Меню

Измерение активной мощности реферат

Измерение мощности и энергии

Автор: Пользователь скрыл имя, 18 Ноября 2010 в 21:04, реферат

Описание работы

ОБЩИЕ СВЕДЕНИЯ. ИЗМЕРЕНИЕ МОЩНОСТИ В ЦЕПЯХ ПОСТОЯНОГО ТОКА И ПЕРЕМЕННОГО ТОКА ПРОМЫШЛЕННОЙ ЧАСТОТЫ. ИЗМЕРЕНИЕ МОЩНОСТИ В ЦЕПЯХ ПЕРЕМЕННОГО ТОКА ПОВЫШЕННОЙ И ВЫСОКОЙ ЧАСТОТ. ИЗМЕРЕНИЕ ЭНЕРГИИ ОДНОФАЗНОГО ПЕРЕМЕННОГО ТОКА. ИЗМЕРЕНИЕ АКТИВНОЙ МОЩНОСТИ И ЭНЕРГИИ В ТРЕХФАЗНЫХ ЦЕПЯХ.

Работа содержит 1 файл

реферат клера.doc

Министерство образования Российской Федерации

Пензенский государственный университет

Кафедра «Метрологи и системы качества»

ИЗМЕРЕНИЕ МОЩНОСТИ И ЭНЕРГИИ

1 ОБЩИЕ СВЕДЕНИЯ

Измерение мощности осуществляется в процессе эксплуатации различной измерительной, электротехнической, радиоприемной и передающей аппаратуры. Диапазон измеряемых мощностей 10 -16 —10 +9 Вт в цепях постоянного и переменного токов высокой частоты, в импульсных цепях.

Методы измерения существенно отличаются друг от друга в зависимости от параметров цепи, в которой производится измерение мощности, предела изменения мощности и частотного диапазона.

В цепях постоянного тока мощность потребления Р нагрузки R определяется произведением тока I в нагрузке на падение напряжения U на ней:

P=UI=I 2 R. (1.1)

В цепях переменного тока мгновенное значение мощности потребления

Если u(t) и i(t) — периодические функции времени с периодом Т, то среднее значение мощности потребления за период называют мощностью или активной мощностью Р. Мощность Р с мгновенным значением мощности p(t) связана выражением

В цепях однофазного синусоидального тока измеряют активную P, реактивную Q и полную S мощности:

где U, I — среднеквадратические значения напряжения и тока в цепи; — сдвиг по фазе между напряжением и током в нагрузке; R, X, Z — активное, реактивное, полное сопротивления нагрузки.

Чаще всего ограничиваются измерением активной мощности.

В цепях несинусоидального периодического тока при условии, что функции u(t) и i(t) можно разложить в ряд Фурье, формулы для определения активной и реактивной мощностей будут иметь вид

где Uo, Io — постоянные составляющие напряжения и тока; Uk, Ik — соответственно среднеквадратические значения напряжения и тока k-й гармоники; — сдвиг по фазе k-й гармоники.

В цепях, питаемых напряжением в виде периодической последовательности однополярных прямоугольных импульсов, усреднение мощности p(t) осуществляют не только по периоду следования Т, но и по длительности импульса tИ. При этом мощность, усредненную по периоду Т следования импульсов, называют средней мощностью или мощностью , а мощность, усредненную за время длительности импульса, — импульсной мощностью: . Значения мощностей Р и Ри

связаны между собой соотношением

Обычно среднюю мощность измеряют и, зная скважность импульсов, вычисляют импульсную мощность. При импульсах, отличных от прямоугольной формы, мощность определяют по эквивалентному прямоугольному импульсу той же амплитуды, длительность которого равна интервалу времени между точками огибающей импульса на уровне 0,5 ее амплитуды.

Мощность измеряется в абсолютных единицах — ваттах, производных ватта и относительных единицах — децибелваттах (или децибелмилливаттах) ± = 101g(P/Ро)> где Р — абсолютное значение мощности в ваттах (или милливаттах), Po — нулевой (отсчетный) уровень мощности, равный 1 Вт (или 1 мВт), связанный с абсолютными нулевыми уровнями напряжения Uo и тока I через стандартное сопротивление Ro соотношением

При Po = 1 мВт, сопротивлении Ro = 600 Ом напряжение Uo =0,775 В; — число децибел со знаком «+», если Р> Po , и со знаком «—», если Р

2 ИЗМЕРЕНИЕ МОЩНОСТИ В ЦЕПЯХ ПОСТОЯНОГО ТОКА И ПЕРЕМЕННОГО ТОКА ПРОМЫШЛЕННОЙ ЧАСТОТЫ

Мощность в цепях постоянного тока можно определить косвенным путем по показаниям вольтметра и амперметра (рис. 1.1, а, б). При таком измерении мощности возникает значительная погрешность измерения, так как погрешности приборов суммируются и, кроме того, возникает погрешность за счет собственной мощности потребления этими приборами.

Мощность потребления нагрузки

Мощность Рх, вычисленная по показаниям приборов (рис. 1.1, а),

Px = UVJA = (IA + I)1=UIV + UI = PV + P (1.8а)

больше действительного значения мощности потребления нагрузки на значение мощности Pv потребления вольтметра (lv — ток в цепи вольтметра). Погрешность определения мощности в нагрузке тем меньше, чем больше входное сопротивление вольтметра.

Мощность Рх, вычисленная по показаниям приборов (рис. 1.1,б),

Px = UVJA = (UA + U)1=UAI + UI = PA + P (1.8б)

больше действительного значения мощности потребления нагрузки на значение мощности Ра потребления амперметра (Ua — падение напряжения на амперметре). Погрешность определения мощности в нагрузке тем меньше, чем меньше входное сопротивление амперметра. Поэтому схему, изображенную на рис. 1.1, а, применяют для измерения мощности при малых сопротивлениях нагрузки, а схему, изображенную на рис. 1.1,6 — при больших сопротивлениях.

Если известны входные сопротивления приборов, то можно внести к их показаниям соответствующие поправки и уменьшить погрешность определения мощности, т. е. получить более точный результат измерения.

Читайте также:  Ferroli регулировка мощности розжига

Для измерения мощности в цепях постоянного и переменного токов применяют электродинамические ваттметры.

2.1 Измерение мощности в цепи однофазного синусоидального тока. Для измерения мощности неподвижную катушку ваттметра включают последовательно с нагрузкой, мощность которой необходимо измерить, а подвижную катушку—параллельно к нагрузке (рис. 1.2,а).

В соответствии со схемой включения ток в цепи неподвижной катушки равен току нагрузки I1=I, а в цепи подвижной катушки (приближенно считая ее сопротивление активным Rwv): I2=Iv = U/Rwv. Тогда угол сдвига фаз между I1 и I2 равен углу сдвига фаз между U и I, т. е. (рис. 1.2,б). Следовательно, угол от-: клонения подвижной части ваттметра.

находится в линейной зависимости от значения измеряемой мощности Р.

Для равномерности шкалы ваттметра необходимо, чтобы =const, тогда уравнение (1.9а) примет следующий вид:

Это выражение справедливо для ваттметров переменного и постоянного токов (cos = 1).

В реальных условиях подвижная катушка ваттметра обладает небольшой индуктивностью: Lw = 3 ¸ 10 мГн.

Полное сопротивление обмотки катушки

где Rдоб — добавочное сопротивление, поэтому ток в цепи катушки I2 отстает от напряжения U на некоторый угол . Векторная диаграмма электродинамического ваттметра будет иметь вид, изображенный на рис. 1.2, в. Из диаграммы следует, что . Следовательно, угол отклонения подвижной части

Из данного выражения следует, что при одном и том же значении измеряемой мощности,- но при различных значениях показания прибора различны. Значения z и являются функциями частоты, однако при частоте до 100 Гц погрешность, обусловленная этой зависимостью, незначительна, так как и ею можно пренебречь. При этом следует учитывать только погрешность, определяемую углом б, называемую угловой погрешностью измерения мощности и вычисляемую следующим образом:

где Рх — измеренное значение мощности; Р — действительное значение мощности.

Ввиду малости угла приближенно можно считать, что , тогда после преобразования

Из (1.12) следует, что угловая погрешность измерения мощности возрастает с увеличением угла .

Для уменьшения угловой погрешности в цепь подвижной катушки включают компенсационную емкость Ск (см. рис, 1.2, а). Сопротивление параллельной цепи ваттметра:

При полной компенсации сопротивление Z должно быть активным, следовательно,

Вследствие малой индуктивности Lwv подвижной катушки ваттметра условие (1.14) выполняется при таких Rk и Ск, что , поэтому

Из (1.15) следует, что компенсация осуществляется в довольно широком диапазоне частот, пока справедливо неравенство

В ваттметре при изменении направления тока в одной из катушек изменяется знак угла отклонения подвижной части, поэтому зажимы обмоток прибора, закорачивание которых приводит к правильному отклонению стрелки, называют генераторными и обозначают звездочками. Обычно в цепь подвижной катушки ваттметра вводят переключатель направления тока, позволяющий менять направление вращающего момента и получать отклонение стрелки в правильную сторону.

Включение неподвижной катушки ваттметра последовательно с нагрузкой (см. рис. 1.2, а) возможно только при токах нагрузки 10—20 А (при больших токах нагрузки неподвижную катушку ваттметра включают через трансформатор тока). При измерении мощности в цепях высокого напряжения (свыше 600 В) подвижную катушку ваттметра включают не непосредственно в измеряемую цепь, а через трансформатор напряжения, а неподвижную катушку ваттметра — через измерительный трансформатор тока <(независимо от значения тока нагрузки).

Включение ваттметра через измерительные трансформаторы тока ТрТ и напряжения ТрН показано на рис. 1.3.

Значение измеряемой мощности определяют по показанию ваттметра, умноженному на произведение коэффициентов трансформации трансформаторов тока и напряжения:

Источник



Измерение активной и реактивной мощности

2. Измерение активной и реактивной мощности

Измерение реактивной мощности осуществляется с помощью специального прибора варметра, также можно определить косвенным методом с помощью ряда приборов вольтметра, амперметра, фазометра.

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электрооборудование изменениями энергии электромагнитного поля в цепях переменного тока:

Единица измерения реактивной мощности — вольт-ампер реактивный (вар). Реактивная мощность в электрических сетях вызывает дополнительные активные потери и падение напряжения. В электроустановках специального назначения (индукционные печи) реактивная мощность значительно больше активной. Это приводит к увеличению реактивной составляющей тока и вызывает перегрузку источников электроснабжения. Для устранения перегрузок и повышения мощности коэффициента электрических установок осуществляется компенсация реактивной мощности.

Чтобы правильно определить необходимое значение мощности установки компенсации реактивной мощности надо произвести измерения в электросети.

Применение современных электрических измерительных приборов на микропроцессорной технике позволяет производить более точную оценку величины энергии в сети.

Анализатор качества энергии и параметров сети потребителей является универсальной измерительной системой, предназначенной для измерения, хранения в памяти и контроля электрических параметров в электросетях с низким и средним напряжением. Измерение осуществляется в однофазных и трёхфазных сетях. Одним из главных достоинств анализатора качества энергии и параметров сети потребителей являются высокая точность измерений, компактные размеры и возможность измерения гармоник тока и напряжения в сети. Один анализатор качества энергии и параметров сети потребителей совмещает в себе 13 различных измерительных приборов: амперметр, вольтметр, ваттметр, измерители реактивной и полной мощности, коэффициента мощности cos φ, частотомер, анализатор гармоник тока и напряжения, счётчики активной, реактивной и полной потребляемой электроэнергии. Трёхфазная электронная измерительная система прибора измеряет и оцифровывает действующие значения напряжения и тока в трёхфазной сети с частотой 50/60 Гц. Прибор производит 2 измерения в течение секунды. Из полученных значений микропроцессором высчитываются электрические параметры. Максимальные, минимальные значения параметров и программные данные сохраняются в памяти. Выбранные измеряемые значения, а также данные о перебоях в сети записываются в буферную память с указанием даты и времени. После чего данную информацию можно просмотреть и проанализировать на мониторе компьютера или распечатать на принтере.

Читайте также:  Как увеличить мощность скания 340

Измерение мощности должно производиться в цепях:

1) генераторов — активной и реактивной мощности.

При установке на генераторах мощностью 100 МВт и более щитовых показывающих приборов их класс точности должен быть не хуже 1,0.

На электростанциях мощностью 200 МВт и более должна также измеряться суммарная активная мощность.

Рекомендуется измерять суммарную активную мощность электростанций мощностью менее 200 МВт при необходимости автоматической передачи этого параметра на вышестоящий уровень оперативного управления;

2) конденсаторных батарей мощностью 25 Мвар и более и синхронных компенсаторов — реактивной мощности;

3) трансформаторов и линий, питающих СН напряжением 6 кВ и выше тепловых электростанций, — активной мощности;

4) повышающих двухобмоточных трансформаторов электростанций — активной и реактивной мощности. В цепях повышающих трехобмоточных трансформаторов (или автотрансформаторов с использованием обмотки низшего напряжения) измерение активной и реактивной мощности должно производиться со стороны среднего и низшего напряжений.

Для трансформатора, работающего в блоке с генератором, измерение мощности со стороны низшего напряжения следует производить в цепи генератора;

5) понижающих трансформаторов 220 кВ и выше — активной и реактивной, напряжением 110-150 кВ — активной мощности.

В цепях понижающих двухобмоточных трансформаторов измерение мощности должно производиться со стороны низшего напряжения, а в цепях понижающих трехобмоточных трансформаторов — со стороны среднего и низшего напряжений.

На подстанциях 110-220 кВ без выключателей на стороне высшего напряжения измерение мощности допускается не выполнять. При этом должны предусматриваться места для присоединения контрольных показывающих или регистрирующих приборов;

6) линий напряжением 110 кВ и выше с двусторонним питанием, а также обходных выключателей — активной и реактивной мощности;

7) на других элементах подстанций, где для периодического контроля режимов сети необходимы измерения перетоков активной и реактивной мощности, должна предусматриваться возможность присоединения контрольных переносных приборов.

При установке щитовых показывающих приборов в цепях, в которых направление мощности может изменяться, эти приборы должны иметь двустороннюю шкалу.

Должна производиться регистрация:

1) активной мощности турбогенераторов (мощностью 60 МВт и более);

2) суммарной мощности электростанций (мощностью 200 МВт и более).

Источник

Измерение мощности постоянного тока и активной мощности однофазного переменного тока

Методика определения мощности, выделяющейся на участке цепи при протекании через него постоянного тока, используемые величины и их расчет. Измерение активной мощности однофазного переменного тока. Применение электродинамических стрелочных приборов.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 26.02.2013
Размер файла 373,4 K
  • посмотреть текст работы
  • скачать работу можно здесь
  • полная информация о работе
  • весь список подобных работ

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Измерение мощности постоянного тока и активной мощности однофазного переменного тока

Измерение мощности в цепях постоянного тока

Величина непосредственно измеряемая. Единица измерения в системе СИ — Ватт [Вт].

Рис. 1. Электродинамический стрелочный прибор

Активная мощность, которая выделяется на участке цепи постоянного тока, может быть оценена в результате измерения количества тепла, выделяемого этим участком цепи. Прямые колориметрические измерения оказываются длительными и трудоемкими, поэтому для измерения мощности используют ее зависимость от величин тока и напряжения:

Читайте также:  Подбор акб по мощности двигателя

Используя эту формулу, можно рассчитать мощность, выделяющуюся на участке цепи при протекании через него постоянного тока, предварительно измерив величину тока амперметром и с помощью вольтметра определив падение напряжения на этом участке цепи.

Измерение активной мощности однофазного переменного тока

Активная мощность в однофазной цепи переменного тока измеряется путем включения электродинамического ваттметра в соответствии с рис. 1. В общем случае через катушки электродинамического измерителя будут протекать токи, имеющие фазовый сдвиг ц

вследствие чего мгновенное значение вращающего момента не будет постоянным во времени:

Из-за собственного момента инерции подвижная рамка прибора повернется на угол б, пропорциональный среднему значению вращающего момента M

где — действующие значения токов соответственно. Поскольку , угол поворота подвижной катушки б, указываемый стрелкой прибора, оказывается пропорциональным активной мощности P в исследуемой цепи, определяемой выражением P = UI1cos?.

Почему для измерения мощности широко применяют электродинамические стрелочные приборы, а не комбинацию двух приборов — вольтметра и амперметра.

Электродинамический стрелочный ваттметр

В цепях постоянного тока для измерения мощности широко применяются электродинамические стрелочные приборы. Прибор (рис. 1) содержит две катушки — неподвижную (1), выполненную из медного обмоточного провода большого сечения с общим числом витков сопротивление которой можно считать пренебрежимо малым, и подвижную (2) из витков тонкого провода с сопротивлением r. Подвижная катушка выполняется в виде прямоугольной рамки со сторонами a и b и к ней прикрепляется стрелка прибора (3). При протекании тока через неподвижную катушку в ней создается магнитный поток Ц, пронизывающий витки подвижной катушки. Если через подвижную катушку будет протекать ток , то к каждой стороне b рамки будет приложена сила Ампера (1.1), возникнет вращающий момент (1.2) и рамка повернется на угол, определяемый рассмотренным ранее условием равенства моментов сил

где — удельный момент противодействия пружины (4), a — момент, создаваемый в результате взаимодействия магнитного потока Ц и рамки с током:

где W — электромагнитная энергия двух контуров — катушек с токами и , имеющих собственные индуктивности , и взаимную индуктивность :

Поскольку собственные индуктивности катушек не зависят от их взаимного положения,

Отметим, что множитель определяется формой катушек и их взаимным положением. Для того, чтобы шкала прибора была линейной, стремятся обеспечить выполнение условия Необходимо учитывать важную особенность применения приборов такого типа: они могут работать как в цепях постоянного, так и в цепях переменного тока.

Включив электродинамический измеритель в цепь постоянного тока так, как это показано на рис. 2, можно обеспечить измерение мощности P, выделяющейся на сопротивлении нагрузки R при протекании через него тока I. Точками на схеме отмечены начальные выводы обмоток катушек — подвижной, имеющей сопротивление , и неподвижной, имеющей сопротивление . Такое соединение катушек обеспечивает отклонение стрелки измерителя в правильном направлении.

где k — коэффициент пропорциональности, а — добавочное сопротивление.

Рис. 2. Схема подключения электродинамического измерителя для измерения мощности

электродинамический мощность переменный однофазный

1. Бурый Е.В., Енин В.Н. Методы и средства измерения электрических величин в электротехнике. — М.; издатель(и) — МГТУ им. Н.Э. Баумана, 2011. — электронное издание. http://wwwcdl.bmstu.ru/rl4/Measurements.pdf.

Размещено на Allbest.ru

Подобные документы

Аналитические выражения как основа методов измерений мощности и энергии в цепях постоянного и однофазного тока. Характеристика и устройство приборов, использование электродинамических и ферродинамических механизмов. Измерение энергии в трехфазных цепях.

курсовая работа [883,3 K], добавлен 10.05.2012

Измерение активной и реактивной мощности в сети переменного тока: формирование исходных данных для разработки МВИ, выбор методов и средств. Проект документа и основные требования к точности измерений, государственная система обеспечения их единства.

курсовая работа [44,8 K], добавлен 25.11.2011

Исследование процессов, происходящих в простейших электрических цепях переменного тока, содержащих последовательное соединение активных и индуктивных сопротивлений. Измерение общей силы тока, активной и реактивной мощности; векторная диаграмма напряжений.

лабораторная работа [79,2 K], добавлен 11.05.2013

Напряжение, ток, мощность, энергия как основные электрические величины. Способы измерения постоянного и переменного напряжения, мощности в трехфазных цепях, активной и реактивной энергии. Общая характеристика электросветоловушек для борьбы с насекомыми.

контрольная работа [2,2 M], добавлен 19.07.2011

Электрические цепи постоянного тока. Электромагнетизм. Однофазные и трехфазные цепи переменного тока. Электрические машины постоянного и переменного тока. Методические рекомендации по выполнению контрольных работ «Расчет линейных цепей постоянного тока».

методичка [658,2 K], добавлен 06.03.2015

Источник