Меню

Изменение мощности при изменении передаточного отношения

Выбор передаточных чисел КПП для увеличения мощности

Выбор передаточных чисел КПП для увеличения мощности

Передаточное число в коробке передач явным образом характеризует зубчатые передачи. Они представляют собой крутящийся элемент, который вращает редукторные шестерни. Редуктор же в свою очередь распределяет силу мотора. У каждой коробки есть передаточное число, что это за число, на что оно влияет и как его вычислить?

Любая коробка передач обладает следующими элементами:

  1. Картер. Имеет узлы и детали самой коробки. Прикрепляется к сцеплению. При работе, шестерне подвергаются сильным нагрузкам, поэтому они нуждаются в тщательной смазке. Поэтому масло заливается до половины его объема.
  2. Валы с шестеренками первичными и вторичными. Эти элементы располагаются в подшипниках. Все шестерни различны по количеству зубцов.
  3. Синхронизаторы. Обеспечивают бесшумность, плавно переключают передачи. Очень важно плавно переключать передачи, чтобы синхронизаторы успевали срабатывать, иначе коробка может выйти из строя и машину придется отдавать в ремонт или самостоятельно заниматься ее ремонтом, что потребует финансовых затрат.
  4. Дополнительные валы для заднего хода. Аналогичны с первичными валами. Вращаются как первичные и вторичные, но в обратную сторону.
  5. Рычаг переключения. Обеспечивает передачу скоростей если вы обладатель механики. Если вы обладатель автомат коробки, то скорость переключается самостоятельно.
  6. Механизм для переключения блокировочной системы и замка. Отвечает за изменение передач посредством рычага или автоматически. Замковая система не позволяет активировать сразу несколько передач. Блокировочная система не дает самостоятельно выключаться.

Передаточные числа КПП

Изменение числа оборотов на разных передачах: давайте представим себе две шестерни у одной будет 10 зубцов, а у второй 20. Так как вторая шестерен больше, она успеет сделать только один оборот, следовательно первая сделает два вращения. Таким образом у разных шестерен разная скорость оборотов за минуту.

Пусть у нас будет 4 шестерни:

  • Первая, будет иметь 10 зубцов.
  • Вторая, будет иметь 20 зубцов.
  • Третья, будет иметь 10 зубцов.
  • И четвертая будет также как и вторая – 20 зубцов.

Пусть, первичный вал и первая шестерня будут вращаться со скоростью, к примеру 4000 оборотов за минуту. Тогда вторая шестерня будет вращаться медленней, исходя из вышесказанного, то есть – 2000 оборотов за минуту. Третья шестерня будет тоже делать 2000 оборотов за минуту, так как она закреплена на одном валу со второй шестерней. Получается, что четвертая шестерня будет самой медленной – 1000 оборотов за минуту.

Высчитав обороты за минуту, можно узнать передаточное число. Передаточное число двух пар первой и второй будет 2. Общее передаточное число 4. Это получается, что вторичный вал будет вращаться меньше в 4 раза. Вторичный вал может находится в состоянии покоя, что будет обеспечивать нейтральную передачу. Этого можно достигнуть путем съема зацепенения с третьей и четвертой шестерни. В автомате нейтралка необходима для буксировки автомобиля, используется во время поломки. В механической коробке используется для работы автомобиля если он долго стоит на месте в заведенном состоянии. Так или иначе, эта передача необходима любому автомобилю, но на автомате вы можете ни разу и не включить ее, за все время пользования машиной.

Шестерни МКПП

Так как коробка обладает большим набором шестерен, зацепив разные пары мы можем изменять передаточные числа.

Когда передаточное число 1, это обычно так называемая – 4 передача. На ней все валы вращаются одинаково. На самых мощных передачах 1-ой и задней двигатель обычно не испытывает перегрузок, но скорость езды автомобиля очень низкая.

Первая передача включается сразу, как только водитель садится за руль. Первая передача позволяет завести машину и сдвинуть ее с места, далее скорость увеличивается до передачи, комфортной для езды водителю. Водитель может переключаться на слабые и на мощные передачи. Все переключения на слабые передачи происходят последовательно, на сильные передачи можно переключиться перепрыгнув передачу, но так делать нежелательно. Например, с третьей передачи, можно сразу переключиться на пятую, тем самым пропуская четвертую передачу.

Если вы обладатель КПП, то все передачи будут изменяться плавно. За это отвечает гидравлическое или механическое преобразование крутящего элемента.

Чаще всего по трассе ездят на высокой скорости на 4 и 5 передачах, это обусловлено не только экономией времени, но и экономией топлива.

Ни в коем случае нельзя быстро переключать передачи резкими движениями, так как это может навредить корректной работоспособности коробки. Передачи должны переключаться плавно, чтобы успели срабатывать синхронизаторы.

Влияние передаточного на динамику машины

Правильно подобранное передаточное обеспечивает взаимосвязанную работу всех элементов автомобиля. При выборе передаточного числа необходимо руководствоваться характеристиками двигателя, но не стоит забывать и про колеса, точнее про их размер.

Как выбрать передаточные числа МКПП

Изменяя передаточную величину крутящего момента может увеличиваться или уменьшаться. Это достигается изменением зубьев у каждой шестерни.

Зависимость числа и мощности следующая, чем выше число, тем мощней передача. Это говорит о том, что мотор автомобиля будет в разы быстрее выкручивать заветное количество оборотов. Высокое число обеспечивает быстрое ускорение.

Слишком малая передаточная цифра будет позволять разгонять максимальную скорость, но при этом динамика авто нарушается, поэтому не стоит слишком занижать ее.

Наиболее близкие передаточные числа обеспечивают плавный и быстрый разгон.

Для обычной повседневной езды достаточно количества оборотов в 2000-3000 тыс. Эти значения обычно высвечиваются на тахометре, и если вам все еще не хватает скорости, то нужно всего лишь переключиться на более высокую передачу.

Итоги

Как для механической, так и для автоматической коробки передач передаточное число настраивается без особых проблем и трудностей. Единственное различие, в механической коробке вы по-прежнему будете самостоятельно переключать передачи, автоматическая, сделает эту работу за вас.

Передаточные числа

Передаточное число – хороший вариант настроить машину “под себя”, выжать из нее максимум и заточить ее под свои требования. Это можно сделать самостоятельно или же прибегнуть к помощи профессионалов. Во втором случае, вы должны максимально точно объяснить какой результат вы ожидаете получить и вам настроят автомобиль. При самостоятельном изменении передаточного числа, тщательно протестируйте полученный результат, убедитесь что все работает корректно, что двигателю достаточно мощности.

Несомненно, отладка передаточного числа настраивается индивидуально под каждого водителя. Тут необходимо не только руководствоваться техническими характеристиками, но и очень хорошо чувствовать автомобиль. Передаточное число позволяет значительно ускорить разгон автомобиля, увеличить его скорость. Самое главное, чтобы передаточное число подходило для мощности автомобиля, тогда он будет служить вам верой и правдой долгие года.

Читайте также:  Чему равна электрическая мощность компьютера

Видео

Основной автор сайта и основатель нескольких автомобильных интернет-проектов

Источник



Влияние передаточного числа главной передачи на максимальную скорость автомобиля

Для изучения влияния передаточного числа главной передачи на максимальную скорость движения рассмотрим мощностной ба­ланс автомобиля при различных передаточных числах главной передачи (рис. 6.1).

Кривая 1 характеризует изменение тяговой мощности на веду­щих колесах автомобиля при передаточном числе главной переда-

Рис. 6.1. Графики мощностного ба­ланса автомобиля с разными пере­даточными числами главной пере­дачи:

1—4— кривые тяговой мощности при передаточных числах главных передач uг1 — uг4; v1 — v4— значения максималь­ной скорости движения при передаточ­ных числах главных передач uг1uг4

чи, равном uг1. При указанном передаточном числе автомобиль развивает максимальную скорость движения v1.

Уменьшение передаточного числа главной передачи до uг2(кри­вая 2)приводит к увеличению максимальной скорости автомо­биля до v2при том же значении угловой скорости коленчатого вала.

По мере уменьшения передаточного числа главной передачи максимальная скорость автомобиля возрастает до тех пор, пока кривая суммарной мощности Nд + Nв,затрачиваемой на преодо­ление сопротивления движению автомобиля, не пересечет кри­вую тяговой мощности Nтв точке ее максимума (кривая 3).Ско­рость автомобиля v3,соответствующая этой точке пересечения кривых Nд + Nви Nт, является максимально возможной на дан­ной дороге. При дальнейшем уменьшении передаточного числа главной передачи (кривая 4)максимальная скорость автомоби­ля снижается до v4.

Таким образом, выбирать передаточные числа главной переда­чи необходимо с учетом назначения и условий эксплуатации ав­томобиля. Так, например, для городского автобуса целесообразно большее передаточное число главной передачи (uг1или uг2). В этом случае благодаря значительному запасу мощности обеспечивается лучшая приемистость автобуса, хотя и уменьшается его макси­мальная скорость.

Что касается спортивных и гоночных автомобилей, то следует отдать предпочтение передаточному числу uг3, так как для этих ав­томобилей важна максимальная скорость движения. Выбор пере­даточного числа uг4нецелесообразен, поскольку максимальная мощность двигателя вообще не используется, что приводит к ухуд­шению тягово-скоростных свойств автомобиля.

Если проектируемый автомобиль предназначен для работы в тяжелых дорожных условиях, то передаточное число главной пе­редачи необходимо увеличить, чтобы обеспечить возрастание тя­говой силы на ведущих колесах и динамического фактора автомо­биля по тяге.

6.4. Влияние числа передач в коробке передач на скорость

Для выявления влияния числа передач в коробке передач на скорость движения автомобиля в различных дорожных условиях сравним динамические характеристики одного и того же автомо­биля при установке на него трехступенчатой (рис. 6.2, а)и четы­рехступенчатой (рис. 6.2, б) коробок передач. При этом первые и последние передачи данных коробок передач имеют равные пере­даточные числа, а динамические факторы автомобиля по тяге на первой и последней передачах обеих коробок одинаковы.

При сравнении максимальной скорости автомобиля на дорогах с различным сопротивлением очевидно преимущество четырех­ступенчатой коробки передач. Так, на дороге, характеризуемой коэффициентом сопротивления ψ1, максимальная скорость vmax′ав­томобиля с трехступенчатой коробкой передач меньше максималь­ной скорости, развиваемой при использовании четырехступенча­той коробки. Максимальная скорость vmax′′ при движении по дороге с коэффициентом сопротивления, равным ψ2, также меньше у автомобиля с трехступенчатой коробкой передач. Следовательно, увеличение числа передач в коробке приводит к возрастанию сред­ней скорости движения автомобиля. Чем больше число передач, тем полнее используется мощность двигателя в различных дорож­ных условиях, улучшаются тяговые свойства и повышается топ­ливная экономичность автомобиля.

Однако при очень большом числе передач усложняется конст­рукция и увеличивается масса коробки передач, а также затруд­няется управление автомобилем. В связи с этим на легковых авто­мобилях обычно применяют четырех- и пятиступенчатые короб-

Рис. 6.2. Динамические характеристики автомобиля с трехступенчатой (а) и четырехступенчатой (б) коробками передач:

I —IV — передачи; v’max, max максимальные значения скорости движения при коэффициентах сопротивления дороги соответственно ψ1 и ψ2

ки передач, а на грузовых автомобилях и автобусах — пяти- и шестиступенчатые. На грузовых автомобилях, предназначенных для работы в составе автопоездов, увеличение числа передач основ­ной коробки в два раза и более достигается применением допол­нительных коробок передач.

6.5. Последовательность проектировочного тягового

При выполнении тягового расчета проектируемого вновь авто­мобиля приходится иметь дело с тремя группами параметров. Это параметры, задаваемые техническими условиями на автомобиль, выбираемые и расчетные параметры автомобиля. Рассмотрим ука­занные параметры.

Параметры, задаваемые техническими условиями.К этим пара­метрам относятся тип автомобиля, грузоподъемность или пасса-жировместимость, максимальная скорость vmax автомобиля на выс­шей передаче, коэффициент сопротивления дороги ψv,которое может преодолеть автомобиль при максимальной скорости, мак­симальный коэффициент сопротивления дороги ψmax, преодоле­ваемого автомобилем на первой передаче, тип двигателя по ис­пользуемому топливу (бензиновый, газовый, дизель) и тип транс­миссии (механическая, гидромеханическая и т.д.).

Для легковых автомобилей коэффициент сопротивления доро­ги ψv задают равным коэффициенту сопротивления качению fv при максимальной скорости автомобиля, т.е. максимальную ско­рость автомобиль может развить только на ровной горизонталь­ной дороге.

Для грузовых автомобилей коэффициент ψv задают в виде ди­апазона значений (0,025. 0,035), т.е. с некоторым запасом для достижения устойчивой максимальной скорости. Благодаря этому грузовой автомобиль сможет при максимальной скорости преодо­левать небольшие подъемы, буксируя прицепы.

Максимальный коэффициент сопротивления дороги, преодо­леваемого на первой передаче, для автомобилей с колесной фор­мулой 4×2 обычно составляет 0,3. 0,45 — для легковых автомоби­лей, 0,3. 0,4 — для грузовых и 0,28. 0,33 — для автобусов. Для грузовых автомобилей с колесной формулой 6×4 ψmaх = 0,4. 0,55, а для полноприводных ψmaх = 0,6. 0,7.

Выбираемые параметры.Этими параметрами являются масса снаряженного автомобиля т,фактор обтекаемости автомобиля kвFа(или коэффициент сопротивления воздуха kви лобовая пло­щадь автомобиля Fа),распределение нагрузки по осям снаряжен­ного и полностью груженого автомобиля, угловая скорость ко­ленчатого вала ωN при максимальной мощности двигателя и меха­нический КПД трансмиссии ηтравтомобиля. Значения указанных

параметров выбирают по техническим характеристикам существу­ющих автомобилей аналогичного типа.

Расчетные параметры.К этим параметрам относятся макси­мальная мощность двигателя Nmax, передаточное число главной передачи иг,передаточные числа основной коробки передач ики передаточное число дополнительной (раздаточной) коробки пе­редач ид.

Используя выбранные значения параметров и значения, за­данные техническими условиями, при проектировании нового ав­томобиля сначала определяют его полную массу и подбирают шины, а затем находят максимальную мощность двигателя и пе­редаточные числа трансмиссии — главной передачи, коробки пе­редач и раздаточной коробки.

Читайте также:  Комплект увеличения мощности power kit 520i

Определение полной массы автомобиля.Полная масса проекти­руемого автомобиля та,кг, определяется в соответствии с его типом и назначением. С этой целью можно пользоваться следую­щими выражениями:

для легковых автомобилей

где т— масса снаряженного автомобиля, кг; 70 — масса одного пассажира, кг; nпасс— число пассажиров, включая водителя; тб масса багажа (25. 50 кг);

для грузовых автомобилей

где nпасс — число пассажиров в кабине, включая водителя; тгр— грузоподъемность автомобиля, кг;

для городских автобусов

где nсид число мест для проезда сидя; nст— число мест для проезда стоя; 2 — число мест для водителя и кондуктора; для междугородных автобусов

где псид + 1 — число мест для проезда сидя, включая место водителя.

Подбор шин для автомобиля.При подборе шин сначала необ­ходимо определить нагрузку, приходящуюся на одно колесо пол­ностью груженого автомобиля.

У легковых автомобилей нагрузка на передние и задние колеса при полной нагрузке автомобиля почти одинакова.

У грузовых автомобилей с колесной формулой 4×2 при двух­скатных задних колесах и полной нагрузке на передние колеса приходится 25. 30 % всей нагрузки автомобиля. Хотя на задние двухскатные колеса устанавливают четыре шины, на каждую из них приходится большая нагрузка, чем на шину переднего коле­са. Поэтому шины для грузового автомобиля подбирают исходя

из нагрузки на одно заднее колесо. По значению этой нагрузки в соответствии с ГОСТом определяют размер шин и радиус коле­са rк.

Определение максимальной мощности двигателя.Для определе­ния этой величины сначала находят мощность двигателя при мак­симальной скорости движения, используя уравнение мощност-ного баланса автомобиля, представленное в развернутой форме.

Мощность при максимальной скорости

где kBFa фактор обтекаемости, Н∙с 2 /м 4 ; vmax— максимальная скорость, м/с; ψv коэффициент сопротивления дороги при vmaxтр — КПД трансмиссии.

После определения мощности двигателя при максимальной ско­рости рассчитывают его максимальную мощность по формуле

где а, b, с — эмпирические коэффициенты, характеризующие тип двигателя; а = b = с = 1 для бензиновых двигателей; а = 0,53,

b = 1,56, с = 1,09 для дизелей; = 1,05. 1,1 для бензиновых

двигателей без ограничителя угловой скорости коленчатого вала;

= 0,8 . 0,9 — для бензиновых двигателей с ограничителем уг-

ловой скорости коленчатого вала; =1,0 для дизелей.

С учетом найденной максимальной мощности двигателя и вы­бранной угловой скорости коленчатого вала ωN при максималь­ной мощности рассчитывают и строят внешнюю скоростную ха­рактеристику двигателя. Для определения эффективной мощнос­ти и эффективного крутящего момента двигателя используют фор­мулы, приведенные в разд. 2.

Определение передаточного числа главной передачи.Передаточ­ное число главной передачи находят исходя из максимальной ско­рости автомобиля на высшей передаче, заданной техническими условиями на проектируемый автомобиль.

Значение передаточного числа главной передачи определяют по формуле

где vmax — максимальная скорость автомобиля, км/ч; ωmах — мак­симальная угловая скорость коленчатого вала, рад/с; rк радиус колеса, м; ик— передаточное число коробки передач на высшей передаче; ид— передаточное число дополнительной коробки пе­редач на высшей передаче (ид = 1).

Полагают, что передаточные числа коробки передач на выс­шей передаче имеют следующие значения: ик = 1,0 — для прямой передачи и ик = 0,9. 1,0 — для повышающей передачи легковых автомобилей; ик= 1,0 — для грузовых автомобилей с числом пере­дач не более шести; ик= 0,7. 0,8 — для многоступенчатых коро­бок передач грузовых автомобилей.

Найденное расчетным путем передаточное число главной пе­редачи игдолжно иметь следующие значения: не более 5,0 — у легковых автомобилей; не более 7,0 — у грузовых автомобилей грузоподъемностью до 8 т; не более 8,0 — у грузовых автомобилей грузоподъемностью свыше 8 т.

Расчетное значение передаточного числа главной передачи не­обходимо сравнить с существующими передаточными числами главных передач автомобилей аналогичного типа и назначения. В том случае, если у новой модели автомобиля проектируется ве­дущий мост, то это значение передаточного числа уточняют с учетом числа зубьев шестерен главной передачи.

Выше был рассмотрен вариант определения передаточного числа главной передачи по заданной максимальной скорости ав­томобиля. Однако иногда задают не максимальную скорость авто­мобиля, а мощность двигателя при максимальной скорости дви­жения. В этом случае сначала рассчитывают мощность двигателя

Nv при максимальной угловой скорости коленчатого вала, а за­тем графическим способом опре­деляют максимальную скорость автомобиля.

Рис. 6.3. Определение максималь­ной скорости движения автомо­биля: А — точка, соответствующая макси­мальной скорости

С этой целью на оси ординат откладывают значение произведе­ния Nvηтр(рис. 6.3) и проводят горизонтальную линию. Затем для разных скоростей движения авто­мобиля рассчитывают значения мощности, затрачиваемой на пре­одоление сопротивления дороги Nд и сопротивления воздуха Nв,и строят кривую Nд + Nвсуммар­ных потерь. Точка А пересечения кривой Nд + Nви прямой Nvηтр со­ответствует максимальной скоро­сти автомобиля.

Определение передаточных чисел коробки передач.При опре­делении передаточных чисел коробки передач нужно помнить о том, что I передача предназначена для преодоления максималь­ного сопротивления дороги. Промежуточные передачи коробки пе­редач используются при разгоне автомобиля, преодолении повы­шенного сопротивления движению, работе автомобиля в услови­ях, не позволяющих двигаться свысокой скоростью (гололед, выбитая дорога, задержка впереди идущим транспортом и т.д.), а также при торможении двигателем на затяжных пологих спусках.

При расчете передаточных чисел сначала находят передаточ­ное число I передачи по заданному техническими условиями мак­симальному коэффициенту сопротивления дороги ψmax или мак­симальному динамическому фактору автомобиля по тяге Dmax на I передаче.

Это передаточное число определяют с помощью выражения, полученного из формулы для динамического фактора, пренебре­гая силой сопротивления воздуха, так как она незначительна при небольших скоростях движения:

где Ga вес автомобиля с полной нагрузкой, Н; Мmах— макси­мальный крутящий момент двигателя, Н∙м.

Полученное передаточное число I передачи коробки передач не гарантирует отсутствия буксования ведущих колес автомобиля. Чтобы не было буксования ведущих колес при движении на I пере­даче, необходимо выполнение следующего неравенства:

где Dсц— динамический фактор автомобиля по сцеплению; тp2 = = 1,20. 1,35 — коэффициент изменения реакций на задних веду­щих колесах; (Gа2 — вес, приходящийся на задние колеса автомо­биля с полной нагрузкой, Н; φх = 0,6. 0,8 — коэффициент сцеп­ления колес с дорогой.

Из этого соотношения определяют новое передаточное число I передачи, при котором буксования ведущих колес не будет:

После проверки передаточного числа I передачи на отсутствие буксования ведущих колес автомобиля из двух найденных переда­точных чисел I передачи коробки передач для дальнейших расче­тов выбирают меньшее.

Читайте также:  Полная мощность трансформатора обозначение

По этому значению передаточного числа I передачи и извест­ному значению передаточного числа высшей передачи определя­ют передаточные числа промежуточных передач.

Если высшая передача прямая (ип = 1), то для расчета переда­точных чисел промежуточных передач используют следующее выражение:

где п’ — число передач, не считая повышающую передачу и пере­дачу заднего хода; k — номер передачи.

Если высшая передача повышающая (иk

Источник

8.4: Передаточное отношение

Передачи используются не только для передачи мощности, но также для обеспечения возможности настройки механического преимущества для механизма. Как обсуждалось во введении к данному блоку, в некоторых случаях электромотор сам по себе обладает достаточной мощностью для выполнения конкретной задачи, но выходные характеристики электромотора не соответствуют требованиям. Электромотор, который вращается ОЧЕНЬ быстро, но при очень малом крутящем моменте , не подходит для подъема тяжелого груза. В таких случаях возникает необходимость использования передаточного отношения для изменения выходных характеристик и создания баланса крутящего момента и скорости.

Представьте себе велосипед: велосипедист обладает ограниченной мощностью, и хочет обеспечить максимальное использование этой мощности в любой момент времени.

Путем изменения механического преимущества изменяется скорость движения. Мощность представляет собой количество проделанной работы в единицу времени. Чем больше количество работы. тем ниже скорость ее выполнения.

В примере 8.1 показано, что если на стороне входа рычаг сместится на 1 метр, на стороне выхода рычаг сместится на 4 метра. Разница пропорциональна соотношению между длинами рычагов.

Длина на выходе / Длина на входе = 8 / 2 = 4

Интересно то, что оба расстояния преодолеваются за одно и то же время. Давайте представим, что смещение рычага на входе на 1 метр происходит за 1 секунду, так что скорость движения на входе составляет 1 метр в секунду. В то же время, на выходе смещение на 4 метра также происходит за 1 секунду, так что скорость движения здесь составляет 8 метров в секунду. Скорость на выходе БОЛЬШЕ скорости на входе за счет соотношения между длинами рычагов.

В примере 8.2 представлена та же система, что и в примере 8.1, но теперь на вход действует сила, равная 4 ньютонам. Какова равнодействующая сила на выходе?

Прежде всего, необходимо рассчитать приложенный момент в центре вращения, вызванный входной силой, с помощью формул из Блока 7:

Крутящий момент = Сила х Расстояние от центра гравитации = 4 Н х 2 м = 8 Н-м

Далее, необходимо рассчитать равнодействующую силу на выходе:

Сила = Крутящий момент / Расстояние = 8 Н-м / 8 м = 1 ньютон

Глядя на эти два примера, мы видим, что если система смещается на 1 метр под действием входной силы, равной 4 ньютона, то на выходе она сместится на 4 метра под действием силы, равной 1 ньютон. При меньшей силе рычаг смещается быстрее!

Мы можем видеть, как механическое преимущество (выраженное в форме рычагов) может быть использовано для управления входной силой в целях получения требуемого выхода. Передачи работают по тому же принципу.

Цилиндрическая прямозубая шестерня по сути представляет собой серию рычагов. Чем больше диаметр шестерни, тем длиннее рычаг.

Как видно из примера 8.3, результатом крутящего момента, приложенного к первой шестерне, является линейная сила, возникающая на кончиках ее зубьев. Эта же сила воздействует на кончики зубьев шестерни, с которой зацепляется первая шестерня, заставляя вторую вращаться по действием крутящего момента. Диаметры шестерен становятся длиной рычагов, при этом изменение крутящего момента равносильно соотношению диаметров. Если малые шестерни приводят в движение больше шестерни, крутящий момент увеличивается. Если большие шестерни приводят в движение малые шестерни, крутящий момент уменьшается.

В примере 8.4, если входная 36-зубая шестерня поворачивается на расстояние одного зуба (d = ширина 1 зуба), это означает, что она поворачивается на 1/36-ю своего полного оборота (а1 = 360 / 36 = 10 градусов). Поворачиваясь, она приводит в движение 60-зубую шестерню, заставляя последнюю смещаться также на 1 зуб. Тем не менее, для 60-зубой шестерни это означает смещение всего лишь на 1/60-ю полного оборота (а2 = 360 / 60 = 6 градусов).

Когда малая шестерня проходит определенное расстояние в заданный интервал времени, большая шестерня при этом проходить меньшее расстояние. Это означает, что большая шестерня вращается медленнее малой. Этот принцип работает в обоих направлениях. Если малые шестерни приводят в движение больше шестерни, скорость понижается. Если большие шестерни приводят в движение малые шестерни, скорость повышается.

Из примеров 8.1 — 8.4 видно, что отношение между размерами двух зацепляющихся между собой шестерен пропорционально изменению крутящего момента и скорости между ними. Это называется передаточным числом.

Как обсуждалось выше, количество зубьев шестерни прямо пропорционально ее диаметру, поэтому для расчета передаточного отношения вместо диаметра можно просто считать зубья.

Передаточное отношение выражается как (зубья ведущей шестерни) : (зубья ведомой шестерни), поэтому представленная выше пара шестерен может быть описана как 12:60 (или 36 к 60).

Передаточное число рассчитывается по формуле (зубья ведомой шестерни) / (зубья ведущей шестерни)

Поэтому передаточное число = зубья ведомой шестерни / зубья ведущей шестерни = 60/36 = 1,67

Как обсуждалось выше, передаточное отношение выражается как (зубья ведущей шестерни) : (зубья ведомой шестерни), так что пара шестерен, представленная выше, может быть выражена как 12:60 (или 12 к 60).

Передаточное число рассчитывается по формуле (зубья ведомой шестерни) / (зубья ведущей шестерни)

Поэтому передаточное число = Зубья ведомой шестерни / Зубья ведущей шестерни = 60/12 = 5

Глядя на пример, представленный выше.

Предельный перегрузочный момент второго вала может быть рассчитан по формуле:

Выходной момент = Входной момент х Передаточное число

Выходной момент = 1,5 Н-м х 5 = 7,5 Н-м

Свободная скорость второго вала может быть рассчитана по формуле:

Выходная скорость = Входная скорость / Передаточное число = 100 об/мин / 5 = 20 об/мин

Второй вал, таким образом, вращается со свободной скоростью 20 об/мин, при этом предельный перегрузочный момент равен 7,5 Н-м. При понижении скорости крутящий момент увеличивается.

Для второго примера расчеты могут быть произведены тем же способом.

Передаточное число = Зубья ведомой шестерни / Зубья ведущей шестерни = 12/60 = 0,2

Выходной момент = Входной момент х Передаточное число = 1,5 Н-м х 0,2 = 0,3 Н-м

Выходная скорость = Входная скорость / Передаточное число = 100 об/мин / 0,2 = 500 об/мин

Второй вал, таким образом, вращается со свободной скоростью 500 об/мин, при этом предельный перегрузочный момент равен 0,3 Н-м. При повышении скорости крутящий момент уменьшается.

Источник