Меню

Измерение мощности энергии электрической цепи

Измерение мощности и энергии в электрических цепях

date image2015-01-30
views image3687

facebook icon vkontakte icon twitter icon odnoklasniki icon

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Рис. 336. Схема для измерения мощности

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения — через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения. Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые — в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения — последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

Читайте также:  Как определить среднегодовой коэффициент мощности

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами Iв1 и Iв2, индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) — параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 — напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз ? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

Рис. 337. Ферродинамический счетчик электрической энергии

Рис. 338. Индукционный счетчик электрической энергии

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,— буквами Г.

Источник



Измерение электрической энергии

Измерение электрической энергии Для измерения электрической энергии применяются счетчики электроэнергии. Из различных систем счетчиков наибольшее распространение получили электродинамические счетчики для цепей постоянного тока и индукционные счетчики для цепей переменного и трехфазного тока.

Электрические счетчики представляют собой суммирующие приборы. Основное отличие их от показывающих приборов заключается в том, что угол поворота их подвижной части не ограничивается пружиной. С течением времени угол поворота нарастает, показание счетчика суммируется, причем каждому обороту подвижной части его соответствует определенное значение измеряемой величины.

Однофазный индукционный счетчик (рис 7-24) состоит из алюминиевого диска, укрепленного на оси, и двух электромагнитов; последовательного А и параллельного Б.

Ток потребителя I, проходя по обмотке электромагнита А, возбуждает магнитный поток ФI, пропорциональный току I. Ток в обмотке параллельного электромагнита воз буждает магнитный поток ФU, пропорциональный напряжению сети U.

Читайте также:  Стабилизатор напряжения перегрузка мощности

Рис. 7-24. Схема устройства и включения индукционного счетчика

Эти магнитные потоки, пронизывая диск, наводят в нем вихревые токи IА и Iб Ток IА ≡ ФII, а ток Iб ФU U. От взаимодействия тока IА с магнитным потоком ФU и тока Iб с потоком ФI создается вращающий момент, пропорциональный мощности потребителя:

М = Ʀ1 UI cos φ = Ʀ1Р

Этот момент вызывает вращение диска счетчика. При вращении диска в поле постоянного тормозного магнита М в диске индуктируются вихревые токи (рис. 3-20), взаимодействие которых с полем того же магнита М создает тормозной момент, пропорциональный скорости вращения диска счетчика n, т. е.

Схема счетного механизма

Постоянной нагрузке соответствует и постоянная скорость вращения счетчика, так как при этом имеет место равенство вращающего и тормозного моментов

Ʀ 1Р = Ʀ 2n

откуда следует, что

P = ((Ʀ 2n)/ Ʀ 1) n = Ʀ n

т.е. скорость вращения счетчика пропорциональна мощности потребителя.

Рис 7-25. Схема счетного механизма.

При мощности потребителя Р в течение времени , израсходованная им энергия

W = P t = Ʀ n t = ƦN

Таким образом израсходованная энергия пропорциональна числу оборотов диска счетчика N.

Ʀ = W/N

называемый постоянной счетчика, численно равен количеству энергии, израсходованной в сети за время одного оборота диска счетчика.

Израсходованная энергия регистрируется счетным механизмом (рис, 7-25), приводимым в движение от червячной передачи (или шестеренки) В, укрепленной на оси счетчика. Движение диска передается пяти роликам, на боковых поверхностях которых нанесены цифры от О до 9. Ролики свободно надеты на ось Л. Первый (на рис 7-25 — правый) скреплен с шестеренкой и при движении диска счетчика беспрерывно вращается. Один оборот первого ролика вызывает поворот второго ролика на 1 /10 часть оборота. Один оборот второго — вызывает поворот третьего ролика также на 1 /10 часть оборота и т. д. Ролики прикрыты алюминиевым щитком, через отверстия в котором видно только по одной цифре каждого ролика. Прочитанное через отверстия в щитке числовое значение дает величину энергии, учтенную счетчиком за весь период его работы с того момента, когда показания его соответствовали нулевому значению.

Схема устройства и включения двухэлементного однодискового счетчика

Рис 7-26. Схема устройства и включения двухэлементного однодискового счетчика.

Для определения энергии израсходованной за какой-то промежуток времени, нужно из показания счетчика в конце измерения вычесть показание, снятое в начале.

Согласно ГОСТ 6570-60 счетчики активной энергии делятся на классы точности 1, 2 и 2,5, а счетчики реактивной энергии — на классы 2 и 3.

Для измерения электрической энергии в трехфазных четырехпроводных цепях применяется трехэлементный счетчик. Он имеет три электромагнитные системы такие же, как и у однофазного счетчика, которые воздействуют на три диска, укрепленные на одной оси. Счетчик имеет один счетный механизм. Схема включения счетчика принципиально та же, что и трехэлементного ваттметра (рис. 7-20).

Для измерения энергии в трехфазных трех проводных цепях применяются двухэлемент ные двухдисковые или одноднсковые счетчики (рис 7-26).

Схема соединения счетчика реактивной энергии типа ИР

Двухэлементный счетчик можно заменить двумя однофазными счетчиками (парные счетчики). Схема включения

Рис 7-27. Схема соединения счетчика реактивной энергии типа ИР.

двухэлементного и парных счетчиков принципиально та же, что и двухэлементного ваттметра (рис. 7-23, б).

Измерение реактивной энергии трехфазного тока производится реактивными счетчиками, например типа ИР, схема которого дана на рис. 7-27.

Этот счетчик — индукционный двухэлементный имеющий по две обмотки на каждом из последовательных электромагнитов. Эти обмотки создают в сердечниках такие по величине и фазе магнитные потоки, которые совместно с потоками параллельных электромагнитов обеспечивают получение вращающего момента, пропорционального реактивной мощности. Счетный механизм непосредственно учитывает реактивную энергию.

Читайте также:  Можно ли увеличить мощность лодочного мотора sea pro

Расширение пределов измерения тока и напряжения ваттметров и счетчиков производится при помощи измерительных трансформаторов.

Статья на тему Измерение электрической энергии

Источник

Измерение мощности и энергии в электрических цепях

В цепи постоянного тока мощность может быть измерена с помощью амперметра и вольтметра, так как Р=I´U.

Вращающий момент ваттметра пропорционален произведению токов в катушках:

где I — ток в неподвижной катушке, практически равный току нагрузки; IU=U/rU — ток в подвижной катушке, т.е. в обмотке напряжения; rU — сопротивление цепи подвижной катушки. Следовательно,

где С — коэффициент пропорциональности.

Таким образом, вращающий момент ваттметра пропорционален мощности и его шкала может быть отградуирована непосредственно в ваттах или киловаттах.

Для измерения активной мощности в цепях переменного тока применяют ваттметры электродинамической системы. Их включают так же, как и при измерениях в цепи постоянного тока. Так как ток IU в подвижной катушке пропорционален напряжению U и практически совпадает с ним по фазе (сопротивление цепи обмотки напряжения ваттметра практически можно считать активным), а ток I в неподвижной катушке (токовой обмотке) равен току нагрузки, то вращающий момент ваттметра

где С — коэффициент пропорциональности.

Итак, вращающий момент ваттметра пропорционален измеряемой активной мощности Р, а противодействующий момент МПР пропорционален углу поворота α подвижной катушки (или стрелки прибора). Поэтому отклонение стрелки прибора пропорционально измеряемой мощности Р и, следовательно, шкалу ваттметра градуируют в ваттах или киловаттах.

В зависимости от характера нагрузки и схемы трехфазной цепи применяется несколько способов измерения мощности.

При симметричной нагрузке активную мощность в трехфазной цепи можно измерить путем замера мощности в одной фазе с помощью ваттметра.

После измерения показания ваттметра PW, умножают на 3:

В трехпроводной трехфазной цепи как при симметричной, так и несимметричной нагрузке и любом способе соединения потребителей активную мощность можно измерить с помощью двух ваттметров. Покажем, что алгебраическая сумма показаний ваттметров в этом случае равна активной мощности Р в трехпроводной трехфазной цепи.

Мгновенное значение мощности, измеряемое первым ваттметром, р1=uAB´iA. Мгновенная мощность, измеряемая вторым ваттметром, р2=uCB´iC. Сумма мгновенных значений мощностей, измеряемых двумя ваттметрами:

Если линейные напряжения uAB и uCB, на которые подключены обмотки напряжения ваттметров, выразить через фазные напряжения

Так как в трехпроводной трехфазной цепи iA+iB+iC = 0, то iA+iС= — iB, а окончательное выражение мощности, измеряемой двумя ваттметрами,

Из этого следует, что суммарная мгновенная мощность, измеряемая двумя ваттметрами, равна активной мощности в трехфазной цепи при соединении потребителей звездой.

Подобные же рассуждения можно повторить и для соединения потребителей треугольником, получив при этом одинаковый конечный результат.

Активная мощность трехфазной системы, выраженная через действующие значения напряжений и токов и замеренная по способу двух ваттметров, равна:

Измерять активную мощность в четырехпроводной трехфазной цепи при несимметричной нагрузке можно тремя ваттметрами. Так как в этом случае каждый из ваттметров измеряет активную мощность одной фазы, то мощность в четырехпроводной трехфазной цепи

Реактивную мощность в трехпроводной трехфазной цепи при симметричной нагрузке можно измерить одним ваттметром, причем токовая обмотка включается в линейный провод А, а обмотка напряжения — на линейное напряжение UВС (т.е. на «чужое» напряжение). Из векторной диаграммы видно, что сдвиг фаз между током IА и напряжением UBC составляет α = 90° — φ. Тогда показания ваттметра

Для вычисления реактивной мощности трехфазной трехпроводной цепи при симметричной нагрузке необходимо показания ваттметра умножить на :

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник