Меню

Измерение сопротивления обмоток генераторов постоянному току

Измерение сопротивления постоянному току

Основными методами измерения сопротивления постоянному току являются: косвенный метод; метод непосредственной оценки и мостовой метод.
Выбор метода измерений зависит от ожидаемого значения измеряемого сопротивления и требуемой точности.
Наиболее универсальным из косвенных методов является метод амперметра-вольтметра.
Метод амперметра-вольтметра. Основан на измерении тока, протекающего через измеряемое сопротивление и падения напряжения на нем. Применяют две схемы измерения: измерение больших сопротивлений (рис. 1.9,а) и измерение малых сопротивлений (рис. 1.9,б). По результатам измерения тока и напряжения определяют искомое сопротивление.
Для схемы рис. 1.9,а искомое сопротивление и относительная методическая погрешность измерения определяются
измерение сопротивления -- искомое сопротивление и относительная методическая погрешность измерения определяются
где Rx — измеряемое сопротивление; Rа — сопротивление амперметра.
Для схемы рис. 1.9,6 искомое сопротивление и относительная методическая погрешность измерения определяются
измерение сопротивления -- искомое сопротивление и относительная методическая погрешность измерения определяются
где Rв -сопротивление вольтметра.
Из определения относительных методических погрешностей следует, что измерение по схеме рис. 1.9,а обеспечивает меньшую погрешность при измерении больших сопротивлений, а измерение по схеме рис. 1.9,6 — при измерении малых сопротивлений.
Погрешность измерения по данному методу рассчитывается по выражению
измерение сопротивления -- Погрешность измерения
где γв, γa, — классы точности вольтметра и амперметра;
Uп, I п пределы измерения вольтметра и амперметра.
Используемые при измерении приборы должны иметь класс точности не более 0,2. Вольтметр подключают непосредственно к измеряемому сопротивлению. Ток при измерении должен быть таким, чтобы показания отсчитывались по второй половине шкалы. В соответствии с этим выбирается и шунт, применяемый для возможности измерения тока прибором класса 0,2. Во избежании нагрева сопротивления и, соответственно, снижения точности измерений, ток в схеме измерения не должен превышать 20% номинального.
Схема измерения больших (а) и малых (б) сопротивлений методом амперметра-вольтметра
Рис. 1.9. Схема измерения больших (а) и малых (б) сопротивлений методом амперметра-вольтметра.
Рекомендуется проводить 3 — 5 измерений при различных значениях тока. За результат, в данном случае, принимается среднее значение измеренных сопротивлений.
При измерениях сопротивления в цепях, обладающих большой индуктивностью, вольтметр следует подключать после того как ток в цепи установится, а отключать до разрыва цепи тока. Это необходимо делать для того, чтобы исключить возможность повреждения вольтметра от ЭДС самоиндукции цепи измерения.

MRU-200 Измеритель параметров заземляющих устройств

измерение сопротивления проводников присоединения к земле и выравнивания потенциалов (металлосвязь) (2p);
измерение сопротивления заземляющих устройств по трёхполюсной схеме (3p);
измерение сопротивления заземляющих устройств по четырехполюсной схеме (4p);
измерение сопротивления многократных заземляющих устройств без разрыва цепи заземлителей (с применением токоизмерительных клещей);
измерение сопротивления заземляющих устройств методом двух клещей;
измерение сопротивления молниезащит (громоотводов) по четырехполюсной схеме импульсным методом;
измерение переменного тока (ток утечки);
измерение удельного сопротивления грунта методом Веннера с возможностью выбора расстояния между измерительными электродами; высокая помехоустойчивость;

Метод непосредственной оценки. Предполагает измерение сопротивления постоянному току с помощью омметра. Измерения омметром дают существенные неточности. По этой причине данный метод используют для приближенных предварительных измерений сопротивлений и для проверки цепей коммутации. На практике применяют омметры типа М57Д, М4125, Ф410 и др. Диапазон измеряемых сопротивлений данных приборов лежит в пределах от 0,1 Ом до 1000 кОм.
Для измерения малых сопротивлений, например сопротивление паек якорных обмоток машин постоянного тока, применяют микроомметры типа М246. Это приборы логометрического типа с оптическим указателем, снабженные специальными самозачищающими щупами.
Также для измерения малых сопротивлений, например переходных сопротивлений контактов выключателей, нашли применение контактомеры. Контактомеры Мосэнерго имеют пределы измерения 0 — 50000 мкОм с погрешностью менее 1,5%. Контактомеры КМС-68, КМС-63 позволяют производить измерения в пределах 500-2500 мкОм с погрешностью менее 5%.
Для измерения сопротивления обмоток силовых трансформаторов, генераторов с достаточно большой точностью применяют потенциометры постоянного тока типа ПП-63, КП-59. Данные приборы используют принцип компенсационного измерения, т. е. падение напряжения на измеряемом сопротивлении уравновешивается известным падением напряжения.

Схемы измерительных мостов

Мостовой метод. Применяют две схемы измерения — схема одинарного моста и схема двойного моста. Соответствующие схемы измерения представлены на рис. 1.10.
Для измерения сопротивлений в диапазоне от 1 Ом до 1 МОм применяют одинарные мосты постоянного тока типа ММВ, Р333, МО-62 и др. Погрешность измерений данными мостами достигает 15% (мост ММВ). В одинарных мостах результат измерения учитывает сопротивление соединительных проводов между мостом и измеряемым сопротивлением. Поэтому сопротивления меньше 1 Ом такими мостами измерить нельзя из-за существенной погрешности. Исключение составляет мост P333, с помощью которого можно производить измерение больших сопротивлений по двухзажимной схеме и малых сопротивлений (до 5 10 Ом) по четырехзажимной схеме. В последней почти исключается влияние сопротивления соединительных проводов, т. к. два из них входят в цепь гальванометра, а два других — в цепь сопротивления плеч моста, имеющих сравнительно большие сопротивления.

Рис. 1.10. Схемы измерительных мостов.
а — одинарного моста; б — двойного моста.
Плечи одинарных мостов выполняют из магазинов сопротивлений, а в ряде случаев (например, мост ММВ) плечи R2, R3 могут быть выполнены из калиброванной проволоки (реохорда), по которой перемещается движок, соединенный с гальванометром. Условие равновесия моста определяется выражением Rх = R3•(R1/R2). С помощью R1 устанавливают отношение R1/R2, обычно кратное 10, а с помощью R3 уравновешивают мост. В мостах с реохордом уравновешивания достигается плавным изменением отношения R3/R2 при фиксированных значениях R1.
В двойных мостах сопротивления соединительных проводов при измерениях неучитываются, что представляет возможность измерять сопротивления до 10-6 Ом. На практике применяют одинарно-двойные мосты типа P329, P3009, МОД-61 и др. с диапазоном измерений от 10-8 Ом до 104 МОм с погрешностью измерения 0,01 — 2%.
В этих мостах равновесие достигается изменением сопротивлений R1, R2, R3 и R4. При этом достигается равенства R1 = R3 и R2 = R4. Условие равновесия моста определяется выражением Rх= RN•(R1/R2). Здесь сопротивление RN — образцовое сопротивление, составная часть моста. К измеряемому сопротивлению Rх подсоединяют четыре провода: провод 2 — продолжение цепи питания моста, его сопротивление не отражается на точности измерений; провода 3 и 4 включены последовательно с сопротивлениями R1 и R2 величиной больше 10 Ом, так что их влияние ограничено; провод 1 является составной частью моста и его следует выбирать как можно короче и толще.
При измерениях сопротивления в цепях, обладающих большой индуктивностью, во избежание ошибок и для предотвращения повреждений гальванометра необходимо производить измерения при установившемся токе, а отключение — до разрыва цепи тока.
Измерение сопротивления постоянному току независимо от метода измерения производят при установившемся тепловом режиме, при котором температура окружающей среды отличается от температуры измеряемого объекта не более чем на ±3°С. Для перевода измеренного сопротивления к другой температуре (например, с целью сравнения, к 15°С) применяют формулы пересчета.

Читайте также:  Максимальный ток для utp

На методе амперметра-вольтметра основаны измерения приборами СОНЭЛ. Измерение больших сопротивлений — это измерители сопротивления электроизоляции серии MIC , малых сопротивлений — это микроомметры MMR-600, MMR-610 и др.. Измерители MMR оснащены источниками стабилизированого тока, аналогово-цифровыми преобразователями, токовыми и потенциальными разъемами подключения, переключателем направления тока для исключения погрешностей измерения в случаях с термо-ЭДС, управление от микроконтроллера, цифровая индикация результатов, связь с компьютером.
Погрешность измерения — 0,25 % с разрешением от 0,1 мкОм (MMR-610).

Источник

Измерение сопротивления обмоток постоянному току

Измерение сопротивления обмоток электрических машин постоянному току позволяет выявлять обрывы в обмотках, дефекты в соединениях и другие повреждения. Значения сопротивлений, которые измеряют при эксплуатации электрических машин, находятся в широком диапазоне — от сотых долей до сотен и тысяч ом.

На практике применяют несколько методов измерения сопротивления обмоток постоянному току: омметром, с помощью вольтметра и амперметра, одинарными или двойными мостами. Наименее точным является измерение сопротивления омметром, поэтому его применяют в большинстве случаев для предварительной оценки значения сопротивления. Омметры обычно рассчитаны на измерение сопротивлений от 1 Ом до 100 кОм.

Метод вольтметра-амперметра основан на измерении тока, проходящего через обмотку и потерь напряжения в ней. При применении этого метода используют два варианта схемы включения вольтметра. Амперметр всегда включают последовательно с измеряемой обмоткой и полностью заряженной батареей. Если сопротивление обмотки небольшое, вольтметр присоединяют согласно 1-му варианту на зажимы обмотки. В этом случае увеличение тока, измеряемого амперметром (вызванное включением вольтметра), незначительное, потому что вольтметр имеет большое сопротивление. Сопротивление обмотки для этого случая определяют по формуле
Сопротивление обмотки
где U — напряжение, которое показывает вольтметр, В; I — ток, измеряемый амперметром, A; Rв — сопротивление вольтметра, Ом.

При измерении больших сопротивлений применяют 2-й вариант, при котором вольтметр присоединяют к зажимам источника питания. При этом сопротивление обмотки определяют из выражения
измерении больших сопротивлений
где Rа — сопротивление амперметра, Ом.

Для исключения нагрева обмотки во время измерений ток в обмотке устанавливают не более 15—20% номинального. Метод вольтметра-амперметра обеспечивает сравнительно высокую точность измерения сопротивлений (0,3—0,5%), если при измерениях используют вольтметры и амперметры класса 0,5 или 0,2.

Метод одинарного моста наиболее часто применяют при измерении сопротивлений от 1 до 100 кОм. При измерении меньших сопротивлений точность измерения снижается. Так, мост РЗЗЗ, широко применяемый на практике при измерении сопротивлений в пределах 1—99990 Ом, обеспечивает класс точности 0,5, а при измерении меньших или больших сопротивлений его точность резко уменьшается. Для измерения сопротивлений менее 1 Ом применяют двойные мосты, обеспечивающие высокую точность измерений. При этом на результаты измерений не влияет сопротивление проводов, которые соединяют мост с измеряемой обмоткой, и сопротивление переходных контактов.

сопротивление обмоток постоянному току

Для получения сравнимых результатов наиболее удобно измерять сопротивление обмоток постоянному току в практически холодном состоянии электрических машин и аппаратов, когда температура обмоток отличается от температуры окружающего воздуха не более чем на 3° С. Если сопротивление обмотки при данной температуре необходимо привести к другой температуре, то удобно пользоваться формулой

где R — сопротивление при температуре, к которой нужно привести сопротивление обмотки, Ом; R1 — измеренное сопротивление обмотки, Ом; Θ1 — средняя температура обмотки при измерении, °С (К); Θ — температура, к которой необходимо привести сопротивление, °С (К); α — температурный коэффициент сопротивления материала проводов обмотки, град -1 (0,004 для меди и 0,00385 для алюминия).

Источник

Испытание машин постоянного тока

Испытание машин постоянного тока

Согласно требованиям СНиП, ПУЭ все электрические машины перед вводом в эксплуатацию должны пройти проверку на соответствие техническим условиям. Объем работ отличается в зависимости от характеристик оборудования: мощности, напряжения, состояния и назначения. Крупные машины испытываются в два этапа.

Во время испытания измеряется сопротивление изоляции обмоток, сопротивление обмоток постоянному току, обмотки испытываются повышенным напряжением промышленной частоты, проверяются системы охлаждения и смазки.

Обмотки проверяются на отсутствие обрыва, щетки на нейтрали и правильность чередования полюсов, измеряются воздушные зазоры.

Определение возможности включения без сушки машин постоянного тока

Возможность включения машины без сушки производится в соответствии с указаниями завода-изготовителя.

Измерение сопротивления изоляции

При измерении сопротивления мегаомметром значения должны соответствовать нормам и должны быть не менее 1 МОмкВ, но не менее 0,5 МОмкВ. Проверяется сопротивление изоляции каждой обмотки по отношению к заземленному корпусу и между отдельными обмотками.

Сопротивление изоляции бандажей

Измерение производится относительно корпуса и удерживаемых ими обмоток. Измеренное значение сопротивления изоляции должно быть не менее 0,5 Мом.

Испытание изоляции повышенным напряжением промышленной частоты

В соответствии с ПУЭ измерение сопротивления обмоток статора и ротора постоянному току у электродвигателей переменного тока производят в машинах на напряжение 2 кВ и выше и в машинах 300 кВт и более на все напряжения. В электродвигателях переменного тока мощностью 300 кВт и более проверяют сопротивление обмоток статора и ротора. У машин постоянного тока мощностью 200 кВт и возбудителях синхронных генераторов и компенсаторов проверяют сопротивление обмотки возбуждения и обмотки якоря. Измерения выполняют одинарным или двойным мостом постоянного тока или методом амперметра — вольтметра.

Измерение сопротивления постоянному току:

  • обмоток возбуждения. Значения сопротивления постоянному току по отдельным фазам не должны отличаться друг от друга и заводских данных более чем на ±2 %, а по отдельным параллельным ветвям — более чем на 5 %. Испытание обмоток повышенным напряжением промышленной частоты производят для проверки электрической прочности изоляции и приведены в ПУЭ.
  • обмотки якоря. Сопротивления должны отличаться не более чем на 10% за исключением случаев, когда колебания обусловлены схемой соединения обмоток;
  • реостатов и пускорегулировочных резисторов. Измеряется общее сопротивление, проверяется целость отпаек. Допускается отличие от данных завода-изготовителя не более чем на 10%.

Проверке подвергаются машины собранные и просушенные на месте установки, находящиеся в неподвижном положении в отключенном состоянии. Перед испытанием проверяют сопротивление изоляции, уточняя коэффициент абсорбции. Затем машину очищают и продувают сухим и чистым сжатым воздухом.

Когда испытания повышенным напряжением закончены обмотку следует разрядить, соединив ее с корпусом машины, и проверить сопротивление мегаомметром.

Машина проходит испытание, если за 1 минуту не произойдет пробоя или частичного нарушения изоляции. Результаты испытаний и измерений машин перед пуском оформляют, согласно СНиП, соответствующими протоколами и актами.

Читайте также:  Непроводники электрического тока примеры

Снятие характеристики холостого хода и испытание витковой изоляции

Подъем напряжения производится:

  • для генераторов постоянного тока до 130% номинального напряжения;
  • для возбудителей — до наибольшего (потолочного) или установленного заводом-изготовителем напряжения.

Напряжение между соседними коллекторными пластинами должно быть не выше 24 В. Продолжительность испытания — 3 мин. Допускается отклонение в пределах погрешности.

Снятие нагрузочной характеристики

Производится для возбудителей при нагрузке до значения не ниже номинального тока возбуждения генератора. Отклонение от заводской характеристики не нормируется.

Измерение воздушных зазоров между полюсами

Машины мощностью 200 кВт и более могут иметь зазор не более 10% среднего размера зазора, при измерении диаметрально противоположных точках. Не более 5% для возбудителей турбогенераторов.

Испытание на холостом ходу и под нагрузкой

Определяется предел регулирования частоты вращения или напряжения, который должен соответствовать заводским и проектным данным.

Источник



Измерение сопротивления обмоток постоянному току.

Сопротивление должно отличаться не более чем на 2% от сопротивления, полученного на таком же ответвлении других фаз, или от данных завода-изготовителя.
Измерением сопротивления постоянному току обмоток силовых трансформаторов выявляются дефекты:
в местах соединений ответвлений к обмотке;
в местах соединений выводов обмоток к выводам трансформатора;
в местах соединения отпаек к переключателю;
в переключателе — в контактах переключателя и его сочленениях;

обрывы в обмотках (например, в проводах параллельных ветвей).
Измерения сопротивления постоянному току производятся мостовым методом или методом амперметра-вольтметра. Измерения производятся приборами с классом точности 0,5. Пределы измерений приборов должны быть выбраны такими, чтобы отсчеты проводились во второй половине шкалы. Величина тока не должна превышать 20% номинального тока объекта измерения во избежание искажения результатов измерения из-за нагрева. Для исключения ошибок, обусловленных индуктивностью обмоток, сопротивление нужно измерять при полностью установившемся токе.

Сопротивления обмоток постоянному току различных фаз на одноименных ответвлениях не должны отличаться друг от друга или от предыдущих (заводских) результатов измерений более, чем ±2%Пересчет сопротивления на другую температуру производят по формуле

где R1 — сопротивление, измеренное при температуре t1,
R2- сопротивление, приводимое к температуре t2;
К — коэффициент равный 245 для обмоток из алюминия, и 235 — из меди.

При наличии выведенной нейтрали измерение производится между фазовым выводом и нулевым. Измеренное линейное значение сопротивления между линейными выводами пересчитывается на фазное по формулам при соединении обмоток трансформатора в звезду


при соединении обмоток трансформатора в треугольник

где Rф, — приведенное фазовое сопротивление;
Rизм — измеренное сопротивление между линейными выводами.

119.Способы сушки изоляции электродвигателей.

Сушка внешним нагреванием или косвенным способом. Для нагревания этим методом используются различные нагревательные устройства: сопротивления, лампы накаливания, сушильные шкафы и т. д. При сушке этим способом следует избегать местных нагревов, связанных с близостью источников тепла.

Для более равномерного удаления влаги следует температуру поднимать постепенно. При этом допускается нагревать обмотки до более высоких температур. Максимальная температура нагрева, измеренная термометром не должна превышать 70 градусов.

Сушка внешним нагревом может применяться в качестве самостоятельного метода, а также совместно с другими методами. Этот метод эффективен только присушки машин малой мощности, он прост и надежен, но требует длительного времени и большого расхода энергии.

Сушка током от посторонних источников или токовая сушка. Этим методом можно сушить электрические машины всех типов. Метод применяется тогда, когда не представляется возможным вращать машину и имеется источник пониженного напряжения достаточной силы тока. Из-за неподвижности машины ухудшаются условия охлаждения, поэтому необходимый для сушки ток значительно меньше номинального (0,5. 0,7)Iном. При сушке нельзя отключать ток рубильником или автоматическим выключателем во избежании пробоя изоляции, включение нужно производить, постепенно повышая, а отключение постепенно понижая подводимое напряжение.

Для сушки током трехфазного пониженного напряжения электродвигатели с короткозамкнутым ротором с двойной беличьей клеткой нужно вынуть ротор во избежание возможного перегрева пусковой обмотки.

При сушке постоянным током ротор должен быть неподвижен.

Если выведены 6 концов статорной обмотки, то все фазы должны быть включены последовательно и по ним пропускается ток (см. рисунки 8.1а, б, в, г).

Если разъединить обмотки не представляется возможным, то сушку производят по схемам, приведенным на рисунке 8.1 в) и г). При этом необходимо периодически переключать фазы обмотки для равномерного нагрева. При этом необходимо периодически переключать фазы обмотки для равномерного нагрева. Переключение производится каждые 2. 4 часа в зависимости от величины машины и скорости превышения температуры в начале сушки. Измерение температуры при таком способе сушки следует производить во всех фазах. Величина необходимого напряжения определяется по омическому сопротивлению обмотки и по требуемой силе тока. Схема питания должна предусматривать возможность регулирования тока на длительную работу. Все приведенные схемы можно применять и для сушки однофазным током или с помощью сварочного трансформатора.

При примении однофазного тока следует учесть, что при сушке короткозамкнутого электродвигателя с двойной клеткой по указанной схеме ротор должен быть вынут. При сушке в открытый треугольник ротор может быть оставлен в статоре. Схема токовой сушки при помощи однофазного источника тока приведена на рисунке 8.2.

Рисунок 8.1 — Схемы сушки током от источника постоянного напряжения при 6 выводных концах обмотки соединенной звездой (а), треугольником (б); при наличии трех выводных концов (в) и (г)

Рисунок 8.2 — Схема сушки изоляции обмоток электрических машин при помощи однофазного источника тока

Токовая сушка является наиболее интенсивной сушкой сильно увлажненных обмоток, при котором внутренние слои нагреваются сильнее наружных. Однако ток, пропускаемый по обмоткам с сильно увлажненной изоляцией, может привести к вспучиванию изоляции, а сушка постоянным током может оказать и электролитическое действие. Поэтому в подобных случаях рекомендуется сушку производить другими способами (потеря в стали, внешним нагревом). После предварительной подсушки этим методом можно применить сушку током.

К недостаткам метода можно отнести: Необходимость в источнике постоянного или переменного тока, регулируемого по величине; необходимость дополнительного контроля тока статора.

Достоинством метода является малое время сушки, возможность сушки электродвигателя без его разборки и транспортировки к месту сушки.

Читайте также:  Принципы регулирования напряжения генератора переменного тока

120.Предохранительный подогрев электродвигателей. Анализ условий и состояние эксплуатации электрооборудования в сельском хозяйстве показывает, что несмотря на достаточно высокое качество асинхронных двигателей, выпускаемых отечественной промышленностью, срок их службы в животноводческих помещениях не превышает 2. 2,2 года. Ежегодно из строя выходит в хозяйствах до 25. 30% электродвигателей. Одним из уязвимых мест в двигателе является его обмотка, надежность которой определяется состоянием изоляции.

Сопротивление изоляции в значительной мере зависит от влажности воздуха и наличия в нем примеси агрессивных химических веществ. На рисунок 8.4. показан характер изменения сопротивления изоляции обмоток отключенного двигателя.

Рисунок 8.4 — Изменение сопротивления изоляции обмоток в среде с повышенной влажностью (1) и химически агрессивной средой (2) для электродвигателей серии АО2

Если же двигатель находится в рабочем режиме, то по его обмоткам протекает ток, подогревающий ее. В процессе этого режима двигатель самоподсушивается. В том случае, если режим его работы таков, что за период паузы изоляция обмоток увлажняется менее критической величины (0,5 МОм), то за период рабочего режима величина сопротивления изоляции возрастает и пагубное влияние окружающей среды на обмотки не сказывается. Качественная картина изменения сопротивления изоляции может быть представлена в виде следующей диаграммы (рисунок 8.5).

Если величина сопротивления изоляции снизится за период паузы ниже критической величины, то при включении двигателя может произойти пробой ее и в дальнейшем развитию дефекта.

Одним из методов поддержания величины сопротивления изоляции обмоток на безопасном уровне является применение предохранительного подогрева электродвигателей.

Предохранительный подогрев обеспечивается за счет незначительного тока, подводимого в обмотке двигателя в период паузы.

Экспериментальными исследованиями установлено, что величина тока подогрева должна удовлетворять условию:

где: Iн — номинальный ток двигателя; Iпод — ток подогрева.

Меньшее значение коэффициентов относится к двигателям большей мощности.

Рисунок 8.5. Изменение сопротивления изоляции электродвигателя в зависимости от режима его работы

Предохранительный подогрев обеспечивает превышение температуры обмоток на 7. 8оС относительно температуры окружающей среды. Этим поддерживается величина сопротивления изоляции на безопасном уровне.

Наиболее рациональными схемами являются схемы с использованием конденсаторов. Рассмотрим некоторые из них.

Рисунок 8.6. Подключение конденсаторов по первому варианту (а), схема рабочего режима (б) и схема подогрева (в).

В рабочем режиме конденсаторы подключены параллельно двигателю и обеспечивают компенсацию реактивной мощности. В режиме подогрева конденсаторы подключены последовательно по реверсивной схеме для исключения вращения двигателя без нагрузки. Емкость конденсаторов определяется из расчетной схемы (см. рисунок 8.6).

В режиме подогрева линейные токи равны току подогрева: IA=IB=IC=Iпод.

Ток подогрева можно определить как: ,

где: Uф — фазное напряжение, В.; R — фазное активное сопротивление, Ом.; ХL — фазное индуктивное сопротивление обмотки заторможенного двигателя, Ом; Хс — сопротивление конденсатора, Ом.

Так как ротор двигателя в режиме подогрева неподвижен, то его индуктивное сопротивление ХL является малой величиной по сравнению с сопротивлением конденсатора, т. е. Хс>>ХL В свою очередь ХL>>R. Таким образом, в расчетах значениями ХL и R можно пренебречь и ток подогрева определить по приближенным формулам в соответствии с упрощенной схемой представленной на рисунок 8.7.

Ток подогрева в соответствии со схемой расчета (рисунок 8.8) определяется из выражения:

где: Хс — сопротивление емкости, или: ; где: СА — емкость конденсатора, Ф или мкФ.

Рисунок 8.7 — Расчетная схема для определения емкости конденсаторов

по схеме подключения первого варианта

Рисунок 8.8 — Упрощенная схема подогрева

Зная ток подогрева можно определить емкость токоограничивающего конденсатора.

Для линейного напряжения Uл=380 В., Uф=220 В., тогда СА=14,5×Iпод., мкФ.

При включении конденсаторов по первому варианту требуется конденсаторы большой емкости. Так например: двигатель мощностью 7,5 кВт, номинальный ток Iн=15 А должен иметь ток подогрева Iпод=(0,17. 0,2)×Iн=0,2×15=3,0 А, а емкость конденсаторов подогрева С=14,5×3=43,5 мкФ.

Для уменьшения величины ограничивающей емкости можно использовать схему второго включения конденсаторов для подогрева двигателя. Она представлена на рисунке 8.9.

Как видно на рисунке схема рабочего режима осталась такой же, как и в первом варианте, но схема подогрева изменилась. При этом Хс>>ХL; ХL>>R и поэтому величинами ХL и R можно пренебречь при расчете емкости конденсаторов. Тогда расчетная схема примет вид, приведенный на рисунке 8.10.

Тогда токи в фазах В и С могут быть определены из выражения:

Рисунок 8.9 — Схема включения конденсаторов по второму варианту

Рисунок 8.10 — Упрощенная схема подогрева

Для определения значения Uф рассмотрим векторные диаграммы, приведенные на рисунке 8.11. На рисунке 8.11а. приведена векторная диаграмма для симметричного режима.

Так как UА=0, то эта диаграмма примет вид показанный на рисунке 8.11б, т. е. точка “О” сместится в точку “А”, при этом UСА=UС; UАВ=UВ.

Тогда значение токов IB и IC можно определить следующим образом:

Величина тока вбез конденсаторной фазе может быть определена как геометрическая сумма токов в двух других фазах:

Для определения величины тока IА необходимо построить векторную диаграмму токов и напряжений (см. рисунок 8.12).

Рисунок 8.11 — Векторные диаграммы для определения Uф

Между векторами UВ и UС угол равен 60о. Токи опережают напряжения на угол 90о. Из этой диаграммы можно записать, что ток в фазе А равен:

Подставив значение тока IC в данное выражение мы получим:

где XСВ — значение сопротивления емкости СВ.

Рисунок 8.12 — Векторная диаграмма токов и напряжений

Подогрев обмоток двигателя достигается в основном за счет тепла выделяемого в обмотках, т. е. мощность подогрева складывается из потерь энергии выделяемых в каждой их фаз:

где: Рб — общая мощность подогрева для второй схемы сушки; РА, РВ, РС — мощности подогрева соответственно обмоток фаз А, В, С. Причем мощность подогрева фаз С и В равны:

Мощность подогрева фазы А:

Тогда общая мощность подогрева:

Нам известно, что мощность подогрева по схеме «а», см. рисунок 8.6 определяется из выражения:

Так как мощность должна быть одинаковой для обоих вариантов, то можно записать, что Ра =Рб или

Тогда емкость конденсатора для второго варианта: Сб = 0,447Са. Для напряжения Uл = 380 В. Сб=0,447Са=0,447×14,5×Iпод= 6,5×Iпод.

Тогда если вспомнить приведенный пример, Сб=6,5×3=19,5 мкФ, вместо 43,5мкФ.

Источник