансформаторы, имеющие замкнутые сердечники, были сконструированы братьями Гопкинсами в 1884 году.

С применением масляного охлаждения прибор стал выполнять свои функции более надежно. Устройство помещалось в сосуды из керамики с маслом, это вело к повышению надежности обмоток. Русский изобретатель механик Доливо-Добровольский М. О. сконструировал первый трехфазный двигатель асинхронного типа, трехфазную систему переменного тока и впервые сделал трёхфазный трансформатор с мощностью 230 КВт, работающий от напряжения 5 В.

Силовые трансформаторы начали выпускать в 1928 году с открытием Московского завода трансформаторов. В начале 1900 годов английский металлург сделал первую тонну трансформаторной стали для производства сердечников. А в начале 30-х годов XX века отмечено появление магнитного насыщения на 50%, уменьшение потерь на гистерезис в 4 раза, возрастание магнитной проницаемости в 5 раз при комбинированном применении нагревания и прокатки.

Виды трансформаторов

Автотрансформатор

Авторансформатор (ЛАТР)

Это вариант трансформатора, принцип работы которого заключается в соединении вторичной и первичной обмотки напрямую, в обмотках прослеживается электрическая и электромагнитная связь. Для подключения и получения различного напряжения в обмотке предусмотрено несколько выводов. Этот вид приборов работает с высоким коэффициентом полезного действия, так как преобразовывается только некоторая часть мощности, что важно при небольшой разнице входного и выходного напряжения.

К отрицательным характеристикам относится отсутствие гальванической развязки (изолирующего слоя) между вторичной и первичной цепью. Используют автотрансформаторы на месте обычных агрегатов для соединения заземленных контуров с показателями напряжения от 110 КВт, при этом коэффициент трансформации не должен превышать показание 3−4.

Положительным является низкая стоимость из-за меньшего веса сердечнниковой стали, медных проводов, отсюда маленькая масса прибора и небольшие габариты.

Силовой

Обычный стандартный прибор для преобразования электричества в сетях и устройствах, принимающих и использующих электрическую энергию.

Трансформатор тока

Трансформатор тока

Принцип работы и устройство трансформатора заключается в подаче питания от источника электричества. Наиболее актуальным является использование для снижения первичных показателей тока до величины, применяемой в измерительных и защитных цепях, сигнализации и управления. Во вторичной обмотке отмечаются показатели тока 5 А или 1 А. Измерительные устройства подключаются к вторичной обмотке, а к первичной подключается цепь, в которой измеряют ток. Для расчета тока во второй обмотке используют показания в первичной обмотке и делят на коэффициент трансформации.

Трансформатор напряжения

Это прибор для преобразования больших показателей напряжения в низкие значения в стандартных цепях, измерительных линиях, и контурах РЗиА. Устройство питается от источника электрического напряжения, изолирует логические защитные контуры и измерительные цепи от цепи с высокими показателями напряжения.

Импульсного действия

Трансформатор импульсный

Прибор используется для преобразования сигналов импульса с минимальным искажением формы и длительностью до десятков микросекунд. В основном применяется для передачи импульса прямоугольного типа (наиболее крутой срез и фронт, примерно постоянное колебание амплитуды). Служит для преобразования коротких видеоимпульсов, постоянно повторяющихся, основной задачей является передача трансформируемых импульсов в первоначальном и неискаженном виде. На выходе обмоток требуется получить ту же форму импульса напряжения, но иногда меняется полярность или амплитуда.

Разделительный тип

У этого прибора первичная и вторичная обмотки никак не связаны. Трансформатор используется для увеличения безопасного подключения к электрическим сетям, для случаев одновременного прикасания к токоведущим деталям и земле. Защищает от одновременного прикасания к деталям, которые не находятся под действием тока, но могут под ним оказаться в результате нарушения изоляции. Агрегаты призваны обеспечить гальваническую развязку (изоляцию) электрических цепей.

Пик-трансформатор

Служит для преобразования синусоидального тока в импульсное напряжение с полярностью, меняющейся через каждые полпериода.

Сдвоенный дроссель

Индуктивный встречный фильтр или сдвоенный дроссель представляет собой тип устройства с использованием двух обмоток. Из-за взаимной катушечной индукции он действует эффективнее, чем одинарный дроссель. Используется в качестве входного фильтровального приспособления перед блоками питания, в сигнальных дифференциальных цифровых контурах и в технике со звуком.

Броневой трехфазный

Трехфазный трансформатор

Выпускают две различных базовых конструкции:

  • стержневую;
  • броневую.

Обе конструкции не изменяют эксплуатационные качества и надежность прибора, но при изготовлении имеются существенные различия:

  • стержневой тип включает сердечник и обмотки, при взгляде на конструкцию сердечник скрыт за обмотками, видно только нижнее и верхнее ярмо, ось обмоток имеет вертикальное расположение;
  • броневой вид прибора включает сердечник в виде обмоток, при этом видно, что сердечник скрывает за собой часть обмоток трансформатора, ось обмоток может располагаться в вертикальном или горизонтальном положении.

Основные составляющие

В их качестве вступают:

  • магнитная система (сердечник, магнитопровод);
  • обмотки;
  • охладительная система.

Магнитная система

Состоит из элементов в комплекте, чаще всего применяются пластины из ферромагнитного материала или электротехнических сталей, которые компонуются в определенной геометрической форме. Ее выбор определяется локализацией в ней основного трансформаторного магнитного поля. Система магнитного воздействия одновременно со всеми узлами, элементами и деталями для соединения частей в общую конструкцию, носит название остова трансформатора.

Часть магнитной системы, включающая основные обмотки, называется стержнем. Другая часть магнитного комплекта, на которой нет рабочих обмоток, и она служит для соединения магнитной цепи, имеет наименование ярмо. В зависимости от того, как расположены стержни, подразделяют:

  • плоская система, где продольные стержни и ярма расположены в одной плоскости;
  • пространственная система включает разно плоскостное расположение сердечников и ярм;
  • симметричная система отличается одинаковой формой и длиной стержней, а их расположение по отношению к ярмам является стандартным для всех элементов;
  • несимметричная система, в ней все стержни различаются по форме и размеру, а их расположение не отличается симметрией и отлично от других элементов.

Обмотки

Обмотка трансформатора

Основным конструктивным элементом обмотки служит виток, являющийся рядом параллельных соединенных проводников (в многопроволочном варианте жилы), один раз охватывающий часть магнитного сердечника. Ток витка совместно с током других витков, проводников и частей трансформатора продуцирует магнитное трансформаторно поле, в котором наводится под действием магнитного поля сила, движущая ток.

Обмоткой называется общее число витков, образующих электрический контур для суммирования ЭДС в витках. Трехфазный трансформатор имеет в конструкции комплект обмоток из трех рабочих фаз. Проводник обычно квадратного сечения, чтобы увеличить площадь его делят на два или несколько проводящих стержня. Этот прием помогает снизить вихревые токи и облегчить работу обмотки. Квадратный проводник называется жилой. В качестве обмотки используется транспонированный кабель.

Изоляцию делают бумажной обмоткой или лаком на эмалевой основе. Две параллельные жилы могут выполняться в единой изоляции, такой комплект называется кабелем. Чтобы понять, как работает трансформатор, нужно знать разделение обмоток по типам. В зависимости от назначения обмотки бывают:

  • основные, те, что принимают преобразованную энергию или отводят переменный ток;
  • регулирующие предусмотрены для нормализации коэффициента напряжения при небольших показаниях тока в обмотках;
  • вспомогательные предназначены для электрического снабжения собственных нужд меньшей мощности, чем номинальная трансформаторная мощность, подмагничивания магнитной системы током постоянного значения.
Читайте также:  В зарядке для телефона постоянный или переменный ток

В зависимости от варианта исполнения обмотки делят:

  • рядовые — витки делаются по всей длине в направлении оси, последующие витки наматывают плотно, без пробелов;
  • винтовые — имеют многослойное наложение, предусмотрены расстояния между витками или заходами обмотки;
  • дисковые обмотки содержат последовательно соединенные диски, при этом в центр каждого наматывается обмотка в форме спирали;
  • фольговый вид обмотки выполнен из листа алюминия или меди, разной толщины.

Бак для охлаждения

Представляет собой масляный резервуар, обеспечивает защиту активного ингредиента, служит опорой для приборов управления и вспомогательных приборов. Перед добавлением масла в баке выкачивают воздух для безопасной диэлектрической прочности изоляции. При изготовлении звуковые частоты от сердечника трансформатора и от элементов бака должны совпадать.

Конструкция предусматривает дополнительные параметры для расширения масла в условиях нагревания, иногда это дополнительный расширительный бак. Если увеличивается номинальная мощность трансформатора, то токи внутри и снаружи ведут к перегреву конструкции. Аналогично действует магнитный рассеянный поток внутри бака. Чтобы снизить отрицательное воздействие делают вставки из немагнитных материалов, окружая ими проходные сильноточные изоляторы.

Применение трансформаторов

Трансформаторная подстанция

Так как потери для нагревания провода пропорциональны силе тока в квадрате, идущему по этому проводу, то при передаче электричества на длинные расстояния следует применять высокое напряжение при низкой силе тока. Из-за обеспечения безопасности в бытовых условиях не применяют слишком высокое напряжение. Для регулировки напряжения в сети используют трансформаторы, которые повышают напряжение перед передачей по высоковольтным линиям, затем снижение показателей перед потребительским применением.

Для питания различных узлов приема электроэнергии требуются разнообразные показатели напряжения (в телевизоре, компьютере). В прошлых периодах трансформатор был тяжелым и громоздким, но с увеличением частоты переменного тока размеры прибора можно уменьшить. Поэтому в современных устройствах сначала выпрямляют электрический ток, затем его преобразуют в импульсы с высокой частотой. Последние токи идут на импульсный трансформатор для трансформации в нужное напряжение.

Источник

Принцип работы трансформатора тока

Что такое трансформатор тока, принцип работы, типы, схемы

Трансформатор тока представляет собой тип «измерительного трансформатора», который предназначен для производства переменного тока в его вторичной обмотки, которое пропорционально току измеряется в его первичном. Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии электропередачи переменного тока, с использованием стандартного амперметра.

Принцип работы основного трансформатора тока немного отличается от обычного трансформатора напряжения.

Трансформатор тока состоит из одного или нескольких витков в качестве своей первичной обмотки. Эта первичная обмотка может иметь либо один плоский виток, либо катушку из сверхпрочного провода, намотанного на сердечник, либо просто проводник или шину, расположенную через центральное отверстие, как показано на рисунке.

Из-за такого типа расположения трансформатор тока часто называют также «последовательным трансформатором», поскольку первичная обмотка, которая никогда не имеет более нескольких витков, соединена последовательно с проводником с током, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с малыми потерями. Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока является низкой при использовании провода с меньшей площадью поперечного сечения, в зависимости от того, какой ток должен быть понижен, когда он пытается выдать постоянный ток, независимо от подключенной нагрузки.

Вторичная обмотка будет подавать ток либо на короткое замыкание, в виде амперметра, либо на резистивную нагрузку, пока напряжение, наведенное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а контролируется внешней нагрузкой. Вторичный ток обычно оценивается в стандартный 1 Ампер или 5 Ампер для больших значений первичного тока.

Существует три основных типа трансформаторов тока:

  • Обмоточный трансформатор тока — первичная обмотка трансформатора физически соединена последовательно с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента оборотов трансформатора.
  • Тороидальный трансформатор тока — они не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены.
  • Трансформатор тока стержневого типа — в этом типе трансформатора тока используется фактический кабель или шина главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно крепятся болтами к токонесущему устройству.

Ручные трансформаторы тока

В настоящее время доступно много специализированных типов трансформаторов тока. Популярный и портативный тип, который может быть использован для измерения нагрузки цепи, называется «клещами», как показано на рисунке.

Измерители зажимов открывают и закрывают вокруг проводника с током и измеряют его ток, определяя магнитное поле вокруг него, обеспечивая быстрое считывание результатов измерений, как правило, на цифровом дисплее без отключения или размыкания цепи.

Наряду с ручным зажимом типа трансформатора тока имеются трансформаторы тока с разделенным сердечником, у которых один конец съемный, поэтому нет необходимости отсоединять проводник нагрузки или шину для его установки. Они доступны для измерения токов от 100 до 5000 ампер, с квадратными размерами окна от 1 ″ до более 12 ″ (от 25 до 300 мм).

Сфера применения

Сфера применения включает все отрасли, в которых происходит преобразование энергетических величин.

Эти устройства относятся к числу вспомогательного оборудования, которое используется параллельно с измерительными приборами и реле при создании цепи переменного тока. В этих случаях трансформаторы преобразуют энергию для более удобной расшифровки параметров или соединения оборудования с разными характеристиками в одну цепь.

Также выделяют измерительную функцию трансформаторов: они служат для запуска электроцепей с повышенным напряжением, к которым требуется подключить измерительные приборы, но не представляется возможным сделать это напрямую. Основная задача таких трансформаторов – передача полученной информации о параметрах тока на приборы для измерительных манипуляций, которые подсоединены к обмотке вторичного типа. Также оборудование дает возможность контролировать ток в цепи: при использовании реле и достижении максимальных токовых параметров активируется защита, выключающая оборудование во избежание перегорания и нанесения вреда персоналу.

Принцип работы

Действие такого оборудования основано на законе индукции, согласно которому напряжение попадает на первичные витки и ток преодолевает создаваемое сопротивление обмотки, что вызывает формирование магнитного потока, передающегося на магнитопровод. Поток идет в перпендикулярном направлении относительно тока, что позволяет минимизировать потери, а при пересечении им витков вторичной обмотки активируется сила ЭДС. В результате ее воздействия в системе появляется ток, который сильнее сопротивления катушки, при этом напряжение на выходной части вторичных витков снижается.

Простейшая конструкция трансформатора, таким образом, включает сердечник из металла и пару обмоток, не соединенных друг с другом и выполненных в виде проводки с изоляцией. В некоторых случаях нагрузка идет только на первичные, а не вторичные витки: это так называемый холостой режим. Если же ко вторичной обмотке подсоединяют оборудование, потребляющее энергию, по виткам проходит ток, который создает электродвижущая сила. Параметры ЭДС обусловлены количеством витков. Соотношение электродвижущей силы для первичных и вторичных витков известно как коэффициент трансформации, вычисляется по отношению их числа. Регулировать напряжение для конечного потребителя энергии можно, изменяя число витков первичной либо вторичной обмотки.

Для чего нужны трансформаторы тока

Трансформатор тока нулевой последовательности широко используется в организации работы производства, в быту (с его помощью проводят сварочные работы, он нормализуют входящее в дом напряжение, бросок тока, он нормализует работу электросчётчика с целью увеличения безопасности).

Трансформатор является важным инструментом в области электротехники. Текущие уровни электрического тока должны контролироваться в целях безопасности и эффективности работы прочих бытовых и промышленных приборов. Измерительные устройства, подключенные к трансформаторам, позволяют совершать мониторинг в различных местах по всей системе. Они также могут быть использованы для измерения электрического использования здания и выставления счетов или целей проверки.

Читайте также:  Принцип действия контактора постоянного тока

Трансформатор тока — схема

Схемы подключения

Для того чтобы устройство эффективно работало и качественно выполняло возложенные на него функции, нужно правильно его подключить. Для этого следует руководствоваться одной из стандартных схем, позволяющих удовлетворить требования владельцев оборудования. Только в этом случае можно добиться желаемого результата и выполнить работу за максимально короткий промежуток времени.

Основные схемы соединения трансформаторов и обмоток реле:

  1. Звезда. Этот вариант подключения предусматривает установку трансформаторов тока во всех фазах. Их вторичные обмотки соединяются с соответствующими элементами реле в виде звезды, а нулевые точки — с общим проводом. Такая схема используется только в защитных устройствах, предотвращающих короткие замыкания.
  2. Неполная звезда. Единственное отличие этого способа подключения от звезды — установка трансформаторов только в двух фазах.
  3. Треугольник. Вторичные обмотки всех трансформаторов последовательно соединяются друг с другом при помощи разноимённых выводов. К вершинам образованного треугольника подключаются реле, соединённые в звезду. Этот вариант применяется для дистанционных и дифференциальных защит.
  4. Неполный треугольник. Отличительная черта этой схемы подключения — использование вторичных обмоток, установленных не во всех фазах, а только в двух. Такой вариант применяется для защиты двигателей от междуфазных коротких замыканий.

Коэффициент трансформации

Для оценки эффективности работы самого трансформатора была введена величина коэффициента преобразования. Его номинальное значение обычно указывается в официальной документации к трансформатору. Данный коэффициент обозначает отношение первичного номинального тока к аналогичному показателю второй обмотки. К примеру, это может быть значение 100/5 А. Оно может резко изменяться в зависимости от количества секций с витками.

Принцип работы трансформатора тока

Демонстрацию процессов, происходящих при преобразованиях электрической энергии внутри трансформатора, поясняет схема.

Через силовую первичную обмотку с числом витков ω1 протекает ток I1, преодолевая ее полное сопротивление Z1. Вокруг этой катушки формируется магнитный поток Ф1, который улавливается магнитопроводом, расположенным перпендикулярно направлению вектора I1. Такая ориентация обеспечивает минимальные потери электрической энергии при ее преобразовании в магнитную.

Пересекая перпендикулярно расположенные витки обмотки ω2, поток Ф1 наводит в них электродвижущую силу Е2, под влиянием которой возникает во вторичной обмотке ток I2, преодолевающий полное сопротивление катушки Z2 и подключенной выходной нагрузки Zн. При этом на зажимах вторичной цепи образуется падение напряжения U2.

Величина К1, определяемая отношением векторов I1/I2, называется коэффициентом трансформации. Ее значение задается при проектировании устройств и замеряется в готовых конструкциях. Отличия показателей реальных моделей от расчетных значений оценивается метрологической характеристикой —классом точности трансформатора тока.

В реальной работе значения токов в обмотках не являются постоянными величинами. Поэтому коэффициент трансформации принято обозначать по номинальным значениям. Например, его выражение 1000/5 означает, что при рабочем первичном токе 1 килоампер во вторичных витках будет действовать нагрузка 5 ампер. По этим значениям и рассчитывается длительная эксплуатация этого трансформатора тока.

Магнитный поток Ф2 от вторичного тока I2 уменьшает значение потока Ф1 в магнитопроводе. При этом создаваемый в нем поток трансформатора Фт определяется геометрическим суммированием векторов Ф1 и Ф2.

Источник

Что такое трансформатор тока, его конструкция и принцип работы

Для нормального функционирования устройств обеспечивающих релейную защиту высоковольтных ЛЭП, требуется контролировать параметры электрической линии. Снимать показания с высоковольтных проводов напрямую – опасно и не эффективно. Режим работы обычного трансформатора не позволяет контролировать изменение тока. Решает эту проблему трансформатор тока, у которого показатели вторичной цепи изменяются пропорционально величине тока первичной обмотки.

Конструкция и принцип действия

Внешний вид типичного трансформатора тока представлен на рисунке 1. Характерным признаком этих моделей является наличие у них диэлектрического корпуса. Формы корпусов могут быть разными – от прямоугольных до цилиндрических. В некоторых конструкциях отсутствуют проходные шины в центре корпуса. Вместо них проделано отверстие для обхвата провода, который выполняет функции первичной обмотки.

Трансформатор тока

Рис. 1. Трансформатор тока

Материалы диэлектриков выбирают в зависимости от величины напряжений, для которых предназначено устройство и от условий его эксплуатации. Для обслуживания промышленных энергетических систем изготавливают мощные ТТ с керамическими корпусами цилиндрической формы (см. рис. 2).

Промышленный керамический трансформатор тока

Рис. 2. Промышленный керамический трансформатор тока

Особенностью трансформатора является обязательное наличие нагрузочного элемента (сопротивления) во вторичной обмотке (см. рис. 3). Резистор необходим для того, чтобы не допускать работы в режиме без вторичных нагрузок. Функционирование трансформатор тока с ненагруженными вторичными обмотками недопустимо из-за сильного нагревания (вплоть до разрушения) магнитопровода.

Принципиальная схема трансформатора тока

Рис. 3. Принципиальная схема трансформатора тока

В отличие от трансформаторов напряжения, ТТ оснащены только одним витком первичной обмотки (см. рис. 4). Этим витком часто является шина, проходящая сквозь кольцо сердечника с намотанными на него вторичными обмотками (см. рис. 5).

Схематическое изображение ТТ Рис. 4. Схематическое изображение ТТ Устройство ТТ Рис. 5. Устройство ТТ

Иногда в роли первичной обмотки выступает проводник электрической цепи. Для этого конструкция сердечника позволяет применить шарнирное соединение частей трансформатора для обхвата провода (см. рис. 6).

ТТ с разъемным корпусом

Рис. 6. ТТ с разъемным корпусом

Сердечники трансформаторов выполняются способом шихтования кремнистой стали. В моделях высокого класса точности сердечники изготовляют из материалов на основе нанокристаллических сплавов.

Принцип действия.

Основная задача токовых трансформаторов понизить (повысить) значение тока до приемлемой величины. Принцип действия основан на свойствах трансформации переменного электрического тока. Возникающий переменный магнитный поток улавливается магнитопроводом, перпендикулярным направлению первичного тока. Этот поток создается переменным током первичной катушки и наводит ЭДС во вторичной обмотке. После подключения нагрузки начинает протекать электрический ток по вторичной цепи.

Зависимости между обмотками и токами выражены формулой: k = W2 / W1 = I1 / I2 .

Поскольку ток во вторичной катушке обратно пропорционален количеству витков в ней, то путем увеличения (уменьшения) коэффициента трансформации, зависящего от соотношения числа витков в обмотках, можно добиться нужного значения выходного тока.

На практике, чаще всего, эту величину устанавливают подбором количества витков во вторичной обмотке, делая первичную обмотку одновитковой.

Линейная зависимость выходного тока (при номинальной мощности) позволяет определять параметры величин в первичной цепи. Численно эта величина во вторичной катушке равна произведению реального значения тока на номинальный коэффициент трансформации.

В идеале I1 = kI2 = I2W2/W1. С учетом того, что W1 = 1 (один виток) I1 = I2W2 = kI2. Эти несложные вычисления можно заложить в программу электронного измерителя.

Принцип действия трансформатора тока

Рис. 7. Принцип действия трансформатора тока

На рисунке 7 не показан нагрузочный резистор. При измерениях необходимо учитывать и его влияние. Все допустимые погрешности в измерениях отображает класс точности ТТ.

Классификация

Семейство трансформаторов тока классифицируют по нескольким признакам.

Пример наружного использования ТТ

  1. По назначению:
    • защитные;
    • линейки измерительных трансформаторов тока;
    • промежуточные (используются для выравнивания токов в системах дифференциальных защит);
    • лабораторные.
  2. По способу монтажа:
    • наружные (см. рис. 8), применяются в ОРУ;
    • внутренние (размещаются в ЗРУ);
    • встраиваемые;
    • накладные (часто совмещаются с проходными изоляторами);
    • переносные.

Рис. 8. Пример наружного использования ТТ

  • Классификация по типу первичной обмотки:
    • многовитковые, к которым принадлежат катушечные конструкции, и трансформаторы, с обмотками в виде петель;
    • одновитковые;
    • шинные.
  • По величине номинальных напряжений:
    • До 1 кВ;
    • Свыше 1 кВ.

Трансформаторы тока можно классифицировать и по другим признакам, например, по типу изоляции или по количеству ступеней трансформации.

Расшифровка маркировки

Каждому типу трансформаторов присваиваются буквенно-цифровые символы, по которым можно определить его основные параметры:

  • Т — трансформатор тока;
  • П — буква указывающая на то, что перед нами проходной трансформатор. Отсутствие буквы П указывает, что устройство принадлежит к классу опорных ТТ;
  • В — указывает на то, что трансформатор встроен в конструкцию масляного выключателя или в механизм другого устройства;
  • ВТ — встроенный в конструкцию силового трансформатора;
  • Л— со смоляной (литой) изоляцией;
  • ФЗ — устройство в фарфоровом корпусе. Звеньевой тип первичной обмотки;
  • Ф — с надежной фарфоровой изоляцией;
  • Ш — шинный;
  • О — одновитковый;
  • М — малогабаритный;
  • К — катушечный;
  • 3 — применяется для защиты от последствий замыкания на землю;
  • У — усиленный;
  • Н — для наружного монтажа;
  • Р — с сердечником, предназначенным для релейной защиты;
  • Д — со вторичной катушкой, предназначенной для питания электричеством дифференциальных устройств защиты;
  • М — маслонаполненный. Применяется для наружной установки.
  1. Номинальное напряжение (в кВ) указывается после буквенных символов (первая цифра).
  2. Числами через дробь обозначаются классы точности сердечников. Некоторые производители вместо цифр проставляют буквы Р или Д.
  3. следующие две цифры «через дробь» указывают на параметры первичного и вторичного токов;
  4. после позиции дробных символов — код варианта конструкционного исполнения;
  5. буквы, расположенные после кода конструкционного варианта, обозначают тип климатического исполнения;
  6. цифра на последней позиции — категория размещения.
Читайте также:  Электровелосипед из генератора постоянного тока

Схемы подключения

Первичные катушки трансформаторов тока включаются в цепь последовательно. Вторичные катушки предназначены для подключения измерительных приборов или используются системами релейной защиты.

Во вторичную цепь включаются выводы измерительных приборов и устройства релейной защиты. С целью обеспечения безопасности, сердечник магнитопровода и один из зажимов вторичной катушки должны заземляться.

При подключении трехфазных счетчиков, в сетях с изолированной нейтралью обмотки трансформатора соединяются по схеме «Неполная звезда». При наличии нулевого провода применяется схема полной звезды.

Выводы трансформаторов маркируются. Для первичной обмотки применяются обозначения Л1 и Л2, а для вторичной – И1 и И2. При подключении измерительных приборов следует соблюдать полярность обмоток.

Схема «неполная звезда» применяется для двухфазного соединения.

В дифференциальных защитах, используемых в силовых трансформаторах, обмотки включаются треугольником.

Основные схемы подключения:

Основные схемы подключения

  • В сетях с глухозаземленной нейтралью ТТ подключается к каждой фазе. Соединение обмоток трансформатора – полная звезда.
  • Подключение по схеме неполной звезды. Применяется в сетях с изолированными нулевыми точками.
  • Схема восьмерки. Симметрично распределяет нагрузки при трехфазном КЗ.
  • Соединение ТТ в фильтр токов нулевой последовательности. Применяется для защиты номинальной нагрузки от коротких замыканиях на землю.

Технические параметры

Очень важной характеристикой трансформатора тока является класс точности. Этот параметр характеризует погрешность измерения, то есть показывает, на сколько номинальный (идеальный) коэффициент трансформации отличается от реального.

Коэффициент трансформации

Так как в реальном коэффициенте трансформации присутствует синфазная и квадратурная составляющая, то значения коэффициента всегда отличаются от номинального. Разницу (погрешность) необходимо учитывать при измерениях. На результаты измерений влияют также угловые погрешности.

У всех ТТ погрешность отрицательна, так как у них всегда присутствуют потери от намагничивания и нагревания токовых катушек. С целью устранения отрицательного знака погрешности, для смещения параметров трансформации в положительную сторону, применяют витковую коррекцию. Поэтому в откорректированных устройствах привычная формула для вычислений не работает. Поэтому коэффициенты трансформации в таких аппаратах производители определяют опытным путем и указывают их в техпаспорте.

Класс точности

Токовые погрешности искажают точность измерения электрического тока. Поэтому для измерительных трансформаторов высокие требования к классу точности:

  • 0,1;
  • 0,5;
  • 1;
  • 3;
  • 10P.

Трансформатор может находиться в пределах заявленного класса точности, только если сопротивление максимальной нагрузки не превышает номинального, а ток в первичной цепи не выходит за пределы 0,05 – 1,2 величины номинального тока трансформатора.

О назначении

Основная сфера применения трансформаторов – защита измерительного и другого оборудования от разрушительного действия предельно высоких токов. ТТ применяются для подключения электрического счетчика, изоляции реле от воздействия мощных токовых нагрузок.

Видео по теме

Источник



Принцип действия ТТ и их назначение

В сегодняшнем материале, я решил начать рассматривать вопросы, касающиеся основ теории трансформаторов тока. Сами эти аппараты распространены повсеместно в электроустановках, и я думаю, всем будет интересно и полезно обновить в памяти принцип их работы.

Назначение трансформаторов тока: преобразование тока и разделение цепей

Начнем с ответа на вопрос – для чего нужен трансформатор тока? Здесь существует несколько основных вопросов, которые решает установка трансформаторов тока.

  • Во-первых, это измерение больших токов, когда измерение непосредственно реальной величины первичного тока не представляется возможным. Измеряют преобразованную в меньшую сторону после трансформатора тока величину. Обычно это 1, 5 или 10 ампер.
  • Во-вторых, это разделение первичных и вторичных цепей. Таким образом, происходит защита изоляции релейного оборудования, приборов учета электроэнергии, измерительных приборов.

Из чего состоит ТТ, принцип его работы

Трансформатор тока имеет замкнутый сердечник (магнитопровод), который собирают из листов электротехнической стали. На сердечнике расположено две обмотки: первичная и вторичная.

Первичная обмотка включается последовательно (в рассечку) цепи, по которой течет измеряемый (первичный) ток. К вторичной обмотке присоединяются последовательно соединенные реле, приборы, которые образуют вторичную нагрузку трансформатора тока. Такое описание состава трансформатора тока достаточно для описания принципа его работы, более подробное описание реального состава трансформатора тока приведено в другой статье.

Для рассмотрения принципа действия трансформатора тока рассмотрим схему, расположенную на рисунке.

принцип работы трансформатора тока

В первичной обмотке протекает ток I1, создавая магнитный поток Ф1. Переменный магнитный поток Ф1 пересекает обе обмотки W1 и W2. При пересечении вторичной обмотки поток Ф1 индуцирует электродвижущую силу Е2, которая создает вторичный ток I2. Ток I2, согласно закону Ленца имеет направление противоположное направлению I1. Вторичный ток создает магнитный поток Ф2, который направлен встречно Ф1. В результате сложения магнитных потоков Ф1 и Ф2 образуется результирующий магнитный поток (на рисунке он обозначен Фнам). Этот поток составляет несколько процентов от потока Ф1. Именно поток Фнам и является тем звеном, что производит передачу и трансформацию тока. Его называют потоком намагничивания.

Коэффициент трансформации идеального ТТ

В первичной обмотке w1 создается магнитодвижущая сила F1=w1*I1, а во вторичной — F2=w2*I2. Если принять, что в трансформаторе тока отсутствуют потери, то магнитодвижущие силы равно по величине, но противоположны по знаку. F1=-F2. В итоге получаем, что I1/I2=w2/w1=n. Это отношение называется коэффициентом трансформации трансформатора тока.

Коэффициент трансформации реального ТТ

В реальном трансформаторе тока существуют потери энергии. Эти потери идут на:

  • создание магнитного потока в магнитопроводе
  • нагрев и перемагничивание магнитопровода
  • нагрев проводов вторичной обмотки и цепи

К магнитодвижущим силам из прошлого пункта прибавится мдс намагничивания Fнам=Iнам*w1. В выражении ниже токи и мдс это вектора. F1=F2+Fнам или I1*w1=I2*w2+Iнам*w1 или I1=I2*(w2/w1)+Iнам

В нормальном режиме, когда первичный ток не превышает номинальный ток трансформатора тока, величина тока Iнам не превышает 1-3 процента от первичного тока, и этой величиной можно пренебречь. При ненормальных режимах происходит так называемый бросок тока намагничивания, об этом более подробно можно почитать здесь. Из формулы следует, что первичный ток разделяется на две цепи – цепь намагничивания и цепь нагрузки. Более подробно о схеме замещения ТТ и о векторной диаграмме ТТ.

Режимы работы трансформаторов тока

У ТТ существуют два основных режима работы – установившийся и переходный.

В установившемся режиме работы токи в первичной и вторичной обмотке не содержат свободных апериодических и периодических составляющих. В переходном режиме по первичной и вторичной обмотке проходят свободные затухающие составляющие токов.

Если ТТ выбран правильно, то в обоих режимах работы погрешности не должны превышать допустимых в этих режимах, а токи в обмотках не должны превышать допустимые по термической и динамической стойкости.

ТТ для измерений предусмотрены для работы в установившемся режиме, при условии не превышения допустимых погрешностей. Работа ТТ для защиты начинается с момента возникновения тока перегрузки или тока КЗ, в этих режимах должны обеспечиваться требования определенных типов защит.

Чем отличается трансформатор тока от трансформатора напряжения и силового трансформатора

Существуют отличия в работе ТТ и ТН.

  • Первичный ток ТТ не зависит от вторичной нагрузки, что свойственно ТН. Это определяется тем фактом, что сопротивление вторичной обмотки ТТ на порядок меньше сопротивления первичной цепи и вообще, чем оно ближе к нулю, тем точнее аппарат. В трансформаторах напряжения и силовых трансформаторах же первичный ток зависит от величины тока вторичной нагрузки.
  • ТТ всегда работает с замкнутой вторичной обмоткой и величина его вторичного сопротивления нагрузки в процессе работы не изменяется.
  • Не допускается работа ТТ с разомкнутой вторичной обмоткой, для ТН и силовых при размыкании вторичной обмотки происходит переход в режим работы холостого хода.

Сохраните в закладки или поделитесь с друзьями

Источник